1
|
Yu X, Zhou W, Chen X, He S, Qin M, Yuan M, Wang Y, Odhiambo WO, Miao Y, Ji Y. RAG1 and RAG2 non-core regions are implicated in leukemogenesis and off-target V(D)J recombination in BCR-ABL1-driven B-cell lineage lymphoblastic leukemia. eLife 2024; 12:RP91030. [PMID: 39056282 PMCID: PMC11281782 DOI: 10.7554/elife.91030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2' C-terminus absence in Tp53-/- mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.
Collapse
Affiliation(s)
- Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Wen Zhou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Shunyu He
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Woodvine Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
| | - Yinsha Miao
- Department of Clinical Laboratory, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest UniversityXianChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi'anChina
- Department of Clinical Laboratory, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest UniversityXianChina
| |
Collapse
|
2
|
Sorel N, Díaz-Pascual F, Bessot B, Sadek H, Mollet C, Chouteau M, Zahn M, Gil-Farina I, Tajer P, van Eggermond M, Berghuis D, Lankester AC, André I, Gabriel R, Cavazzana M, Pike-Overzet K, Staal FJT, Lagresle-Peyrou C. Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells. Biomedicines 2024; 12:1495. [PMID: 39062069 PMCID: PMC11275127 DOI: 10.3390/biomedicines12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Nataël Sorel
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | | | - Boris Bessot
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Hanem Sadek
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Chloé Mollet
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Myriam Chouteau
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Marco Zahn
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Irene Gil-Farina
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Parisa Tajer
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Arjan C. Lankester
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Richard Gabriel
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
- Imagine Institute UMR1163, Université Paris Cité, Sorbonne Paris Cité, 75015 Paris, France
| | - Kasrin Pike-Overzet
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| |
Collapse
|
3
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
4
|
Johnston R, Mathias B, Crowley SJ, Schmidt HA, White LS, Mosammaparast N, Green AM, Bednarski JJ. Nuclease-independent functions of RAG1 direct distinct DNA damage responses in B cells. EMBO Rep 2023; 24:e55429. [PMID: 36382770 PMCID: PMC9827558 DOI: 10.15252/embr.202255429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Brendan Mathias
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Stephanie J Crowley
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Haley A Schmidt
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lynn S White
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Nima Mosammaparast
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Abby M Green
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey J Bednarski
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
5
|
Nawaz M, Li X, Yue X, Gouife M, Huang K, Chen S, Ma R, Jiang J, Zhou S, Jin S, Wang Y, Xie J. Transcriptome profiling and differential expression analysis of the immune-related genes during the acute phase of infection with Photobacterium damselae subsp. damselae in silver pomfret (Pampus argenteus). FISH & SHELLFISH IMMUNOLOGY 2022; 131:342-348. [PMID: 36243271 DOI: 10.1016/j.fsi.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Silver pomfret has been widely cultured in China due to its high economic value. Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that has been shown to infect many fish species. To increase knowledge of the molecular mechanisms of the host defense against PDD, we conducted transcriptome analysis of head kidney in silver pomfret at 24 h and 72 h post-infection (hpi) via Illumina sequencing. The de novo assembly resulted in the identification of 79,063 unigenes, with 59,386 (75.11%) successfully annotated in public databases (NR, NT, KO, Swiss-Prot, Pfam, GO, and KOG databases). Comparison of gene expression profiles between PBS-injected fish (sham control) and PDD-challenged fish revealed 329 and 570 differentially expressed genes (DEGs) were screened at 24 hpi and 72 hpi, respectively. The DEGs were enriched in multiple immune-related pathways such as Hepatitis C, Gastric acid secretion, CAMs and Leukocyte transendothelial migration pathways, Primary immunodeficieny, ECM-receptor interaction, PI3K-Akt signaling pathway. The data obtained in the present study offers valuable information for acute immune response of silver pomfret challenged with PDD, which will facilitate further investigations on strategies against Photobacterium spp. infection in teleosts.
Collapse
Affiliation(s)
- Mateen Nawaz
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Suyang Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Rongrong Ma
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Suming Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shan Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
6
|
The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol 2022; 22:550-566. [PMID: 35169260 PMCID: PMC9376198 DOI: 10.1038/s41577-022-00679-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.
Collapse
|
7
|
Burn TN, Miot C, Gordon SM, Culberson EJ, Diamond T, Kreiger PA, Hayer KE, Bhattacharyya A, Jones JM, Bassing CH, Behrens EM. The RAG1 Ubiquitin Ligase Domain Stimulates Recombination of TCRβ and TCRα Genes and Influences Development of αβ T Cell Lineages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:938-949. [PMID: 35948399 PMCID: PMC9492648 DOI: 10.4049/jimmunol.2001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
RAG1/RAG2 (RAG) endonuclease-mediated assembly of diverse lymphocyte Ag receptor genes by V(D)J recombination is critical for the development and immune function of T and B cells. The RAG1 protein contains a ubiquitin ligase domain that stabilizes RAG1 and stimulates RAG endonuclease activity in vitro. We report in this study that mice with a mutation that inactivates the Rag1 ubiquitin ligase in vitro exhibit decreased rearrangements and altered repertoires of TCRβ and TCRα genes in thymocytes and impaired thymocyte developmental transitions that require the assembly and selection of functional TCRβ and/or TCRα genes. These Rag1 mutant mice present diminished positive selection and superantigen-mediated negative selection of conventional αβ T cells, decreased genesis of invariant NK T lineage αβ T cells, and mature CD4+ αβ T cells with elevated autoimmune potential. Our findings reveal that the Rag1 ubiquitin ligase domain functions in vivo to stimulate TCRβ and TCRα gene recombination and influence differentiation of αβ T lineage cells, thereby establishing replete diversity of αβ TCRs and populations of αβ T cells while restraining generation of potentially autoreactive conventional αβ T cells.
Collapse
Affiliation(s)
- Thomas N Burn
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Charline Miot
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott M Gordon
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tamir Diamond
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Katharina E Hayer
- Department of Biomedical and Health Bioinformatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anamika Bhattacharyya
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC; and
| | - Jessica M Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC; and
| | - Craig H Bassing
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA;
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Edward M Behrens
- Penn Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA;
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
8
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
9
|
Luo S, Qiao R, Zhang X. DNA Damage Response and Repair in Adaptive Immunity. Front Cell Dev Biol 2022; 10:884873. [PMID: 35663402 PMCID: PMC9157429 DOI: 10.3389/fcell.2022.884873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
The diversification of B-cell receptor (BCR), as well as its secreted product, antibody, is a hallmark of adaptive immunity, which has more specific roles in fighting against pathogens. The antibody diversification is from recombination-activating gene (RAG)-initiated V(D)J recombination, activation-induced cytidine deaminase (AID)-initiated class switch recombination (CSR), and V(D)J exon somatic hypermutation (SHM). The proper repair of RAG- and AID-initiated DNA lesions and double-strand breaks (DSBs) is required for promoting antibody diversification, suppressing genomic instability, and oncogenic translocations. DNA damage response (DDR) factors and DSB end-joining factors are recruited to the RAG- and AID-initiated DNA lesions and DSBs to coordinately resolve them for generating productive recombination products during antibody diversification. Recently, cohesin-mediated loop extrusion is proposed to be the underlying mechanism of V(D)J recombination and CSR, which plays essential roles in promoting the orientation-biased deletional end-joining . Here, we will discuss the mechanism of DNA damage repair in antibody diversification.
Collapse
Affiliation(s)
- Sha Luo
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Ruolin Qiao
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Xuefei Zhang
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
10
|
Christie SM, Fijen C, Rothenberg E. V(D)J Recombination: Recent Insights in Formation of the Recombinase Complex and Recruitment of DNA Repair Machinery. Front Cell Dev Biol 2022; 10:886718. [PMID: 35573672 PMCID: PMC9099191 DOI: 10.3389/fcell.2022.886718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.
Collapse
Affiliation(s)
- Shaun M. Christie
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Carel Fijen
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Eli Rothenberg
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| |
Collapse
|
11
|
The CRL4VPRBP(DCAF1) E3 ubiquitin ligase directs constitutive RAG1 degradation in a non-lymphoid cell line. PLoS One 2021; 16:e0258683. [PMID: 34648572 PMCID: PMC8516306 DOI: 10.1371/journal.pone.0258683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022] Open
Abstract
The development of B and T lymphocytes critically depends on RAG1/2 endonuclease activity to mediate antigen receptor gene assembly by V(D)J recombination. Although control of RAG1/2 activity through cell cycle- and ubiquitin-dependent degradation of RAG2 has been studied in detail, relatively little is known about mechanisms regulating RAG1 stability. We recently demonstrated that VprBP/DCAF1, a substrate adaptor for the CRL4 E3 ubiquitin ligase complex, is required to maintain physiological levels of RAG1 protein in murine B cells by facilitating RAG1 turnover. Loss of VprBP/DCAF1 in vivo results in elevated RAG1 expression, excessive V(D)J recombination, and immunoglobulin light chain repertoire skewing. Here we show that RAG1 is constitutively degraded when ectopically expressed in a human fibroblast cell line. Consistent with our findings in murine B cells, RAG1 turnover under these conditions is sensitive to loss of VprBP, as well as CRL4 or proteasome inhibition. Further evidence indicates that RAG1 degradation is ubiquitin-dependent and that RAG1 association with the CRL4VPRBP/DCAF1 complex is independent of CUL4 activation status. Taken together, these findings suggest V(D)J recombination co-opts an evolutionarily conserved and constitutively active mechanism to ensure rapid RAG1 turnover to restrain excessive RAG activity.
Collapse
|