1
|
Warner van Dijk FA, Bertram KM, O’Neil TR, Li Y, Buffa DJ, Harman AN, Cunningham AL, Nasr N. Recent Advances in Our Understanding of Human Inflammatory Dendritic Cells in Human Immunodeficiency Virus Infection. Viruses 2025; 17:105. [PMID: 39861894 PMCID: PMC11768623 DOI: 10.3390/v17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed. Dendritic cells (DCs), as potent antigen-presenting cells, are among the first to capture HIV upon its entry into the mucosa, and they subsequently transport the virus to CD4 T cells, the primary HIV target cells. This increased HIV susceptibility in inflamed tissue likely stems from a disrupted epithelial barrier integrity, phenotypic changes in resident DCs and an influx of inflammatory HIV target cells, including DCs and CD4 T cells. Gaining insight into how HIV interacts with specific inflammatory DC subsets could inform the development of new therapeutic strategies to block HIV transmission. However, little is known about the early stages of HIV capture and transmission in inflammatory environments. Here, we review the currently characterised inflammatory-tissue DCs and their interactions with HIV.
Collapse
Affiliation(s)
- Freja A. Warner van Dijk
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Yuchen Li
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Daniel J. Buffa
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
2
|
Lubin R, Patel AA, Mackerodt J, Zhang Y, Gvili R, Mulder K, Dutertre CA, Jalali P, Glanville JR, Hazan I, Sridharan N, Rivkin G, Akarca A, Marafioti T, Gilroy DW, Kandel L, Mildner A, Wilensky A, Asquith B, Ginhoux F, Macallan D, Yona S. The lifespan and kinetics of human dendritic cell subsets and their precursors in health and inflammation. J Exp Med 2024; 221:e20220867. [PMID: 39417994 PMCID: PMC11488382 DOI: 10.1084/jem.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dendritic cells (DC) are specialized mononuclear phagocytes that link innate and adaptive immunity. They comprise two principal subsets: plasmacytoid DC (pDC) and conventional DC (cDC). Understanding the generation, differentiation, and migration of cDC is critical for immune homeostasis. Through human in vivo deuterium-glucose labeling, we observed the rapid appearance of AXL+ Siglec6+ DC (ASDC) in the bloodstream. ASDC circulate for ∼2.16 days, while cDC1 and DC2 circulate for ∼1.32 and ∼2.20 days, respectively, upon release from the bone marrow. Interestingly, DC3, a cDC subset that shares several similarities with monocytes, exhibits a labeling profile closely resembling that of DC2. In a human in vivo model of cutaneous inflammation, ASDC were recruited to the inflammatory site, displaying a distinctive effector signature. Taken together, these results quantify the ephemeral circulating lifespan of human cDC and propose functions of cDC and their precursors that are rapidly recruited to sites of inflammation.
Collapse
Affiliation(s)
- Ruth Lubin
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit A. Patel
- Division of Medicine, University College London, London, UK
| | - Jonas Mackerodt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Rotem Gvili
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Idit Hazan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Nikhila Sridharan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gurion Rivkin
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | - Leonid Kandel
- Department of Orthopaedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, UK
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Derek Macallan
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
- St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Sol S, Boncimino F, Todorova K, Mandinova A. Unraveling the Functional Heterogeneity of Human Skin at Single-Cell Resolution. Hematol Oncol Clin North Am 2024; 38:921-938. [PMID: 38839486 DOI: 10.1016/j.hoc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The skin consists of several cell populations, including epithelial, immune, and stromal cells. Recently, there has been a significant increase in single-cell RNA-sequencing studies, contributing to the development of a consensus Human Skin Cell Atlas. The aim is to understand skin biology better and identify potential therapeutic targets. The present review utilized previously published single-cell RNA-sequencing datasets to explore human skin's cellular and functional heterogeneity. Additionally, it summarizes the functional significance of newly identified cell subpopulations in processes such as wound healing and aging.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 7 Cambridge Center, MA 02142, USA; Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
5
|
Vazquez T, Patel J, Kodali N, Diaz D, Bashir MM, Chin F, Keyes E, Sharma M, Sprow G, Grinnell M, Dan J, Werth VP. Plasmacytoid Dendritic Cells Are Not Major Producers of Type 1 IFN in Cutaneous Lupus: An In-Depth Immunoprofile of Subacute and Discoid Lupus. J Invest Dermatol 2024; 144:1262-1272.e7. [PMID: 38086428 DOI: 10.1016/j.jid.2023.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 03/12/2024]
Abstract
The immunologic drivers of cutaneous lupus erythematosus (CLE) and its clinical subtypes remain poorly understood. We sought to characterize the immune landscape of discoid lupus erythematosus and subacute CLE using multiplexed immunophenotyping. We found no significant differences in immune cell percentages between discoid lupus erythematosus and subacute CLE (P > .05) with the exception of an increase in TBK1 in discoid lupus erythematosus (P < .05). Unbiased clustering grouped subjects into 2 major clusters without respect to clinical subtype. Subjects with a history of smoking had increased percentages of neutrophils, disease activity, and endothelial granzyme B compared with nonsmokers. Despite previous assumptions, plasmacytoid dendritic cells (pDCs) did not stain for IFN-1. Skin-eluted and circulating pDCs from subjects with CLE expressed significantly less IFNα than healthy control pDCs upon toll-like receptor 7 stimulation ex vivo (P < .0001). These data suggest that discoid lupus erythematosus and subacute CLE have similar immune microenvironments in a multiplexed investigation. Our aggregated analysis of CLE revealed that smoking may modulate disease activity in CLE through neutrophils and endothelial granzyme B. Notably, our data suggest that pDCs are not the major producers of IFN-1 in CLE. Future in vitro studies to investigate the role of pDCs in CLE are needed.
Collapse
Affiliation(s)
- Thomas Vazquez
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jay Patel
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nilesh Kodali
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Felix Chin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Dan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Kato H, Kahlenberg JM. Emerging biologic therapies for systemic lupus erythematosus. Curr Opin Rheumatol 2024; 36:169-175. [PMID: 38299618 DOI: 10.1097/bor.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW The approval of belimumab and anifrolumab has expanded the scope of treatment for systemic lupus erythematosus (SLE) patients. However, many patients remain refractory to currently available therapies and suffer from drug toxicities. This review will discuss approved and target-specific therapeutics in development that bring hope for better SLE treatments. RECENT FINDINGS Since the last review on this subject in the journal, the FDA has approved anifrolumab and belimumab for SLE and lupus nephritis (LN), respectively. A fully humanized anti-CD20, obinutuzumab, met the primary end point in a phase II trial in LN. A Tyk2 inhibitor, deucravacitinib, and an antibody targeting plasmacytoid dendritic cells, litifilimab, met the primary end point in phase II trials in SLE and cutaneous lupus erythematosus (CLE). Ustekinumab and baricitinib met the primary end point in phase II but not in phase III trials. SUMMARY While many drug candidates which met the end points in phase II trials have failed phase III trials, the number of target-specific therapies for SLE has continued to expand.
Collapse
Affiliation(s)
- Hiroshi Kato
- University of Michigan Lupus Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
7
|
Ye JH, Chen YL, Ogg G. CD1a and skin T cells: a pathway for therapeutic intervention. Clin Exp Dermatol 2024; 49:450-458. [PMID: 38173286 PMCID: PMC11037390 DOI: 10.1093/ced/llad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.
Collapse
Affiliation(s)
- John H Ye
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Kobiela A, Hewelt-Belka W, Frąckowiak JE, Kordulewska N, Hovhannisyan L, Bogucka A, Etherington R, Piróg A, Dapic I, Gabrielsson S, Brown SJ, Ogg GS, Gutowska-Owsiak D. Keratinocyte-derived small extracellular vesicles supply antigens for CD1a-resticted T cells and promote their type 2 bias in the context of filaggrin insufficiency. Front Immunol 2024; 15:1369238. [PMID: 38585273 PMCID: PMC10995404 DOI: 10.3389/fimmu.2024.1369238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.
Collapse
Affiliation(s)
- Adrian Kobiela
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Joanna E. Frąckowiak
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Lilit Hovhannisyan
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Bogucka
- The Mass Spectrometry Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rachel Etherington
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Artur Piróg
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Graham S. Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta Gutowska-Owsiak
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Ogg GS, Rossjohn J, Clark RA, Moody DB. CD1a and bound lipids drive T-cell responses in human skin disease. Eur J Immunol 2023; 53:e2250333. [PMID: 37539748 PMCID: PMC10592190 DOI: 10.1002/eji.202250333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
In addition to serving as the main physical barrier with the outside world, human skin is abundantly infiltrated with resident αβ T cells that respond differently to self, infectious, microbiome, and noxious stimuli. To study skin T cells during infection and inflammation, experimental biologists track T-cell surface phenotypes and effector functions, which are often interpreted with the untested assumption that MHC proteins and peptide antigens drive measured responses. However, a broader perspective is that CD1 proteins also activate human T cells, and in skin, Langerhans cells (LCs) are abundant antigen presenting cells that express extremely high levels of CD1a. The emergence of new experimental tools, including CD1a tetramers carrying endogenous lipids, now show that CD1a-reactive T cells comprise a large population of resident T cells in human skin. Here, we review studies showing that skin-derived αβ T cells directly recognize CD1a proteins, and certain bound lipids, such as contact dermatitis allergens, trigger T-cell responses. Other natural skin lipids inhibit CD1a-mediated T-cell responses, providing an entry point for the development of therapeutic lipids that block T-cell responses. Increasing evidence points to a distinct role of CD1a in type 2 and 22 T-cell responses, providing new insights into psoriasis, contact dermatitis, and other T-cell-mediated skin diseases.
Collapse
Affiliation(s)
- Graham S. Ogg
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| |
Collapse
|
10
|
Kang J, Kim M, Yoon DY, Kim WS, Choi SJ, Kwon YN, Kim WS, Park SH, Sung JJ, Park M, Lee JS, Park JE, Kim SM. AXL +SIGLEC6 + dendritic cells in cerebrospinal fluid and brain tissues of patients with autoimmune inflammatory demyelinating disease of CNS. Clin Immunol 2023; 253:109686. [PMID: 37414380 DOI: 10.1016/j.clim.2023.109686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Inflammatory demyelinating disease of the CNS (IDD) is a heterogeneous group of autoimmune diseases, and multiple sclerosis is the most common type. Dendritic cells (DCs), major antigen-presenting cells, have been proposed to play a central role in the pathogenesis of IDD. The AXL+SIGLEC6+ DC (ASDC) has been only recently identified in humans and has a high capability of T cell activation. Nevertheless, its contribution to CNS autoimmunity remains still obscure. Here, we aimed to identify the ASDC in diverse sample types from IDD patients and experimental autoimmune encephalomyelitis (EAE). A detailed analysis of DC subpopulations using single-cell transcriptomics for the paired cerebrospinal fluid (CSF) and blood samples of IDD patients (total n = 9) revealed that three subtypes of DCs (ASDCs, ACY3+ DCs, and LAMP3+ DCs) were overrepresented in CSF compared with their paired blood. Among these DCs, ASDCs were also more abundant in CSF of IDD patients than in controls, manifesting poly-adhesional and stimulatory characteristics. In the brain biopsied tissues of IDD patients, obtained at the acute attack of disease, ASDC were also frequently found in close contact with T cells. Lastly, the frequency of ASDC was found to be temporally more abundant in acute attack of disease both in CSF samples of IDD patients and in tissues of EAE, an animal model for CNS autoimmunity. Our analysis suggests that the ASDC might be involved in the pathogenesis of CNS autoimmunity.
Collapse
Affiliation(s)
- Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Moonhang Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Da-Young Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo-Seok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Young-Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Won-Seok Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Chen YL, Ng JSW, Ottakandathil Babu R, Woo J, Nahler J, Hardman CS, Kurupati P, Nussbaum L, Gao F, Dong T, Ladell K, Price DA, Duncan DA, Johnson D, Gileadi U, Koohy H, Ogg GS. Group A Streptococcus induces CD1a-autoreactive T cells and promotes psoriatic inflammation. Sci Immunol 2023; 8:eadd9232. [PMID: 37267382 PMCID: PMC7615662 DOI: 10.1126/sciimmunol.add9232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Group A Streptococcus (GAS) infection is associated with multiple clinical sequelae, including different subtypes of psoriasis. Such post-streptococcal disorders have been long known but are largely unexplained. CD1a is expressed at constitutively high levels by Langerhans cells and presents lipid antigens to T cells, but the potential relevance to GAS infection has not been studied. Here, we investigated whether GAS-responsive CD1a-restricted T cells contribute to the pathogenesis of psoriasis. Healthy individuals had high frequencies of circulating and cutaneous GAS-responsive CD4+ and CD8+ T cells with rapid effector functions, including the production of interleukin-22 (IL-22). Human skin and blood single-cell CITE-seq analyses of IL-22-producing T cells showed a type 17 signature with proliferative potential, whereas IFN-γ-producing T cells displayed cytotoxic T lymphocyte characteristics. Furthermore, individuals with psoriasis had significantly higher frequencies of circulating GAS-reactive T cells, enriched for markers of activation, cytolytic potential, and tissue association. In addition to responding to GAS, subsets of expanded GAS-reactive T cell clones/lines were found to be autoreactive, which included the recognition of the self-lipid antigen lysophosphatidylcholine. CD8+ T cell clones/lines produced cytolytic mediators and lysed infected CD1a-expressing cells. Furthermore, we established cutaneous models of GAS infection in a humanized CD1a transgenic mouse model and identified enhanced and prolonged local and systemic inflammation, with resolution through a psoriasis-like phenotype. Together, these findings link GAS infection to the CD1a pathway and show that GAS infection promotes the proliferation and activation of CD1a-autoreactive T cells, with relevance to post-streptococcal disease, including the pathogenesis and treatment of psoriasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jessica Soo Weei Ng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rosana Ottakandathil Babu
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jeongmin Woo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Janina Nahler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Prathiba Kurupati
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lea Nussbaum
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fei Gao
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- CAMS-Oxford International Centre for Translational Immunology, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- CAMS-Oxford International Centre for Translational Immunology, University of Oxford, Oxford, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - David A Duncan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - David Johnson
- Department of Plastic and Reconstructive Surgery, John Radcliffe Hospital, Oxford University Hospitals National Health Services Foundation Trust, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Alan Turing Fellow in Health and Medicine, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- CAMS-Oxford International Centre for Translational Immunology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Hardman CS, Chen YL, Wegrecki M, Ng SW, Murren R, Mangat D, Silva JP, Munro R, Chan WY, O'Dowd V, Doyle C, Mori P, Popplewell A, Rossjohn J, Lightwood D, Ogg GS. CD1a promotes systemic manifestations of skin inflammation. Nat Commun 2022; 13:7535. [PMID: 36477177 PMCID: PMC9729296 DOI: 10.1038/s41467-022-35071-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory skin conditions are increasingly recognised as being associated with systemic inflammation. The mechanisms connecting the cutaneous and systemic disease are not well understood. CD1a is a virtually monomorphic major histocompatibility complex (MHC) class I-like molecule, highly expressed by skin and mucosal Langerhans cells, and presents lipid antigens to T-cells. Here we show an important role for CD1a in linking cutaneous and systemic inflammation in two experimental disease models. In human CD1a transgenic mice, the toll-like receptor (TLR)7 agonist imiquimod induces more pronounced splenomegaly, expansion of the peripheral blood and spleen T cell compartments, and enhanced neutrophil and eosinophil responses compared to the wild-type, accompanied by elevated skin and plasma cytokine levels, including IL-23, IL-1α, IL-1β, MCP-1 and IL-17A. Similar systemic escalation is shown in MC903-induced skin inflammation. The exacerbated inflammation could be counter-acted by CD1a-blocking antibodies, developed and screened in our laboratories. The beneficial effect is epitope dependent, and we further characterise the five best-performing antibodies for their capacity to modulate CD1a-expressing cells and ameliorate CD1a-dependent systemic inflammatory responses. In summary, we show that a therapeutically targetable CD1a-dependent pathway may play a role in the systemic spread of cutaneous inflammation.
Collapse
Affiliation(s)
- Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Soo Weei Ng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Carl Doyle
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | | | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Segura E. Human dendritic cell subsets: An updated view of their ontogeny and functional specialization. Eur J Immunol 2022; 52:1759-1767. [PMID: 35187651 PMCID: PMC9790408 DOI: 10.1002/eji.202149632] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
Abstract
Human DCs have been divided into several subsets based on their phenotype and ontogeny. Recent high throughput single-cell methods have revealed additional heterogeneity within human DC subsets, and new subpopulations have been proposed. In this review, we provide an updated view of the human DC subsets and of their ontogeny supported by recent clinical studies . We also summarize their main characteristics including their functional specialization.
Collapse
|
14
|
Sarfati M, Chapuy L, Mehta H. Revisiting the disease specificity and nomenclature of ficolin-1-positive monocyte-derived dendritic cells in diffuse cutaneous systemic sclerosis: comment on the article by Xue et al. Arthritis Rheumatol 2022; 74:1721-1722. [PMID: 35644033 DOI: 10.1002/art.42247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Marika Sarfati
- Centre de Recherche du Centre Hospitalier, de l'Université de Montréal
| | | | - Heena Mehta
- Centre de Recherche du Centre Hospitalier, de l'Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
16
|
Tai J, Kwak J, Han M, Kim TH. Different Roles of Dendritic Cells for Chronic Rhinosinusitis Treatment According to Phenotype. Int J Mol Sci 2022; 23:ijms23148032. [PMID: 35887379 PMCID: PMC9323853 DOI: 10.3390/ijms23148032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells derived from the bone marrow that play an important role in the association between the innate and adaptive immune responses. The onset and development of chronic rhinosinusitis (CRS) involve a serious imbalance in immune regulation and mechanical dysfunction caused by an abnormal remodeling process. Recent studies have shown that an increase in DCs in CRS and their function of shaping the nasal mucosal immune response may play an important role in the pathogenesis of CRS. In this review, we discuss DC subsets in mice and humans, as well as the function of DCs in the nasal sinus mucosa. In addition, the mechanism by which DCs can be used as targets for therapeutic intervention for CRS and potential future research directions are also discussed.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Jiwon Kwak
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Munsoo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
17
|
West HC, Davies J, Henderson S, Adegun OK, Ward S, Ferrer IR, Tye CA, Vallejo AF, Jardine L, Collin M, Polak ME, Bennett CL. Loss of T cell tolerance in the skin following immunopathology is linked to failed restoration of the dermal niche by recruited macrophages. Cell Rep 2022; 39:110819. [PMID: 35584681 PMCID: PMC9620741 DOI: 10.1016/j.celrep.2022.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/17/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022] Open
Abstract
T cell pathology in the skin leads to monocyte influx, but we have little understanding of the fate of recruited cells within the diseased niche, or the long-term impact on cutaneous immune homeostasis. By combining a murine model of acute graft-versus-host disease (aGVHD) with analysis of patient samples, we demonstrate that pathology initiates dermis-specific macrophage differentiation and show that aGVHD-primed macrophages continue to dominate the dermal compartment at the relative expense of quiescent MHCIIint cells. Exposure of the altered dermal niche to topical haptens after disease resolution results in hyper-activation of regulatory T cells (Treg), but local breakdown in tolerance. Disease-imprinted macrophages express increased IL-1β and are predicted to elicit altered TNF superfamily interactions with cutaneous Treg, and we demonstrate the direct loss of T cell regulation within the resolved skin. Thus, T cell pathology leaves an immunological scar in the skin marked by failure to re-set immune homeostasis.
Collapse
Affiliation(s)
- Heather C West
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - James Davies
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Oluyori K Adegun
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sophie Ward
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Ivana R Ferrer
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Chanidapa A Tye
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences (Sir Henry Wellcome Laboratories, Faculty of Medicine) and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Matthew Collin
- Newcastle University Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle Upon Tyne, UK
| | - Marta E Polak
- Clinical and Experimental Sciences (Sir Henry Wellcome Laboratories, Faculty of Medicine) and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| |
Collapse
|
18
|
Sosa Cuevas E, Bendriss-Vermare N, Mouret S, De Fraipont F, Charles J, Valladeau-Guilemond J, Chaperot L, Aspord C. Diversification of circulating and tumor-infiltrating plasmacytoid DCs towards the P3 (CD80 + PDL1 -)-pDC subset negatively correlated with clinical outcomes in melanoma patients. Clin Transl Immunology 2022; 11:e1382. [PMID: 35517992 PMCID: PMC9063720 DOI: 10.1002/cti2.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Plasmacytoid DCs (pDCs) play a critical yet enigmatic role in antitumor immunity through their pleiotropic immunomodulatory functions. Despite proof of pDC diversity in several physiological or pathological contexts, pDCs have been studied as a whole population so far in cancer. The assessment of individual pDC subsets is needed to fully grasp their involvement in cancer immunity, especially in melanoma where pDC subsets are largely unknown and remain to be uncovered. Methods We explored for the first time the features of diverse circulating and tumor-infiltrating pDC subsets in melanoma patients using multi-parametric flow cytometry, and assessed their clinical relevance. Based on CD80, PDL1, CD2, LAG3 and Axl markers, we provided an integrated overview of the frequency, basal activation status and functional features of pDC subsets in melanoma patients together with their relationship to clinical outcome. Results Strikingly, we demonstrated that P3-pDCs (CD80+PDL1-) accumulated within the tumor of melanoma patients and negatively correlated with clinical outcomes. The basal activation status, diversification towards P1-/P2-/P3-pDCs and functionality of several pDC subsets upon TLR7/TLR9 triggering were perturbed in melanoma patients, and were differentially linked to clinical outcome. Conclusion Our study shed light for the first time on the phenotypic and functional heterogeneity of pDCs in the blood and tumor of melanoma patients and their potential involvement in shaping clinical outcomes. Such novelty brightens our understanding of pDC complexity, and prompts the further deciphering of pDCs' features to better apprehend and exploit these potent immune players. It highlights the importance of considering pDC diversity when developing pDC-based therapeutic strategies to ensure optimal clinical success.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Nathalie Bendriss-Vermare
- Univ Lyon Université Claude Bernard Lyon 1 INSERM 1052 CNRS 5286 Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon Lyon France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Jenny Valladeau-Guilemond
- Univ Lyon Université Claude Bernard Lyon 1 INSERM 1052 CNRS 5286 Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon Lyon France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
19
|
Li Y, Jeong J, Song W. Molecular Characteristics and Distribution of Adult Human Corneal Immune Cell Types. Front Immunol 2022; 13:798346. [PMID: 35280984 PMCID: PMC8905655 DOI: 10.3389/fimmu.2022.798346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
Background The limbus is located at a 2-mm-wide area between the bulbar conjunctiva and the cornea and has been suggested to be the niche of corneal epithelial stem cells and immune cells. Like the skin and intestines, the cornea is also an important mucosal surface, and immune cells on the cornea play critical roles in immune surveillance to ensure barrier surface homeostasis and protection from various environmental damage and infections. Single-cell RNA sequencing (scRNA-seq) analysis of protein tyrosine phosphatase receptor type C positive (PTPRC+) hematopoietic cells from the corneal limbus could provide a single cell atlas of all the immune cell subsets. Methods We performed single-cell RNA sequencing to generate transcriptomic profile for 804 sort-purified hematopoietic cells from the corneal limbus of three healthy donors. Results Our analysis identified a primary transcriptomic pattern for multiple immune cell subtypes, including naive T cells, antiviral effector CD8+ T cells, and innate immune cells such as IDO1+ mature regulatory dendritic cells (mregDCs), macrophages, monocytes, and basophils in the human corneal limbus. Conclusion Overall, single-cell transcriptomic analysis of limbal immune cells suggested the possible contribution of these cells on the adaptive and innate immune response of the human cornea.
Collapse
Affiliation(s)
- Yanxiu Li
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China.,Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Joyce Jeong
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China.,Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
20
|
Xue D, Tabib T, Morse C, Yang Y, Domsic R, Khanna D, Lafyatis R. Expansion of Fcγ Receptor IIIa-Positive Macrophages, Ficolin 1-Positive Monocyte-Derived Dendritic Cells, and Plasmacytoid Dendritic Cells Associated With Severe Skin Disease in Systemic Sclerosis. Arthritis Rheumatol 2022; 74:329-341. [PMID: 34042322 PMCID: PMC8626521 DOI: 10.1002/art.41813] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In this study, we sought a comprehensive understanding of myeloid cell types driving fibrosis in diffuse cutaneous systemic sclerosis (dcSSc) skin. METHODS We analyzed the transcriptomes of 2,465 myeloid cells from skin biopsy specimens from 12 dcSSc patients and 10 healthy control subjects using single-cell RNA sequencing. Monocyte-derived dendritic cells (mo-DCs) were assessed using immunohistochemical staining and immunofluorescence analyses targeting ficolin-1 (FCN-1). RESULTS A t-distributed stochastic neighbor embedding analysis of single-cell transcriptome data revealed 12 myeloid cell clusters, 9 of which paralleled previously described healthy control macrophage/DC clusters, and 3 of which were dcSSc-specific myeloid cell clusters. One SSc-associated macrophage cluster, highly expressing Fcγ receptor IIIA, was suggested on pseudotime analysis to be derived from normal CCR1+ and MARCO+ macrophages. A second SSc-associated myeloid population highly expressed monocyte markers FCN-1, epiregulin, S100A8, and S100A9, but was closely related to type 2 conventional DCs on pseudotime analysis and identified as mo-DCs. Mo-DCs were associated with more severe skin disease. Proliferating macrophages and plasmacytoid DCs were detected almost exclusively in dcSSc skin, the latter clustering with B cells and apparently derived from lymphoid progenitors. CONCLUSION Transcriptional signatures in these and other myeloid populations indicate innate immune system activation, possibly through Toll-like receptors and highly up-regulated chemokines. However, the appearance and activation of myeloid cells varies between patients, indicating potential differences in the underlying pathogenesis and/or temporal disease activity in dcSSc.
Collapse
Affiliation(s)
- Dan Xue
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Tracy Tabib
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Robyn Domsic
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Mayer JU, Hilligan KL, Chandler JS, Eccles DA, Old SI, Domingues RG, Yang J, Webb GR, Munoz-Erazo L, Hyde EJ, Wakelin KA, Tang SC, Chappell SC, von Daake S, Brombacher F, Mackay CR, Sher A, Tussiwand R, Connor LM, Gallego-Ortega D, Jankovic D, Le Gros G, Hepworth MR, Lamiable O, Ronchese F. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote T H2 and inhibit T H17 cell polarization. Nat Immunol 2021; 22:1538-1550. [PMID: 34795444 DOI: 10.1038/s41590-021-01067-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 01/27/2023]
Abstract
The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.
Collapse
Affiliation(s)
- Johannes U Mayer
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Dermatology and Allergology, Phillips University Marburg, Marburg, Germany
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - David A Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rita G Domingues
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jianping Yang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town component & Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Immune Regulation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Gallego-Ortega
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Centre for Single-Cell Technology, School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
22
|
Nakamizo S, Dutertre CA, Khalilnezhad A, Zhang XM, Lim S, Lum J, Koh G, Foong C, Yong PJA, Tan KJ, Sato R, Tomari K, Yvan-Charvet L, He H, Guttman-Yassky E, Malleret B, Shibuya R, Iwata M, Janela B, Goto T, Lucinda TS, Tang MBY, Theng C, Julia V, Hacini-Rachinel F, Kabashima K, Ginhoux F. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med 2021; 218:212481. [PMID: 34279540 PMCID: PMC8292131 DOI: 10.1084/jem.20202345] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/03/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammatory skin diseases including atopic dermatitis (AD) and psoriasis (PSO) are underpinned by dendritic cell (DC)-mediated T cell responses. Currently, the heterogeneous human cutaneous DC population is incompletely characterized, and its contribution to these diseases remains unclear. Here, we performed index-sorted single-cell flow cytometry and RNA sequencing of lesional and nonlesional AD and PSO skin to identify macrophages and all DC subsets, including the newly described mature LAMP3+BIRC3+ DCs enriched in immunoregulatory molecules (mregDC) and CD14+ DC3. By integrating our indexed data with published skin datasets, we generated a myeloid cell universe of DC and macrophage subsets in healthy and diseased skin. Importantly, we found that CD14+ DC3s increased in PSO lesional skin and co-produced IL1B and IL23A, which are pathological in PSO. Our study comprehensively describes the molecular characteristics of macrophages and DC subsets in AD and PSO at single-cell resolution, and identifies CD14+ DC3s as potential promoters of inflammation in PSO.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Charles-Antoine Dutertre
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Ahad Khalilnezhad
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Shawn Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Geraldine Koh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | | | | | - Kahbing Jasmine Tan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Reiko Sato
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Tomari
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale U1065, Centre Mediterraneen de Medecine Moleculaire, Atip-Avenir, Nice, France
| | - Helen He
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Rintaro Shibuya
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Iwata
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Baptiste Janela
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | - Kenji Kabashima
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Liu B, Huang J, Ashraf A, Rahaman O, Lou J, Wang L, Cai P, Wen J, Anwaar S, Liu X, Ni H, Ganguly D, Zhao J, Yang CY. The RNase MCPIP3 promotes skin inflammation by orchestrating myeloid cytokine response. Nat Commun 2021; 12:4105. [PMID: 34215755 PMCID: PMC8253787 DOI: 10.1038/s41467-021-24352-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
CCCH zinc finger proteins resolve immune responses by degrading the mRNAs of inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL)-6. Here we report that one such family member, monocyte chemotactic protein-induced protein 3 (MCPIP3, also named ZC3H12C or Regnase-3), promotes skin inflammation by simultaneously enhancing TNF in macrophages and repressing IL-6 in plasmacytoid dendritic cells (pDCs). MCPIP3 is positively associated with psoriasis pathogenesis, and highly expressed by macrophages and pDCs. MCPIP3-deficient macrophages produce less TNF and IL-12p40. However, MCPIP3-deficient pDCs secrete significantly more IL-6. This enhanced intradermal IL-6 may alleviate imiquimod-induced skin inflammation. As a result, MCPIP3-deficient mice are protected from imiquimod-induced psoriasiform lesions. Furthermore, early exposure to pDC-derived IL-6 suppresses macrophage-derived TNF and IL-12p40. Mechanistically, MCPIP3 could directly degrade mRNAs of IL-6, Regnase-1, and IκBζ. In turn, Regnase-1 could degrade MCPIP3 mRNAs. Our study identifies a critical post-transcriptional mechanism that synchronizes myeloid cytokine secretion to initiate autoimmune skin inflammation. Zinc finger proteins are involved in the resolution of immune responses and function by degrading mRNA of inflammatory cytokines. Here the authors show MCPIP3 promotes skin inflammation via modification of cytokine profiles in pDCs and macrophages.
Collapse
Affiliation(s)
- Bo Liu
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Amina Ashraf
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Oindrila Rahaman
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jing Lou
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Peiliang Cai
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Jinping Wen
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Shoaib Anwaar
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Xiaoli Liu
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Hai Ni
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Cliff Y Yang
- Department of Immunology, Sun Yat-sen University, Zhongshan School of Medicine, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
24
|
Patnaik MM, Mughal TI, Brooks C, Lindsay R, Pemmaraju N. Targeting CD123 in hematologic malignancies: identifying suitable patients for targeted therapy. Leuk Lymphoma 2021; 62:2568-2586. [PMID: 33999767 DOI: 10.1080/10428194.2021.1927021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following the observation of interleukin 3 receptor α chain (IL-3Rα; CD123) upregulation on leukemia stem cells (LSCs) almost two decades ago, targeted treatment via CD123-diptheria toxin conjugates has now been tested in patients with diverse myeloid malignancies. Targeted eradication of LSCs could result in effective treatments for many challenging diseases initiated by these cells. Consequently, considerable effort has been directed toward targeting CD123 as a potential strategy for treating patients with hematologic malignancies in which CD123 is overexpressed. However, these therapies have had limited success so far, highlighting the need for suitable criteria to identify patients who could benefit from them. Given the diversity in CD123 expression across different hematologic malignancies, understanding CD123 expression patterns and the functional pathogenetic significance is crucial. Here, we review the methodologies available for CD123 assessment and discuss the biological and clinical characteristics of patients for whom CD123-targeting therapies may have a clinical impact.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tariq I Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA, USA.,Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Christopher Brooks
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Ross Lindsay
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Naveen Pemmaraju
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Shojiguchi N, Arai E, Anan T, Ansai SI, Tsuchida T, Yasuda M. Distribution of CD1a-positive cells is not different between pseudolymphomatous folliculitis and primary cutaneous marginal zone lymphoma. J Dermatol 2020; 48:464-469. [PMID: 33326629 DOI: 10.1111/1346-8138.15731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
Pseudolymphomatous folliculitis (PLF) is a subtype of cutaneous pseudolymphoma that is recognized as an independent disease. PLF is characterized by dermal lymphocytic infiltration surrounding an irregular hyperplastic pilosebaceous unit (i.e., activated pilosebaceous unit). An interstitial distribution of CD1a-positive cells is regarded as an important feature of PLF, especially in distinguishing it from primary cutaneous marginal zone lymphoma (PCMZL), which is associated with a peripheral concentration of CD1a-positive cells. We undertook a clinicopathological investigation of PLF, with a reassessment of CD1a immunohistochemistry. We defined diagnostic criteria for PLF based on past studies and consequently identified 79 cases. In addition, we collected 32 cases of PCMZL and performed detailed clinical, pathological, and immunohistochemical investigations using antibodies to CD3, CD20, and CD1a. We found an interstitial concentration of CD1a-positive cells in 90.2% of PLF and 34.5% of PCMZL cases. The peripheral concentration of CD1a-positive cells was seen in 9.8% of PLF and 34.5% of PCMZL cases. In both diseases, CD1a-positive cells appeared in T-cell nests (88.5% in PLF and 92.9% in PCMZL) but were absent in B-cell nests (0% in both groups). All 79 cases of PLF showed activated pilosebaceous units while 22 of the 32 PCMZL cases displayed pilosebaceous units, although none of these were activated. In summary, regarding the distribution patterns of CD1a-positive cells as a diagnostic feature in distinguishing between PLF and PCMZL is somewhat inconclusive. To differentiate PLF and PCMZL, determining the presence or absence of activated pilosebaceous units is essential.
Collapse
Affiliation(s)
- Naoko Shojiguchi
- Department of Pathology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Eiichi Arai
- Department of Pathology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Takashi Anan
- Sapporo Dermatopathology Institute, Sapporo, Japan
| | - Shin-Ichi Ansai
- Division of Dermatology and Dermatopathology, Nippon Medical School, Musashi Kosugi Hospital, Kawasaki, Japan
| | - Tetsuya Tsuchida
- Department of Dermatology, Saitama Medical University, Iruma-gun, Japan
| | - Masanori Yasuda
- Department of Pathology, International Medical Center, Saitama Medical University, Hidaka, Japan
| |
Collapse
|
26
|
Villar J, Segura E. Decoding the Heterogeneity of Human Dendritic Cell Subsets. Trends Immunol 2020; 41:1062-1071. [DOI: 10.1016/j.it.2020.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022]
|
27
|
Kim D, Chung KB, Kim TG. Application of single-cell RNA sequencing on human skin: Technical evolution and challenges. J Dermatol Sci 2020; 99:74-81. [PMID: 32593488 DOI: 10.1016/j.jdermsci.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
The bulk tissue RNA sequencing technique measures the average gene expression of potentially heterogeneous cellular subsets of human skin. However, single-cell RNA sequencing (scRNA-seq) enables both profiling of gene expression measurements at a single-cell resolution and identification of cellular heterogeneity. This recent technical advance has broadened the understanding of many aspects of skin biology, such as development, oncogenesis, and immunopathogenesis. However, due to the low number of mRNAs detectable in an individual cell and the alteration of transcriptomes during sample preparation, scRNA-seq data are often extremely noisy. Moreover, unstandardized methodologies for sample preparation, capturing, and bioinformatic analysis (e.g., batch correction or integration) hamper reliable inter-study comparisons. Nevertheless, sophisticated bioinformatic analysis and integrative omics-based approaches are making up for these limitations. Here, we discuss both the advantages and technical challenges of scRNA-seq, a promising tool opening new horizons in dermatological research.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Kyung Bae Chung
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|