1
|
Wu Y, Wu F, Ma Q, Li J, Ma L, Zhou H, Gong Y, Yao X. HTS and scRNA-seq revealed that the location and RSS quality of the mammalian TRBV and TRBJ genes impact biased rearrangement. BMC Genomics 2024; 25:1010. [PMID: 39472808 PMCID: PMC11520388 DOI: 10.1186/s12864-024-10887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The quality of Recombination signal sequences (RSSs), location, and genetics of mammalian V, D, and J genes synergistically affect the recombination frequency of genes; however, the specific regulatory mechanism and efficiency have not been elucidated. By taking advantage of single-cell RNA-sequencing (scRNA-seq) and high-throughput sequencing (HTS) to investigate V(D)J rearrangement characteristics in the CDR3 repertoire, we found that the distal and proximal V genes (or J genes) "to D" gene were involved in rearrangement significantly more frequently than the middle V genes (or J genes) in the TRB locus among various species, including Primates (human and rhesus monkey), Rodentia (BALB/c, C57BL/6, and Kunming mice), Artiodactyla (buffalo), and Chiroptera (Rhinolophus affinis). The RSS quality of the V and J genes affected their frequency in rearrangement to varying degrees, especially when the V-RSSs with recombination signal information content (RIC) score < -45 significantly reduced the recombination frequency of the V gene. The V and J genes that were "away from D" had the dual advantages of recombinant structural accessibility and relatively high-quality RSSs, which promoted their preferential utilization in rearrangement. The quality of J-RSSs formed during mammalian evolution was apparently greater than that of V-RSSs, and the D-J distance was obviously shorter than that of V-D, which may be one of the reasons for guaranteeing that the "D-to-J preceding V-to-DJ rule" occurred when rearranged. This study provides a novel perspective on the mechanism and efficiency of V-D-J rearrangement in the mammalian TRB locus, as well as the biased utilization characteristics and application of V and J genes in the initial CDR3 repertoire.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Ma
- Department of Central Laboratory, Affiliated guizhou aerospace hospital of Zunyi Medical University, Zunyi City, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Hou Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yadong Gong
- Department of Central Laboratory, Affiliated guizhou aerospace hospital of Zunyi Medical University, Zunyi City, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Zhang Y, Li X, Ba Z, Lou J, Gaertner KE, Zhu T, Lin X, Ye AY, Alt FW, Hu H. Molecular basis for differential Igk versus Igh V(D)J joining mechanisms. Nature 2024; 630:189-197. [PMID: 38811728 PMCID: PMC11153149 DOI: 10.1038/s41586-024-07477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
In developing B cells, V(D)J recombination assembles exons encoding IgH and Igκ variable regions from hundreds of gene segments clustered across Igh and Igk loci. V, D and J gene segments are flanked by conserved recombination signal sequences (RSSs) that target RAG endonuclease1. RAG orchestrates Igh V(D)J recombination upon capturing a JH-RSS within the JH-RSS-based recombination centre1-3 (RC). JH-RSS orientation programmes RAG to scan upstream D- and VH-containing chromatin that is presented in a linear manner by cohesin-mediated loop extrusion4-7. During Igh scanning, RAG robustly utilizes only D-RSSs or VH-RSSs in convergent (deletional) orientation with JH-RSSs4-7. However, for Vκ-to-Jκ joining, RAG utilizes Vκ-RSSs from deletional- and inversional-oriented clusters8, inconsistent with linear scanning2. Here we characterize the Vκ-to-Jκ joining mechanism. Igk undergoes robust primary and secondary rearrangements9,10, which confounds scanning assays. We therefore engineered cells to undergo only primary Vκ-to-Jκ rearrangements and found that RAG scanning from the primary Jκ-RC terminates just 8 kb upstream within the CTCF-site-based Sis element11. Whereas Sis and the Jκ-RC barely interacted with the Vκ locus, the CTCF-site-based Cer element12 4 kb upstream of Sis interacted with various loop extrusion impediments across the locus. Similar to VH locus inversion7, DJH inversion abrogated VH-to-DJH joining; yet Vκ locus or Jκ inversion allowed robust Vκ-to-Jκ joining. Together, these experiments implicated loop extrusion in bringing Vκ segments near Cer for short-range diffusion-mediated capture by RC-based RAG. To identify key mechanistic elements for diffusional V(D)J recombination in Igk versus Igh, we assayed Vκ-to-JH and D-to-Jκ rearrangements in hybrid Igh-Igk loci generated by targeted chromosomal translocations, and pinpointed remarkably strong Vκ and Jκ RSSs. Indeed, RSS replacements in hybrid or normal Igk and Igh loci confirmed the ability of Igk-RSSs to promote robust diffusional joining compared with Igh-RSSs. We propose that Igk evolved strong RSSs to mediate diffusional Vκ-to-Jκ joining, whereas Igh evolved weaker RSSs requisite for modulating VH joining by RAG-scanning impediments.
Collapse
Affiliation(s)
- Yiwen Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xiang Li
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- National Institute of Biological Sciences, Beijing, China
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Copenhagen University, Copenhagen, Denmark
| | - K Elyse Gaertner
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Georgetown University, Washington, DC, USA
| | - Tammie Zhu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xin Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Hongli Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Naik AK, Dauphars DJ, Corbett E, Simpson L, Schatz DG, Krangel MS. RORγt up-regulates RAG gene expression in DP thymocytes to expand the Tcra repertoire. Sci Immunol 2024; 9:eadh5318. [PMID: 38489350 PMCID: PMC11005092 DOI: 10.1126/sciimmunol.adh5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
Recombination activating gene (RAG) expression increases as thymocytes transition from the CD4-CD8- double-negative (DN) to the CD4+CD8+ double-positive (DP) stage, but the physiological importance and mechanism of transcriptional up-regulation are unknown. Here, we show that a DP-specific component of the recombination activating genes antisilencer (DPASE) provokes elevated RAG expression in DP thymocytes. Mouse DP thymocytes lacking the DPASE display RAG expression equivalent to that in DN thymocytes, but this supports only a partial Tcra repertoire due to inefficient secondary Vα-Jα rearrangement. These data indicate that RAG up-regulation is required for a replete Tcra repertoire and that RAG expression is fine-tuned during lymphocyte development to meet the requirements of distinct antigen receptor loci. We further show that transcription factor RORγt directs RAG up-regulation in DP thymocytes by binding to the DPASE and that RORγt influences the Tcra repertoire by binding to the Tcra enhancer. These data, together with prior work showing RORγt to control Tcra rearrangement by regulating DP thymocyte proliferation and survival, reveal RORγt to orchestrate multiple pathways that support formation of the Tcra repertoire.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Danielle J Dauphars
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Corbett
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Lunden Simpson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - David G Schatz
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael S Krangel
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Culberson EJ, Shields KC, Glynn RA, Allyn BM, Hayer KE, Bassing CH. The Cyclin D3 Protein Enforces Monogenic TCRβ Expression by Mediating TCRβ Protein-Signaled Feedback Inhibition of Vβ Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:534-540. [PMID: 38117277 PMCID: PMC10872516 DOI: 10.4049/jimmunol.2300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vβ-to-DβJβ rearrangements in noncycling double-negative thymocytes, TCRβ protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αβ T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αβ T cells that express TCRβ proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRβ expression, we used our mouse lines with enhanced rearrangement of specific Vβ segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αβ T cells that display proteins from RSS-augmented Vβ segments on both alleles. By assaying mature αβ T cells, we find that cyclin D3 deficiency increases the levels of Vβ rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRβ protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRβ expression and resulting uniform specificity of individual αβ T cells.
Collapse
Affiliation(s)
- Erica J. Culberson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kymberle C. Shields
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rebecca A. Glynn
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brittney M. Allyn
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA 19104
| | - Craig H. Bassing
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
5
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Martin EC, Le Targa L, Tsakou-Ngouafo L, Fan TP, Lin CY, Xiao J, Huang Z, Yuan S, Xu A, Su YH, Petrescu AJ, Pontarotti P, Schatz DG. Insights into RAG Evolution from the Identification of "Missing Link" Family A RAGL Transposons. Mol Biol Evol 2023; 40:msad232. [PMID: 37850912 PMCID: PMC10629977 DOI: 10.1093/molbev/msad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Collapse
Affiliation(s)
- Eliza C Martin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, USA
| | - Lorlane Le Targa
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - Louis Tsakou-Ngouafo
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jianxiong Xiao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, USA
| | - Ziwen Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Pierre Pontarotti
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- CNRS SNC 5039, 13005 Marseille, France
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, USA
| |
Collapse
|
7
|
Hoolehan W, Harris JC, Rodgers KK. Molecular Mechanisms of DNA Sequence Selectivity in V(D)J Recombination. ACS OMEGA 2023; 8:34206-34214. [PMID: 37779976 PMCID: PMC10536018 DOI: 10.1021/acsomega.3c05601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Antigen receptor (AgR) diversity is central to the ability of adaptive immunity in jawed vertebrates to protect against pathogenic agents. The production of highly diverse AgR repertoires is initiated during B and T cell lymphopoiesis by V(D)J recombination, which assembles the receptor genes from component gene segments in a cut-and-paste recombination reaction. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank AgR gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence, and the molecular mechanism for semiselective V(D)J recombination specificity is unknown. The modulation of chromatin structure during V(D)J recombination is essential in the formation of diverse AgRs in adaptive immunity while also reducing the likelihood for off-target recombination events that can result in chromosomal aberrations and genomic instability. Here we review what is presently known regarding mechanisms that facilitate assembly of RAG1/2 with RSSs, the ensuing conformational changes required for DNA cleavage activity, and how the readout of the RSS sequence affects reaction efficiency.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Justin C. Harris
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Karla K. Rodgers
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
8
|
Martin EC, Le Targa L, Tsakou-Ngouafo L, Fan TP, Lin CY, Xiao J, Su YH, Petrescu AJ, Pontarotti P, Schatz DG. Insights into RAG evolution from the identification of "missing link" family A RAGL transposons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.553239. [PMID: 37645967 PMCID: PMC10462144 DOI: 10.1101/2023.08.20.553239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events is not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, PflRAG2L-A and echinoderm RAG2L-A contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g., the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Collapse
Affiliation(s)
- Eliza C. Martin
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT, 06520-8011, United States
| | - Lorlane Le Targa
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France
| | - Louis Tsakou-Ngouafo
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Jianxiong Xiao
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT, 06520-8011, United States
| | - Yi Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031, Bucharest, Romania
| | - Pierre Pontarotti
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France
- CNRS SNC 5039, 13005 Marseille, France
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT, 06520-8011, United States
| |
Collapse
|
9
|
Zhu L, Peng Q, Li J, Wu Y, Wang J, Zhou D, Ma L, Yao X. scRNA-seq revealed the special TCR β & α V(D)J allelic inclusion rearrangement and the high proportion dual (or more) TCR-expressing cells. Cell Death Dis 2023; 14:487. [PMID: 37524693 PMCID: PMC10390570 DOI: 10.1038/s41419-023-06004-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Allelic exclusion, one lymphocyte expresses one antigen receptor, is a fundamental mechanism of immunological self-tolerance and highly specific immune responses to pathogens. However, the phenomenon of V(D)J allelic inclusion (incomplete allelic exclusion or allelic escape) rearrangement and dual TCR T cells have been discovered by multiple laboratories. Despite continuous new discoveries, the proportion and underlying mechanism of dual TCR has been puzzling immunologists. In this study, we observed the presence of single T cells expressing multiple TCR chains in all samples, with the proportion of 15%, 10%, and 20% in the human thymus, human peripheral blood, and mouse lymphoid organs, respectively. The proportion of T cells possessing multiple T-cell receptors (TCR) varied significantly in different physiological states and developmental stages. By analyzing RSS category, RSS direction, and V(D)J gene position at TR locus of T cells which contain multiple TCR chains, we creatively found that one of TCR β (or TCR α) should originate from the transcription of V(D)J combination in T-cell receptor excision circle (TREC) formed after the twice successful rearrangement in the same chromosome. Moreover, human V30 (or mouse V31) gene may participate in reverse recombination and transcription to prevent allelic exclusion. In general, high proportion of T cells with multiple TCR at the transcriptome level was first made public, and we proposed a novel mechanism of secondary (or more) TCR rearrangement on a single chromosome. Our findings also indicated that the single-cell sequencing data should be classified according to the single, multiple, and abnormal TCR when analyzing the T-cell repertoire.
Collapse
Affiliation(s)
- Lanwei Zhu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qi Peng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jiayi Wang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
11
|
Culberson EJ, Bassing CH. Monogenic TCRβ Assembly and Expression Are Paramount for Uniform Antigen Receptor Specificity of Individual αβ T Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:93-98. [PMID: 35697383 PMCID: PMC9246964 DOI: 10.4049/jimmunol.2200176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 05/20/2023]
Abstract
The ability of individual T and B cells to display Ag receptors of unique uniform specificity is the molecular basis of adaptive immunity. Most αβ T cells achieve uniform specificity by assembling in-frame genes on only one allelic copy of TCRβ and TCRα loci, while others prevent incorporation of TCRα protein from both alleles into TCRs. Analysis of mice expressing TCR proteins from a restricted combination of transgenes showed that TCR protein pairing restrictions achieve uniform specificity of cells expressing two types of TCRβ protein. However, whether this mechanism operates in the physiological context where each dual-TCRβ cell expresses one set of a vast number of different TCRβ proteins remains an open question, largely because there is a low, but significant, portion of cells carrying two in-frame TCRβ genes. To resolve this issue, we inactivated one allelic copy of the TCRα locus in a new mouse strain that assembles two in-frame TCRβ genes in an elevated fraction of cells. This genetic manipulation has no effect on the frequency of cells that display multiple types of αβ TCR, yet increases the representation of cells displaying TCRβ proteins that generate more highly expressed TCRs. Our data demonstrate that some TCRβ proteins exhibit differential functional pairing with TCRα proteins, but these restrictions have negligible contribution for ensuring uniform specificity of cells that express two types of TCRβ protein. Therefore, we conclude that mechanisms governing monogenic assembly and expression of TCRβ genes in individual cells are paramount for uniform specificity of αβ T lymphocytes.
Collapse
Affiliation(s)
- Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Wu GS, Culberson EJ, Allyn BM, Bassing CH. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2583-2592. [PMID: 35534211 PMCID: PMC9133172 DOI: 10.4049/jimmunol.2100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/23/2022] [Indexed: 06/03/2023]
Abstract
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment (V31) rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Rodríguez-Caparrós A, Álvarez-Santiago J, del Valle-Pastor MJ, Suñé C, López-Ros J, Hernández-Munain C. Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function. Int J Mol Sci 2020; 21:E8478. [PMID: 33187197 PMCID: PMC7696796 DOI: 10.3390/ijms21228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”—Spanish Scientific Research Council (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), 18016 Granada, Spain; (A.R.-C.); (J.Á.-S.); (M.J.d.V.-P.); (C.S.); (J.L.-R.)
| |
Collapse
|
14
|
Krangel MS. RSSs set the odds for exclusion. J Exp Med 2020; 217:e20200831. [PMID: 32793983 PMCID: PMC7478726 DOI: 10.1084/jem.20200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this issue of JEM, Wu et al. (https://doi.org/10.1084/jem.20200412) provide new insights into allelic exclusion. They demonstrate that Vβ-to-DβJβ rearrangement occurs stochastically on two competing Tcrb alleles, with suboptimal Vβ recombination signal sequences limiting synchronous rearrangements and essential for allelic exclusion.
Collapse
|
15
|
Abstract
The assembly of T cell receptor (TCR) and immunoglobulin (Ig) genes by V(D)J recombination generates the antigen receptor (AgR) diversity that is vital for adaptive immunity. At most AgR loci, V(D)J recombination is regulated so that only one allele assembles a functional gene, ensuring that nearly every T and B cell expresses a single type, or specificity, of AgR. The genomic organizations of some AgR loci permit the assembly and expression of two distinct genes on each allele; however, this is prevented by undetermined mechanisms. We show that the poor qualities of recombination signal sequences (RSSs) flanking Vβ gene segments suppress the assembly and expression of two distinct TCRβ genes from a single allele. Our data demonstrate that an intrinsic genetic mechanism that stochastically limits Vβ recombination efficiency governs monogenic TCRβ expression, thereby restraining the expression of multiple AgRs on αβ T cells.
Collapse
|