1
|
Bennion KB, Miranda R.Bazzano J, Liu D, Wagener M, Paulos CM, Ford ML. Macrophage-derived Fgl2 dampens antitumor immunity through regulation of FcγRIIB+CD8+ T cells in melanoma. JCI Insight 2025; 10:e182563. [PMID: 40125553 PMCID: PMC11949062 DOI: 10.1172/jci.insight.182563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer immunotherapy has emerged as a promising therapeutic modality but heterogeneity in patient responsiveness remains. Thus, greater understanding of the immunologic factors that dictate response to immunotherapy is critical to improve patient outcomes. Here, we show that fibrinogen-like protein 2 (Fgl2) is elevated in the setting of melanoma in humans and mice and plays a functional role in inhibiting the CD8+ T cell response. Surprisingly, the tumor itself is not the major cellular source of Fgl2. Instead, we found that macrophage-secreted Fgl2 dampens the CD8+ T cell response through binding and apoptosis of FcγRIIB+CD8+ T cells. This regulation was CD8+ T cell autonomous and not via an antigen-presenting cell intermediary, as absence of Fcgr2b from the CD8+ T cells rendered T cells insensitive to Fgl2 regulation. Fgl2 is robustly expressed by macrophages in 10 cancer types in humans and in 6 syngeneic tumor models in mice, underscoring the clinical relevance of Fgl2 as a therapeutic target to promote T cell activity and improve patient immunotherapeutic response.
Collapse
Affiliation(s)
- Kelsey B. Bennion
- Cancer Biology PhD program
- Department of Surgery
- Winship Cancer Institute
| | | | - Danya Liu
- Department of Surgery
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maylene Wagener
- Department of Surgery
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Mandy L. Ford
- Cancer Biology PhD program
- Department of Surgery
- Winship Cancer Institute
- Immunology and Molecular Pathogenesis PhD program, and
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Ramos-Guerra AD, Farina B, Rubio Pérez J, Vilalta-Lacarra A, Zugazagoitia J, Peces-Barba G, Seijo LM, Paz-Ares L, Gil-Bazo I, Dómine Gómez M, Ledesma-Carbayo MJ. Monitoring peripheral blood data supports the prediction of immunotherapy response in advanced non-small cell lung cancer based on real-world data. Cancer Immunol Immunother 2025; 74:120. [PMID: 39998679 PMCID: PMC11861465 DOI: 10.1007/s00262-025-03966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
The identification of non-small cell lung cancer (NSCLC) patients who will benefit from immunotherapy remains a clinical challenge. Monitoring real-world data (RWD) in the first cycles of therapy may provide a more accurate representation of response patterns in a real-world setting. We propose a multivariate Bayesian joint model using generalized linear mixed effects, trained and validated on RWD from 424 advanced NSCLC patients retrospectively collected from three clinical centers. Center1 was used as training ( N = 212 ), while Center2 and Center3 were used as independent testing sets ( N = 137 and N = 75 , respectively). Peripheral blood data (PBD) were collected at baseline and at three follow-up time points, alongside demographic and epidemiologic features. Six models were trained to predict progression-free survival at 6 months, PFS(6), using different number of longitudinal samples (baseline, two, or four time points) of the neutrophil-to-lymphocyte ratio (NLR) or a multivariate feature selection. Long-term predictions at 12 and 24 months were also evaluated. Prediction accuracy was measured using the area under the receiver operating characteristic curve (AUC). The proposed model significantly improved prediction performance, achieving AUCs of 0.870, 0.804 and 0.827 at 6, 12 and 24 months for Center2, and 0.824, 0.822 and 0.667 for Center3. There was also a significant difference in PFS and overall survival (OS) between predicted response groups, defined by a 6-month PFS cutoff (log-rank test p < 0.001 ). Our study suggests that the integration of multiple biomarkers and monitored PBD in an RWD-based Bayesian joint model framework significantly improves immunotherapy response prediction in advanced NSCLC compared to conventional approaches involving biomarker data at baseline only.
Collapse
Affiliation(s)
- Ana D Ramos-Guerra
- Biomedical Image Technologies, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
| | - Benito Farina
- Biomedical Image Technologies, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Jaime Rubio Pérez
- Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jon Zugazagoitia
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Germán Peces-Barba
- Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis M Seijo
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis Paz-Ares
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ignacio Gil-Bazo
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Oncology, Hospital Vithas Vitoria, Vitoria, Spain
- School of Medicine, Universidad Católica de Valencia, Valencia, Spain
| | | | - María J Ledesma-Carbayo
- Biomedical Image Technologies, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Koca T, Gocen Vardar N, Aksoy RA, Korcum AF. Comprehensive Evaluation of Inflammatory Biomarkers in Cervical Cancer Treated with Chemoradiotherapy. Curr Oncol 2025; 32:39. [PMID: 39851955 PMCID: PMC11763994 DOI: 10.3390/curroncol32010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Objective: Inflammatory biomarkers have been shown to possess both prognostic and predictive significance in various cancers. Among the emerging biomarkers, the pan-immune-inflammation value (PIV) has recently been introduced as a novel indicator representing both the immune response and the systemic inflammatory state. This study aims to comprehensively evaluate the predictive value of inflammatory biomarkers on survival outcomes in cervical cancer patients undergoing chemoradiotherapy. Methods: A total of 90 patients who had undergone chemoradiotherapy for cervical cancer were included. Data on demographics, treatment protocols, pre-treatment blood parameters, and survival outcomes were collected. The association between inflammatory biomarkers and survival outcomes was investigated through univariate and multivariate analyses. Results: The univariate analysis identified the following as predictors of progression-free survival (PFS): neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-lymphocyte ratio (MLR), systemic immune-inflammation index (SII), PIV, C-reactive protein (CRP), albumin, and tumor size. Multivariate analysis revealed that only the PIV significantly predicted PFS (HR 3.05, 95% CI 1.0 to 9.3, p = 0.04). In the univariate analysis, several variables were predictive of overall survival (OS), including NLR, PLR, MLR, SII, PIV, CRP, LDH, albumin, tumor size, and Eastern Cooperative Oncology Group Performance Status (ECOG PS). Multivariate analysis revealed CRP (HR 3.41, 95% CI 1.5 to 7.7, p = 0.003) and ECOG PS (HR 4.78, 95% CI 1.3 to 17.3, p = 0.01) predictive of OS, with PIV approaching statistical significance (HR 2.56, 95% CI 0.8 to 7.6, p = 0.09). Conclusions: This study provides the first comprehensive analysis of the association between cervical cancer and various inflammatory biomarkers. Many of these biomarkers have demonstrated predictive value for survival outcomes in patients with cervical cancer undergoing definitive chemoradiotherapy. Among the biomarkers evaluated, CRP and PIV were identified as the most predictive, warranting further exploration in future research.
Collapse
Affiliation(s)
- Timur Koca
- Department of Radiation Oncology, Akdeniz University, 07070 Antalya, Turkey; (N.G.V.); (A.F.K.)
| | - Nurcihan Gocen Vardar
- Department of Radiation Oncology, Akdeniz University, 07070 Antalya, Turkey; (N.G.V.); (A.F.K.)
| | - Rahmi Atıl Aksoy
- Department of Radiation Oncology, Izmir City Hospital, 35540 Izmir, Turkey;
| | - Aylin Fidan Korcum
- Department of Radiation Oncology, Akdeniz University, 07070 Antalya, Turkey; (N.G.V.); (A.F.K.)
| |
Collapse
|
4
|
Jain K, Tyagi T, Gu SX, Faustino EVS, Hwa J. Demographic diversity in platelet function and response to antiplatelet therapy. Trends Pharmacol Sci 2025; 46:78-93. [PMID: 39672782 PMCID: PMC11710996 DOI: 10.1016/j.tips.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Recent studies have highlighted the complexity of platelet biology, revealing their diverse roles beyond hemostasis. Pathological platelet activation is now recognized as a key contributor to thrombosis and inflammation that are both central to cardiovascular disease (CVD). Emerging research emphasizes the significant impact of demographic factors - such as age, sex, race, and ethnicity - on CVD risk and responses to antiplatelet therapies. These population-based differences, shaped by genetic and non-genetic factors, highlight the need for reevaluation of antiplatelet strategies. We address current knowledge and emphasize the pressing need for further research into platelet biology and cardiovascular outcomes across diverse populations. In this review we advocate for tailored therapeutic approaches in CVD based on the recent demographic-focused findings.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA.
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E Vincent S Faustino
- Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Chen C, Zhang J, Liu X, Zhuang Q, Lu H, Hou J. A platelet-related signature for predicting the prognosis and immunotherapy benefit in bladder cancer based on machine learning combinations. Transl Androl Urol 2024; 13:1472-1485. [PMID: 39280688 PMCID: PMC11399026 DOI: 10.21037/tau-24-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Bladder cancer carries a large societal burden, with over 570,000 newly diagnosed cases and 210,000 deaths globally each year. Platelets play vital functions in tumor progression and therapy benefits. We aimed to construct a platelet-related signature (PRS) for the clinical outcome of bladder cancer cases. Methods Ten machine learning techniques were used in the integrative operations to build PRS using the datasets from The Cancer Genome Atlas (TCGA), gene series expression (GSE)13507, GSE31684, GSE32894 and GSE48276. A number of immunotherapy datasets and prediction scores, including GSE91061, GSE78220, and IMvigor210, were utilized to assess how well the PRS predicted the benefit of immunotherapy. Vitro experiment was performed to verify the role of α1C-tubulin (TUBA1C) in bladder cancer. Results Enet (alpha =0.4) algorithm-based PRS had the highest average C-index of 0.73 and it was suggested as the optimal PRS. PRS acted as an independent risk factor for bladder cancer and patients with high PRS score portended a worse overall survival rate, with the area under the curve of 1-, 3- and 5-year operating characteristic curve being 0.754, 0.779 and 0.806 in TCGA dataset. A higher level of immune-activated cells, cytolytic function and T cell co-stimulation was found in the low PRS score group. Low PRS score demonstrated a higher tumor mutation burden score and programmed cell death protein 1 & cytotoxic T-lymphocyte associated protein 4 immunophenoscore, lower tumor immune dysfunction and exclusion score, intratumor heterogeneity score and immune escape score in bladder cancer, suggesting the PRS as an indicator for predicting immunotherapy benefits. Vitro experiment showed that TUBA1C was upregulated in bladder cancer and knockdown of TUBA1C obviously suppressed tumor cell proliferation. Conclusions The present study developed an ideal PRS for bladder cancer, which may be used as a predictor of prognosis, a risk classification system, and a therapy guide.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Zhang
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoshuang Liu
- Department of General Surgery, Shuguang Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianquan Hou
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| |
Collapse
|
6
|
Tuerhong N, Yang Y, Wang C, Huang P, Li Q. Interactions between platelets and the cancer immune microenvironment. Crit Rev Oncol Hematol 2024; 199:104380. [PMID: 38718939 DOI: 10.1016/j.critrevonc.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer is a leading cause of death in both China and developed countries due to its high incidence and low cure rate. Immune function is closely linked to the development and progression of tumors. Platelets, which are primarily known for their role in hemostasis, also play a crucial part in the spread and progression of tumors through their interaction with the immune microenvironment. The impact of platelets on tumor growth and metastasis depends on the type of cancer and treatment method used. This article provides an overview of the relationship between platelets and the immune microenvironment, highlighting how platelets can either protect or harm the immune response and cancer immune escape. We also explore the potential of available platelet-targeting strategies for tumor immunotherapy, as well as the promise of new platelet-targeted tumor therapy methods through further research.
Collapse
Affiliation(s)
- Nuerye Tuerhong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou university, No. 222 South Tianshui Road, Gansu, China
| | - Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Ertel MV, da Silva ABA, de Sousa DF, Dos Santos CJ, da Silva TM, da Silva-Sales MFM, de Oliveira Matos A, Sales-Campos H. Who is who within the universe of TREM-like transcripts (TREML)? Life Sci 2024; 348:122696. [PMID: 38710279 DOI: 10.1016/j.lfs.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid Cells (TREM) family of receptors plays a crucial role in the immune response across various species. Particularly, TREM-1 and TREM-2 have been extensively studied, both in terms of their applications and their expression sites and signaling pathways. However, the same is not observed for the other family members collectively known as TREM-like-transcripts (TREML). The TREML family consists of eight receptors, with TREML1-5 identified in humans and mice, TREML-6 exclusive found in mice, TREML-7 in dogs and horses, and TREML-8 in rabbits and opossums. Despite the limited data available on the TREML members, they have been implicated in different immune and non-immune activities, which have been proposed to display both pro and anti-inflammatory activities, and to influence fundamental biological processes such as coagulation, bone and neurological development. In this review, we have compiled available information regarding the already discovered members of the family and provided foundational framework for understanding the function, localization, and therapeutic potential of all TREML members. Additionally, we hope that this review may shed light on this family of receptors, whose underlying mechanisms are still awaiting elucidation, while emphasizing the need for future studies to explore their functions and potential therapeutic application.
Collapse
Affiliation(s)
- Márcia Verônica Ertel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Daniel Francisco de Sousa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Cairo José Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Tatiane Mendonça da Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Amanda de Oliveira Matos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Gibson AD, Bayrón-Marrero Z, Nieves-Lopez B, Maldonado-Martínez G, Washington AV. High Levels of Triggering Receptor Expressed in Myeloid Cells-Like Transcript-1 Positive, but Not Glycoprotein 1b+, Microparticles Are Associated With Poor Outcomes in Acute Respiratory Distress Syndrome. Crit Care Explor 2024; 6:e1108. [PMID: 38935146 PMCID: PMC11213581 DOI: 10.1097/cce.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES To identify triggering receptor expressed in myeloid cells-like transcript-1 positive (TLT-1+) microparticles (MPs) and evaluate if their presence is associated with clinical outcomes and/or disease severity in acute respiratory distress syndrome (ARDS). DESIGN Retrospective cohort study. SETTING ARDS Network clinical trials. PATIENTS A total of 564 patients were diagnosed with ARDS. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Using flow cytometry, we demonstrated the presence of TLT-1+ platelet-derived microparticles (PMP) that bind fibrinogen in plasma samples from fresh donors. We retrospectively quantified TLT-1, glycoprotein (Gp) 1b, or αIIbβIIIa immunopositive microparticles in plasma samples from patients with ARDS enrolled in the ARMA, KARMA, and LARMA (Studies 01 and 03 lower versus higher tidal volume, ketoconazole treatment, and lisofylline treatment Clincial Trials) ARDS Network clinical trials and evaluated the relationship between these measures and clinical outcomes. No associations were found between Gp1b+ MPs and clinical outcomes for any of the cohorts. When stratified by quartile, associations were found for survival, ventilation-free breathing, and thrombocytopenia with αIIbβIIIa+ and TLT-1+ MPs (χ2p < 0.001). Notably, 63 of 64 patients in this study who failed to achieve unassisted breathing had TLT+ PMP in the 75th percentile. In all three cohorts, patients whose TLT+ MP counts were higher than the median had higher Acute Physiology and Chronic Health Evaluation III scores, were more likely to present with thrombocytopenia and were 3.7 times (p < 0.001) more likely to die than patients with lower TLT+ PMP after adjusting for other risk factors. CONCLUSIONS Although both αIIbβIIIa+ and TLT+ microparticles (αIIbβIIIa, TLT-1) were associated with mortality, TLT-1+ MPs demonstrated stronger correlations with Acute Physiology and Chronic Health Evaluation III scores, unassisted breathing, and multiple system organ failure. These findings warrant further exploration of the mechanistic role of TLT-1+ PMP in ARDS or acute lung injury progression.
Collapse
Affiliation(s)
| | | | - Benjamin Nieves-Lopez
- Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | | | | |
Collapse
|
9
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
10
|
Ma J, Pang Y, Shang Y, Xie C, Xu X, Chan L, Zhang Z, Wang W. CyTOF analysis revealed platelet heterogeneity in breast cancer patients received T-DM1 treatment. Clin Immunol 2024; 263:110227. [PMID: 38643891 DOI: 10.1016/j.clim.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
T-DM1 (Trastuzumab Emtansine) belongs to class of Antibody-Drug Conjugates (ADC), where cytotoxic drugs are conjugated with the antibody Trastuzumab to specifically target HER2-positive cancer cells. Platelets, as vital components of the blood system, intricately influence the immune response to tumors through complex mechanisms. In our study, we examined platelet surface proteins in the plasma of patients before and after T-DM1 treatment, categorizing them based on treatment response. We identified a subgroup of platelets with elevated expression of CD63 and CD9 exclusively in patients with favorable treatment responses, while this subgroup was absent in patients with poor responses. Another noteworthy discovery was the elevated expression of CD36 in the platelet subgroups of patients exhibiting inadequate responses to treatment. These findings suggest that the expression of these platelet surface proteins may be correlated with the prognosis of T-DM1 treatment. These indicators offer valuable insights for predicting the therapeutic response to T-DM1 and may become important references in future clinical practice, contributing to a better understanding of the impact of ADC therapies and optimizing personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Yuefeng Shang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Chufei Xie
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoxue Xu
- Capital Medical University, Beijing, PR China
| | - Liujia Chan
- Capital Medical University, Beijing, PR China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin 150001, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
11
|
Ali A, Mounika N, Nath B, Johny E, Kuladhipati I, Das R, Hussain M, Bandyopadhyay A, Adela R. Platelet-derived sTLT-1 is associated with platelet-mediated inflammation in coronary artery disease patients. Cytokine 2024; 178:156581. [PMID: 38508060 DOI: 10.1016/j.cyto.2024.156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The development of coronary artery disease (CAD) depends heavily on platelet activation, and inflammation plays a major role in all stages of atherosclerosis. Platelet-specific soluble triggering receptor expressed on myeloid cells like transcript 1 (sTLT-1) facilitate clot formation and have been linked to chronic inflammation. In this study, we explored the role of platelet-derived sTLT-1 in platelet-mediated inflammation in CAD patients. Plasma levels of sTLT-1 were measured using enzyme-linked immunosorbent assay in CAD patients (n = 163) and healthy controls (n = 99). Correlation analysis was performed to determine the circulatory sTLT-1 levels with platelet activation markers, immune cells, and inflammatory cytokines/chemokines. Increased plasma sTLT-1 levels were observed in CAD patients compared with those in healthy controls (p < 0.0001). A positive correlation was observed between sTLT-1 and platelet activation markers (P-selectin, PAC-1), CD14++ CD16- cells (classical monocytes), Natural killer T (NKT) cells, and platelet-immune cell aggregates with monocytes, neutrophils, dendritic cells, CD11c+ cells, and NKT cells. In contrast, a significant negative correlation was observed with CD8 cells. Furthermore, a significant positive correlation was observed between sTLT-1 and inflammatory markers (TNF-α, IL-1β, IL-2, IL-6, IL-12p70, IL-18, CXCL-12, and CCL-11). Logistic regression analysis identified sTLT-1 and triglycerides as predictors of CAD. Receiver operating characteristic curve (ROC) analysis showed that sTLT-1 had a higher sensitivity and specificity for predicting CAD. Our findings suggest that platelet activation induces the release of sTLT-1 into the circulation in CAD patients, which aggregates with immune cells and enhances inflammatory responses.
Collapse
Affiliation(s)
- Amir Ali
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Nadella Mounika
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Bishamber Nath
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | | | - Rajesh Das
- Nemcare Hospital G.S. Road, Bhangagarh, Guwahati, Assam, India
| | - Monowar Hussain
- Nemcare Hospital G.S. Road, Bhangagarh, Guwahati, Assam, India
| | | | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India.
| |
Collapse
|
12
|
Mao KY, Cao YC, Si MY, Rao DY, Gu L, Tang ZX, Zhu SY. Advances in systemic immune inflammatory indices in non-small cell lung cancer: A review. Medicine (Baltimore) 2024; 103:e37967. [PMID: 38701309 PMCID: PMC11062741 DOI: 10.1097/md.0000000000037967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Lung cancer is one of the most prevalent cancers globally, with non-small cell lung cancers constituting the majority. These cancers have a high incidence and mortality rate. In recent years, a growing body of research has demonstrated the intricate link between inflammation and cancer, highlighting that inflammation and cancer are inextricably linked and that inflammation plays a pivotal role in cancer development, progression, and prognosis of cancer. The Systemic Immunoinflammatory Index (SII), comprising neutrophil, lymphocyte, and platelet counts, is a more comprehensive indicator of the host's systemic inflammation and immune status than a single inflammatory index. It is widely used in clinical practice due to its cost-effectiveness, simplicity, noninvasiveness, and ease of acquisition. This paper reviews the impact of SII on the development, progression, and prognosis of non-small cell lung cancer.
Collapse
Affiliation(s)
- Kai-Yun Mao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yuan-Chao Cao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Mao-Yan Si
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ding-yu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Gu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhi-Xian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shen-yu Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
13
|
Zhang P, Li B, Wang Z, Li J, Wang F, Kong J, Zhou Z, Huang Y, Li L. Durable Attenuation of Tumor pH-Platelet Linkage Reinstates Bioorthogonal Targeting of Residual Tumors Post-Debulking. ACS NANO 2024; 18:4520-4538. [PMID: 38270077 DOI: 10.1021/acsnano.3c11536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
There are circumstances where tumors can only be partially resected. Therefore, multimodality therapy targeting post-operative residuals is important. Here, we show that bioorthogonal click chemistry enables targeted delivery to heterogeneous tumors, but its utility against tumor post-debulking is ineffective due to platelet cloaks that shield tumor cells from bioorthogonal pairing. We further discover tumor-infiltrating platelet levels respond to local pH changes. Elucidating this pH-platelet linkage, we design an injectable hydrogel for resection cavity implantation that simultaneously azido-tags tumor cells and inhibit their catalysis to acidify surrounding milieu. Unlike transient buffering, tumor acidification blockade sustains pH normalization, leading to durable platelet reduction. This reinstates bioorthogonal targeting of dibenzyl cyclooctyne-modified nanoparticles, thereby enhancing photodynamic ablation of residuals while amplifying systemic antitumor immunity. Concurrently, platelet/pH normalization interrupts metastasis cascade from invasion to circulation to colonization. Overall, attenuating tumor pH-platelet linkage unlocks bioorthogonal chemistry as a potential option for adjuvant therapy after tumor debulking.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ziyan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fengju Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol 2024; 40:101871. [PMID: 38134841 PMCID: PMC10776659 DOI: 10.1016/j.tranon.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia.
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| | | | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| |
Collapse
|
15
|
Tyagi T, Yarovinsky TO, Faustino EVS, Hwa J. Platelet Mitochondrial Fusion and Function in Vascular Integrity. Circ Res 2024; 134:162-164. [PMID: 38236952 PMCID: PMC10798220 DOI: 10.1161/circresaha.123.323867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Timur O. Yarovinsky
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E. Vincent S. Faustino
- Section of Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Geng Y, Liu Y, Wang M, Dong X, Sun X, Luo Y, Sun X. Identification and validation of platelet-related diagnostic markers and potential drug screening in ischemic stroke by integrating comprehensive bioinformatics analysis and machine learning. Front Immunol 2024; 14:1320475. [PMID: 38268925 PMCID: PMC10806171 DOI: 10.3389/fimmu.2023.1320475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Background Ischemic stroke (IS), caused by blood and oxygen deprivation due to cerebral thrombosis, has links to activated and aggregated platelets. Discovering platelet-related biomarkers, developing diagnostic models, and screening antiplatelet drugs are crucial for IS diagnosis and treatment. Methods and results Combining and normalizing GSE16561 and GSE22255 datasets identified 1,753 upregulated and 1,187 downregulated genes. Fifty-one genes in the platelet-related module were isolated using weighted gene co-expression network analysis (WGCNA) and other analyses, including 50 upregulated and one downregulated gene. Subsequent enrichment and network analyses resulted in 25 platelet-associated genes and six diagnostic markers for a risk assessment model. This model's area under the ROC curve outperformed single genes, and in the peripheral blood of the high-risk group, immune infiltration indicated a higher proportion of CD4, resting CD4 memory, and activated CD4 memory T cells, along with a lower proportion of CD8 T cells in comparison to the low-risk group. Utilizing the gene expression matrix and the CMap database, we identified two potential drugs for IS. Finally, a rat MACO/R model was used to validate the diagnostic markers' expression and the drugs' predicted anticoagulant effects. Conclusion We identified six IS platelet-related biomarkers (APP, THBS1, F13A1, SRC, PPBP, and VCL) for a robust diagnostic model. The drugs alpha-linolenic acid and ciprofibrate have potential antiplatelet effects in IS. This study advances early IS diagnosis and treatment.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Yuchen Liu
- Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, China
- School of Clinical Science, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| |
Collapse
|
17
|
Liao H, Wan Z, Liang Y, Kang L, Wan R. Metabolic and senescence characteristics associated with the immune microenvironment in non-small cell lung cancer: insights from single-cell RNA sequencing. Aging (Albany NY) 2023; 15:11571-11587. [PMID: 37889543 PMCID: PMC10637824 DOI: 10.18632/aging.205146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Non-small lung cancer (NSCLC) has been defined as a highly life-threatening heterogeneous disease, with high mortality and occurrence. Recent research has indicated that tumor-infiltrating lymphocytes play a key determinant role in cancer progression. Emerging single-cell RNA sequencing (also termed scRNA-seq) has been extensively applied to depict the baseline landscape of the cell composition and function phenotype in the tumor environment (TME). Herein, we dissected the cell types in NSCLC samples (including tissue and blood) and identified three types of cell marker genes including cancer cells, T cells, and macrophages by integrating two NSCLC-associated scRNA-seq datasets in GEO. Survival analysis indicated that 17 marker genes were related to tumor prognosis. Function annotation was used to scrutinize the molecular mechanism of these marker genes in different cells. Besides, we investigated the developmental trajectory and T cell receptor repertoire diversity of tumor-infiltrating T cells. Our analysis will help further understand the complexity of cell components and the heterogeneity of TME in NSCLC.
Collapse
Affiliation(s)
- Hongliang Liao
- Department of Thoracic Surgery, The Yuebei People’s Hospital of Shaoguan, Shaoguan, Guangdong 512025, China
| | - Zihao Wan
- College of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaqin Liang
- Department of Nursing Medical College, Shaoguan University, Shaoguan, Guangdong 512005, China
| | - Lin Kang
- Department of Gynaecology and Obstetrics, The Qujiang District Maternal and Child Health Care Hospital, Shaoguan, Guangdong, China
| | - Renping Wan
- Department of Thoracic Surgery, The Yuebei People’s Hospital of Shaoguan, Shaoguan, Guangdong 512025, China
| |
Collapse
|
18
|
Christakoudi S, Tsilidis KK, Evangelou E, Riboli E. Interactions of platelets with obesity in relation to lung cancer risk in the UK Biobank cohort. Respir Res 2023; 24:249. [PMID: 37848891 PMCID: PMC10580651 DOI: 10.1186/s12931-023-02561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Platelet count (PLT) is associated positively with lung cancer risk but has a more complex association with body mass index (BMI), positive only in women (mainly never smokers) and inverse in men (mainly ever smokers), raising the question whether platelets interact with obesity in relation to lung cancer risk. Prospective associations of platelet size (an index of platelet maturity and activity) with lung cancer risk are unclear. METHODS We examined the associations of PLT, mean platelet volume (MPV), and platelet distribution width (PDW) (each individually, per one standard deviation increase) with lung cancer risk in UK Biobank men and women using multivariable Cox proportional hazards models adjusted for BMI and covariates. We calculated Relative Excess Risk from Interaction (RERI) with obese (BMI ≥ 30 kg/m2), dichotomising platelet parameters at ≥ median (sex-specific), and multiplicative interactions with BMI (continuous scale). We examined heterogeneity according to smoking status (never, former, current smoker) and antiaggregant/anticoagulant use (no/yes). RESULTS During a mean follow-up of 10.4 years, 1620 lung cancers were ascertained in 192,355 men and 1495 lung cancers in 218,761 women. PLT was associated positively with lung cancer risk in men (hazard ratio HR = 1.14; 95% confidence interval (CI): 1.09-1.20) and women (HR = 1.09; 95%CI: 1.03-1.15) but interacted inversely with BMI only in men (RERI = - 0.53; 95%CI: - 0.80 to - 0.26 for high-PLT-obese; HR = 0.92; 95%CI = 0.88-0.96 for PLT*BMI). Only in men, MPV was associated inversely with lung cancer risk (HR = 0.95; 95%CI: 0.90-0.99) and interacted positively with BMI (RERI = 0.27; 95%CI = 0.09-0.45 for high-MPV-obese; HR = 1.08; 95%CI = 1.04-1.13 for MPV*BMI), while PDW was associated positively (HR = 1.05; 95%CI: 1.00-1.10), with no evidence for interactions. The associations with PLT were consistent by smoking status, but MPV was associated inversely only in current smokers and PDW positively only in never/former smokers. The interactions with BMI were retained for at least eight years of follow-up and were consistent by smoking status but were attenuated in antiaggregant/anticoagulant users. CONCLUSIONS In men, PLT was associated positively and MPV inversely with lung cancer risk and these associations appeared hindered by obesity. In women, only PLT was associated positively, with little evidence for interaction with obesity.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
19
|
Peña-Garcia PE, Morales-Ortiz J, Marrero-Palanco J, Virgillio A, Finette BA, Washington AV, Bonney EA. Decreased level of TREM like Transcript 1 (TLT-1) is associated with prematurity and promotes the in-utero inflammatory response to maternal lipopolysaccharide (LPS) exposure. Am J Reprod Immunol 2023; 90:e13772. [PMID: 37766406 PMCID: PMC10575570 DOI: 10.1111/aji.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM The occurrence of preterm birth is associated with multiple factors including bleeding, infection and inflammation. Platelets are mediators of hemostasis and can modulate inflammation through interactions with leukocytes. TREM like Transcript 1 (TLT-1) is a type 1 single Ig domain receptor on activated platelets. In adults, it plays a protective role by dampening the inflammatory response and facilitating platelet aggregation at sites of vascular injury. TLT-1 is expressed in human placenta and found in cord blood. We thus hypothesized that TLT-1 deficiency is associated with prematurity and fetal inflammation. METHOD OF STUDY To test this hypothesis, we examined cord blood levels of soluble TLT-1 (sTLT) in premature and term infants and compared the inflammatory response in C57BL/6 (WT) and TLT-1-/- (treml1-/- , KO) mice given intraperitoneal LPS mid-gestation RESULTS: The preterm infant cord blood level of sTLT was significantly lower than that found at term. On exposure to LPS, histology of KO (as compared to WT) placenta and decidua showed increased hemorrhage, and KO decidual RNA expression of IL-10 was significantly lower. KO fetal interface tissues (placenta, membranes, amniotic fluid) over time showed increased expression of inflammatory cytokines such as IL-6, IFN-γ, and TNF, but not MCP-1. However, fetal organs showed similar levels. CONCLUSION There is a potential association between insufficient TLT-1 expression and increased fetal inflammatory responses in the setting of prematurity. The data support further study of TLT-1 in the mechanistic link between bleeding, inflammation and preterm birth, and perhaps as a biomarker in human pregnancy.
Collapse
Affiliation(s)
- Paola E. Peña-Garcia
- University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| | | | | | - Ariana Virgillio
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| | - Barry A. Finette
- University of Vermont, Larner College of Medicine, Department of Pediatrics and
| | | | - Elizabeth A. Bonney
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| |
Collapse
|
20
|
Lin W, Lin Y, Chao H, Lin Y, Hwang W. Haematopoietic cell-derived exosomes in cancer development and therapeutics: From basic science to clinical practice. Clin Transl Med 2023; 13:e1448. [PMID: 37830387 PMCID: PMC10571015 DOI: 10.1002/ctm2.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The tumour microenvironment (TME) is a specialised niche involving intercellular communication among cancer cells and various host cells. Among the host cells, the quantity and quality of immune cells within the TME play essential roles in cancer development and management. The immunologically suppressive, so-called 'cold' TME established by a series of tumour-host interactions, including generating immunosuppressive cytokines and recruiting regulatory host immune cells, is associated with resistance to therapies and worse clinical outcomes. MAIN BODY Various therapeutic approaches have been used to target the cold TME, including immune checkpoint blockade therapy and adoptive T-cell transfer. A promising, less explored therapeutic strategy involves targeting TME-associated exosomes. Exosomes are nanometer-sized, extracellular vesicles that transfer material from donor to recipient cells. These particles can reprogram the recipient cells and modulate the TME. In particular, exosomes from haematopoietic cells are known to promote or suppress cancer progression under specific conditions. Understanding the effects of haematopoietic cell-secreted exosomes may foster the development of therapeutic exosomes (tExos) for personalised cancer treatment. However, the development of exosome-based therapies has unique challenges, including scalable production, purification, storage and delivery of exosomes and controlling batch variations. Clinical trials are being conducted to verify the safety, feasibility, availability and efficacy of tExos. CONCLUSION This review summarises our understanding of how haematopoietic cell-secreted exosomes regulate the TME and antitumour immunity and highlights present challenges and solutions for haematopoietic cell-derived exosome-based therapies.
Collapse
Affiliation(s)
- Wen‐Chun Lin
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - You‐Tong Lin
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Hui‐Ching Chao
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yen‐Yu Lin
- Department of Pathology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wei‐Lun Hwang
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
21
|
Jain K, Tyagi T, Hwa J. Lipid remodeling in megakaryocyte differentiation and platelet biogenesis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:803-804. [PMID: 37736249 PMCID: PMC10512809 DOI: 10.1038/s44161-023-00324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Lipid remodeling, from fatty acid transport and de novo lipid synthesis, is necessary for megakaryocyte differentiation and platelet production. Dietary saturated fatty acids, impaired fatty acid transport and/or dysfunction in lipid biogenesis can contribute to low platelet counts.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
23
|
Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10:960398. [PMID: 37255704 PMCID: PMC10225702 DOI: 10.3389/fcvm.2023.960398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Platelets, key facilitators of primary hemostasis and thrombosis, have emerged as crucial cellular mediators of innate immunity and inflammation. Exemplified by their ability to alter the phenotype and function of monocytes, activated platelets bind to circulating monocytes to form monocyte-platelet aggregates (MPA). The platelet-monocyte axis has emerged as a key mechanism connecting thrombosis and inflammation. MPA are elevated across the spectrum of inflammatory and autoimmune disorders, including cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19, and are positively associated with disease severity. These clinical disorders are all characterized by an increased risk of thromboembolic complications. Intriguingly, monocytes in contact with platelets become proinflammatory and procoagulant, highlighting that this interaction is a central element of thromboinflammation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
24
|
Assessment of Peripheral Platelet to Lymphocyte Ratio and Prognostic Nutritional Index in the Efficacy and Prognosis of Radiotherapy for Cervical Cancer. Curr Oncol 2023; 30:2834-2844. [PMID: 36975429 PMCID: PMC10047427 DOI: 10.3390/curroncol30030216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
This study aimed to evaluate the correlation between the pre-treatment peripheral platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) with the efficacy and prognosis of radiotherapy for cervical cancer. A total of 110 patients with cervical cancer who received radiotherapy at our hospital from November 2017 to November 2020 were retrospectively analysed. The cut-off values of PLR and PNI were obtained using the receive operating characteristic curve (ROC) and the Youden index. The patients were divided into high PLR and low PLR and high PNI and low PNI groups. We compared the clinical characteristics, 3-year overall survival (OS), and progression-free survival (PFS) between the high and low PLR groups, as well as the high and low PNI groups of patients. Cox regression was used to analyse the factors influencing OS and PFS. The median follow-up duration was 26 months. The optimal cut-off value for PLR was 186.88 and that for PNI was 47.35. The 3-year OS values were 81.00% and 97.10% for the high PLR (PLR > 186.88) and low PLR (PLR ≤ 186.88) groups, respectively, and the 3-year PFS values were 59.50% and 88.20% for the high PLR and low PLR groups, respectively, with statistically significant differences (p < 0.05). The 3-year OS values were 97.50% and 74.20% for the high PNI (PNI > 47.35) and the low PNI (PNI ≤ 47.35) groups, respectively, and the 3-year PFS values were 87.30% and 51.60% for the high PNI and low PNI groups, respectively, with statistically significant differences (p < 0.05). Multifactorial Cox regression analyses revealed that high PLR value (PLR > 187.88), low PNI value (PNI ≤ 47.35), histological type, and FIGO stage were independent risk factors for the OS of cervical cancer. Pretreatment PNI values and PLR values can be used as simple and feasible predictors of clinical efficacy and prognosis for patients treated with radiotherapy for cervical cancer.
Collapse
|