1
|
Pei S, Deng X, Yang R, Wang H, Shi JH, Wang X, Huang J, Tian Y, Wang R, Zhang S, Hou H, Xu J, Zhu Q, Huang H, Ye J, Wang CY, Lu W, Luo Q, Ni ZY, Zheng M, Xiao Y. Age-related decline in CD8 + tissue resident memory T cells compromises antitumor immunity. NATURE AGING 2024; 4:1828-1844. [PMID: 39592880 DOI: 10.1038/s43587-024-00746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
Aging compromises antitumor immunity, but the underlying mechanisms remain elusive. Here, we report that aging impairs the generation of CD8+ tissue resident memory T (TRM) cells in nonlymphoid tissues in mice, thus compromising the antitumor activity of aged CD8+ T cells, which we also observed in human lung adenocarcinoma. We further identified that the apoptosis regulator BFAR was highly enriched in aged CD8+ T cells, in which BFAR suppressed cytokine-induced JAK2 signaling by activating JAK2 deubiquitination, thereby limiting downstream STAT1-mediated TRM reprogramming. Targeting BFAR either through Bfar knockout or treatment with our developed BFAR inhibitor, iBFAR2, rescued the antitumor activity of aged CD8+ T cells by restoring TRM generation in the tumor microenvironment, thus efficiently inhibiting tumor growth in aged CD8+ T cell transfer and anti-programmed cell death protein 1 (PD-1)-resistant mouse tumor models. Together, our findings establish BFAR-induced TRM restriction as a key mechanism causing aged CD8+ T cell dysfunction and highlight the translational potential of iBFAR2 in restoring antitumor activity in aged individuals or patients resistant to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, China
| | - Xueqing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingcheng Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialing Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi-Yu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, China.
- Affiliated Hospital of Hebei Engineering University, Handan, China.
- Clinical Medical College, Hebei University of Engineering, Handan, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
3
|
Ying X, Ma X, Yang Z, Zhou B. Th9 Cytokines Inhibit Proliferation, Promote Apoptosis, and Immune Escape in Thyroid Carcinoma Cells. Appl Biochem Biotechnol 2024; 196:6189-6199. [PMID: 38224392 DOI: 10.1007/s12010-023-04821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
To investigate the regulatory effects of T helper 9 (Th9) cytokines on the proliferation, apoptosis and immune escape of thyroid cancer cells. The survival rate of human thyroid cancer cell line TPC-1 after treatment with 0, 1, 2.5, 5, 10, 20 ng/ml IL-9 (or IL-21) was determined by CCK-8 method and suitable concentrations of IL-9 and IL-21 were screened out. The TPC-1 cells cultured in vitro were randomly grouped into control group, IL-9 group, IL-21 group and IL-9+IL-21 group. After treatment with IL-9 and IL-21 factors, the proliferation and apoptosis of TPC-1 cells in each group were detected by CCK-8 method and flow cytometry, respectively. The flow cytometry was applied to detect the proportion of Th9 and activated CD8+ T cells in human peripheral blood lymphocytes co-cultured with TPC-1 in each group. The expression of TPC-1 and IL-9R and IL-21R protein in each group and human peripheral blood lymphocytes. Compared with the control group, the cell viability PCNA and Bcl-2 protein expression in TPC-1 cells were lower in the IL-9 group, IL-21 group and IL-9+IL-21 group (P<0.05). The apoptosis rate, proportions of Th9 and activated CD8+ T cells, killing rate of human peripheral blood lymphocytes, the expression of Bax and caspase-3 proteins in TPC-1 cells, the expression of TPC-1 and human peripheral blood lymphocytes IL-9R and IL-21R proteins were all higher (P<0.05) in IL-9+IL-21 group compared with the IL-9 group and the IL-21 group. The cell viability, PCNA and Bcl-2 protein expression in TPC-1 cells in the IL-9+IL-21 group were all lower (P<0.05). Th9 cytokines can promote the differentiation of Th9 cells and CD8+ T cells, enhance their lethality, reduce the immune escape of thyroid cancer cells, and then inhibit their proliferation and promote their apoptosis.
Collapse
Affiliation(s)
- Xinyu Ying
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xinyi Ma
- Medical School, Ningbo University, Ningbo, China
| | - Ziru Yang
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Bo Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
4
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Dai D, Pei Y, Zhu B, Wang D, Pei S, Huang H, Zhu Q, Deng X, Ye J, Xu J, Chen X, Huang M, Xiao Y. Chemoradiotherapy-induced ACKR2 + tumor cells drive CD8 + T cell senescence and cervical cancer recurrence. Cell Rep Med 2024; 5:101550. [PMID: 38723624 PMCID: PMC11148771 DOI: 10.1016/j.xcrm.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
Tumor recurrence after chemoradiotherapy is challenging to overcome, and approaches to predict the recurrence remain elusive. Here, human cervical cancer tissues before and after concurrent chemoradiotherapy (CCRT) analyzed by single-cell RNA sequencing reveal that CCRT specifically promotes CD8+ T cell senescence, driven by atypical chemokine receptor 2 (ACKR2)+ CCRT-resistant tumor cells. Mechanistically, ACKR2 expression is increased in response to CCRT and is also upregulated through the ligation of CC chemokines that are produced by activated myeloid and T cells. Subsequently, ACKR2+ tumor cells are induced to produce transforming growth factor β to drive CD8+ T cell senescence, thereby compromising antitumor immunity. Moreover, retrospective analysis reveals that ACKR2 expression and CD8+ T cell senescence are enhanced in patients with cervical cancer who experienced recurrence after CCRT, indicating poor prognosis. Overall, we identify a subpopulation of CCRT-resistant ACKR2+ tumor cells driving CD8+ T cell senescence and tumor recurrence and highlight the prognostic value of ACKR2 and CD8+ T cell senescence for chemoradiotherapy recurrence.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biqing Zhu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxiang Chen
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Mingzhu Huang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yichuan Xiao
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
6
|
Pan H, Tian Y, Pei S, Yang W, Zhang Y, Gu Z, Zhu H, Zou N, Zhang J, Jiang L, Hu Y, Shen S, Wang K, Jin H, Li Z, Zhang Y, Xiao Y, Luo Q, Wang H, Huang J. Combination of percutaneous thermal ablation and adoptive Th9 cell transfer therapy against non-small cell lung cancer. Exp Hematol Oncol 2024; 13:52. [PMID: 38760861 PMCID: PMC11100251 DOI: 10.1186/s40164-024-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1β and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1β signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.
Collapse
Affiliation(s)
- Hanbo Pan
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Wanlin Yang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Yanyang Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zenan Gu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hongda Zhu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ningyuan Zou
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiaqi Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Jiang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingjie Hu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shengping Shen
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Kai Wang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haizhen Jin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ziming Li
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yanyun Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200030, China.
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
7
|
Niu L, Liu Y, Li N, Wang Y, Kang L, Su X, Xu C, Sun Z, Sang W, Xu J, Guo H, Shen S. Oral probiotics microgel plus Galunisertib reduced TGF-β blockade resistance and enhanced anti-tumor immune responses in colorectal cancer. Int J Pharm 2024; 652:123810. [PMID: 38244648 DOI: 10.1016/j.ijpharm.2024.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Transforming growth factor β (TGF-β), a versatile immunosuppressive cytokine, has gained increasing attention as a potential target for cancer immunotherapy. However, current strategies are constrained by tumor heterogeneity and drug resistance. Therapeutic probiotics, such as Escherichia coli Nissle1917 (EcN), not only regulate the gut microbiota to increase beneficial bacteria with anti-tumor effects, but also modulate immune factors within the body, thereby enhancing immunity. In this study, we developed an oral microgel delivery system of EcN@(CS-SA)2 by electrostatic interaction between chitosan (CS) and sodium alginate (SA), aiming to enhance its bioavailability in the gastrointestinal tract (GIT). Notably, EcN@(CS-SA)2 microgel showed a synergistic enhancement of the anti-tumor efficacy of Galunisertib (Gal, a TGF-β inhibitor) by inducing apoptosis and immunogenic cell death (ICD) in tumor cells, as well as promoting increased infiltration of CD8+ T cells into the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Lili Niu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yao Liu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Nannan Li
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yang Wang
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Lin Kang
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiaomin Su
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Ce Xu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Zanya Sun
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China; Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Weicong Sang
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jingyuan Xu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China.
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
8
|
Zhang X, Chen J, Zhang M, Liu S, Wang T, Wu T, Li B, Zhao S, Wang H, Li L, Wang C, Huang L. Single-cell and bulk sequencing analyses reveal the immune suppressive role of PTPN6 in glioblastoma. Aging (Albany NY) 2023; 15:9822-9841. [PMID: 37737713 PMCID: PMC10564408 DOI: 10.18632/aging.205052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Glioblastoma (GBM) is a highly malignant brain cancer with a poor prognosis despite standard treatments. This investigation aimed to explore the feasibility of PTPN6 to combat GBM with immunotherapy. Our study employed a comprehensive analysis of publicly available datasets and functional experiments to assess PTPN6 gene expression, prognostic value, and related immune characteristics in glioma. We evaluated the influence of PTPN6 expression on CD8+ T cell exhaustion, immune suppression, and tumor growth in human GBM samples and mouse models. Our findings demonstrated that PTPN6 overexpression played an oncogenic role in GBM and was associated with advanced tumor grades and unfavorable clinical outcomes. In human GBM samples, PTPN6 upregulation showed a strong association with immunosuppressive formation and CD8+ T cell dysfunction, whereas, in mice, it hindered CD8+ T cell infiltration. Moreover, PTPN6 facilitated cell cycle progression, inhibited apoptosis, and promoted glioma cell proliferation, tumor growth, and colony formation in mice. The outcomes of our study indicate that PTPN6 is a promising immunotherapeutic target for the treatment of GBM. Inhibition of PTPN6 could enhance CD8+ T cell infiltration and improve antitumor immune response, thus leading to better clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Jie Chen
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Saisai Liu
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Tao Wang
- Research Laboratory Centre, Guizhou Provincial People’s Hospital, Guizhou University, Nanming, Guiyang 550025, Guizhou, P.R. China
| | - Tianyu Wu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Li Li
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Chun Wang
- Department of General Practice, The Second Affiliated Hospital of Bengbu Medical College, Huaishang, Bengbu 233040, Anhui, P.R. China
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Huaishang, Bengbu 233040, Anhui, P.R. China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| |
Collapse
|
9
|
Vinokurova D, Apetoh L. The Emerging Role of IL-9 in the Anticancer Effects of Anti-PD-1 Therapy. Biomolecules 2023; 13:biom13040670. [PMID: 37189417 DOI: 10.3390/biom13040670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
PD-1 blockade rescues failing anticancer immune responses, resulting in durable remissions in some cancer patients. Cytokines such as IFNγ and IL-2 contribute to the anti-tumor effect of PD-1 blockade. IL-9 was identified over the last decade as a cytokine demonstrating a potent ability to harness the anticancer functions of innate and adaptive immune cells in mice. Recent translational investigations suggest that the anticancer activity of IL-9 also extends to some human cancers. Increased T cell-derived IL-9 was proposed to predict the response to anti-PD-1 therapy. Preclinical investigations accordingly revealed that IL-9 could synergize with anti-PD-1 therapy in eliciting anticancer responses. Here, we review the findings suggesting an important contribution of IL-9 in the efficacy of anti-PD-1 therapy and discuss their clinical relevance. We will also discuss the role of host factors like the microbiota and TGFβ in the tumor microenvironment (TME) in the regulation of IL-9 secretion and anti-PD-1 treatment efficacy.
Collapse
Affiliation(s)
- Daria Vinokurova
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Hao S, Zhang S, Ye J, Chen L, Wang Y, Pei S, Zhu Q, Xu J, Tao Y, Zhou N, Yin H, Duan C, Mao C, Zheng M, Xiao Y. Goliath induces inflammation in obese mice by linking fatty acid β-oxidation to glycolysis. EMBO Rep 2023; 24:e56932. [PMID: 36862324 PMCID: PMC10074109 DOI: 10.15252/embr.202356932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid β-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.
Collapse
Affiliation(s)
- Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yongzhen Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Neng Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiyong Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaoming Mao
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
11
|
Chen T, Xue Y, Wang S, Lu J, Zhou H, Zhang W, Zhou Z, Li B, Li Y, Wang Z, Li C, Eloy Y, Sun H, Shen Y, Diarra MD, Ge C, Chai X, Mou H, Lin P, Yu X, Ye Z. Enhancement of T cell infiltration via tumor-targeted Th9 cell delivery improves the efficacy of antitumor immunotherapy of solid tumors. Bioact Mater 2022; 23:508-523. [PMID: 36514387 PMCID: PMC9727594 DOI: 10.1016/j.bioactmat.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Insufficient infiltration of T cells severely compromises the antitumor efficacy of adoptive cell therapy (ACT) against solid tumors. Here, we present a facile immune cell surface engineering strategy aiming to substantially enhance the anti-tumor efficacy of Th9-mediated ACT by rapidly identifying tumor-specific binding ligands and improving the infiltration of infused cells into solid tumors. Non-genetic decoration of Th9 cells with tumor-targeting peptide screened from phage display not only allowed precise targeted ACT against highly heterogeneous solid tumors but also substantially enhanced infiltration of CD8+ T cells, which led to improved antitumor outcomes. Mechanistically, infusion of Th9 cells modified with tumor-specific binding ligands facilitated the enhanced distribution of tumor-killing cells and remodeled the immunosuppressive microenvironment of solid tumors via IL-9 mediated immunomodulation. Overall, we presented a simple, cost-effective, and cell-friendly strategy to enhance the efficacy of ACT against solid tumors with the potential to complement the current ACT.
Collapse
Affiliation(s)
- Tao Chen
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Yucheng Xue
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Shengdong Wang
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Jinwei Lu
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Hao Zhou
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Wenkan Zhang
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Zhiyi Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Binghao Li
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Yong Li
- Qingtian People's Hospital, Department of Orthopedics, Lishui, 323900, China
| | - Zenan Wang
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China
| | - Yinwang Eloy
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Hangxiang Sun
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Yihang Shen
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Mohamed Diaty Diarra
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Chang Ge
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xupeng Chai
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Haochen Mou
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Peng Lin
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China,Corresponding author. Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaohua Yu
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China,Corresponding author. Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China,Corresponding author. Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
13
|
Yang J, Su J, Chai K, Liu H. The role of Th9 CD4 + T cells and IL-9 during primary Sjogren's syndrome. J Clin Lab Anal 2022; 36:e24646. [PMID: 35944186 PMCID: PMC9459269 DOI: 10.1002/jcla.24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The objective of this study is to investigate the expression levels of Th9 CD4+ T cells and IL-9 secretion in peripheral blood mononuclear cells of patients with primary Sjogren's syndrome. Further, this study aimed to investigate the role of Th9 cells in the occurrence and development of pSS. METHODS A total of 20 pSS patients and 20 healthy people, matched with age and gender, were selected as the experimental and control group, respectively. Flow cytometry and ELISA were used to detect the expression of Th9 cytokines in peripheral blood mononuclear cells and IL-9 in serum, respectively. These factors were then correlated to other clinical indicators. RESULTS The levels of Th9 CD4+ T cells and IL-9 of pSS patients were significantly higher than those of the control group. Th9 CD4+ T cells and IL-9 levels in peripheral blood of pSS patients were negatively correlated with salivary flow rate, while IL-9 level was positively correlated with globulin. The transcription levels of IL-9 and immune-related genes including IL-4, IL-7, IL-17, SMAD3, STAT5 and JAK3 were dramatically increased in serum of pSS patients. CONCLUSION The expression levels of Th9 in peripheral blood and serum IL-9 of patients with pSS were significantly increased, which were correlated with clinical immunological indexes. Together, these data suggest that Th9 cells and IL-9 may be involved in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Juan Su
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Kexia Chai
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Huihui Liu
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
14
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
15
|
Identification of Potential Immune Checkpoint Inhibitor Targets in Gliomas via Bioinformatic Analyses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1734847. [PMID: 35198632 PMCID: PMC8860561 DOI: 10.1155/2022/1734847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Background. Glioma is a common tumor originating from the glial cells of the brain. Immune checkpoint inhibitors can potentially be used to treat gliomas, although no drug is currently approved. Methods. The expression levels of the immune checkpoint genes in glioma and normal tissues, and their correlation with the IDH mutation status and complete 1p/19q codeletion, were analyzed using The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Survival analyses were conducted using the CGGA database. Protein-protein interaction and functional enrichment analyses were performed via the STRING database using GO, KEGG, and Reactome pathways. The correlation between the immune checkpoints and the immune cell infiltration was determined using the TISIDB and TIMER databases. Results. HAVCR2 was overexpressed in the gliomas compared to normal brain tissues, as well as in the high-grade glioma patients and significantly downregulated in IDH mutant or 1p/19q codeletion patients. Overexpression of HAVCR2 was associated with poor survival in tumor grades II, III, and IV and was the most correlated with immune infiltration of B and T cells. Conclusion. HAVCR2 can be a potential therapeutic target for cancer immunotherapy for glioma patients.
Collapse
|
16
|
Liu RF, Hu L, Wu JN, Wang JX, Wang XY, Liu ZY, Zhao QD, Li WJ, Song XD, Xiao JH. Changes in tumor suppressors and inflammatory responses during hydrogen peroxide-induced senescence in rat fibroblasts. Free Radic Res 2022; 56:77-89. [PMID: 35109720 DOI: 10.1080/10715762.2022.2037582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cell proliferation and senescence are processes induced by oxidative stress. In this study, we aimed to establish a cellular model of rapid proliferation and senescence of rat tail-tip fibroblasts by hydrogen peroxide(H2O2), a well-known oxidant. On this basis, changes in oxidative stress, inflammatory response and cell cycle of fibroblasts were studied. After H2O2 treatment, cell counting and flow cytometry results showed that 50μM of H2O2 for 12h and 100μM for 8h effectively promoted fibroblast proliferation, while 500μM rapidly led to cell cycle arrest. In addition, stimulation with H2O2 at a concentration of 50μM also promoted the inflammatory effects of the cells. At a concentration of 100μM H2O2, the cellular antioxidant system began to collapse at 8h and began to affect cellular activity. 500μM of H2O2 at 4h the levels of senescence-associated β-galactosidase, a marker of senescence and oxidative stress, were almost positive in fibroblasts. In addition, we found that the risk of fibroblasts carcinogenesis increased with increased H2O2 stimulation. The results of this study indicate that H2O2 can cause rapid proliferation and senescence of fibroblasts and that its mechanism of action may be mainly through influencing cellular antioxidant systems, cellular inflammatory responses and cell cycle.
Collapse
Affiliation(s)
- Rui-Fang Liu
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan- Hu
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jun-Nan Wu
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jing-Xuan Wang
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xin-Yu Wang
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhi-Yuan Liu
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi-Da Zhao
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wen-Jing Li
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu-Dong Song
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian-Hua Xiao
- Heilongjiang Province Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|