1
|
Enyeart JJ, Enyeart JA. Human adrenal glomerulosa cells express K2P and GIRK potassium channels that are inhibited by ANG II and ACTH. Am J Physiol Cell Physiol 2021; 321:C158-C175. [PMID: 34038243 DOI: 10.1152/ajpcell.00118.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In whole cell patch clamp recordings, it was discovered that normal human adrenal zona glomerulosa (AZG) cells express members of the three major families of K+ channels. Among these are a two-pore (K2P) leak-type and a G protein-coupled, inwardly rectifying (GIRK) channel, both inhibited by peptide hormones that stimulate aldosterone secretion. The K2P current displayed properties identifying it as TREK-1 (KCNK2). This outwardly rectifying current was activated by arachidonic acid and inhibited by angiotensin II (ANG II), adrenocorticotrophic hormone (ACTH), and forskolin. The activation and inhibition of TREK-1 was coupled to AZG cell hyperpolarization and depolarization, respectively. A second K2P channel, TASK-1 (KCNK3), was expressed at a lower density in AZG cells. Human AZG cells also express inwardly rectifying K+ current(s) (KIR) that include quasi-instantaneous and time-dependent components. This is the first report demonstrating the presence of KIR in whole cell recordings from AZG cells of any species. The time-dependent current was selectively inhibited by ANG II, and ACTH, identifying it as a G protein-coupled (GIRK) channel, most likely KIR3.4 (KCNJ5). The quasi-instantaneous KIR current was not inhibited by ANG II or ACTH and may be a separate non-GIRK current. Finally, AZG cells express a voltage-gated, rapidly inactivating K+ current whose properties identified as KV1.4 (KCNA4), a conclusion confirmed by Northern blot. These findings demonstrate that human AZG cells express K2P and GIRK channels whose inhibition by ANG II and ACTH is likely coupled to depolarization-dependent secretion. They further demonstrate that human AZG K+ channels differ fundamentally from the widely adopted rodent models for human aldosterone secretion.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Judith A Enyeart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
2
|
Enyeart JJ, Enyeart JA. Adrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion. Am J Physiol Cell Physiol 2015; 308:C899-918. [PMID: 25788571 DOI: 10.1152/ajpcell.00002.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
In whole cell patch-clamp recordings, we characterized the L-type Ca(2+) currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized potentials. One activated with rapid kinetics and, in conjunction with Northern blotting and PCR, was determined to be Cav1.3. The other, expressed in approximately one-half of AZF cells, activated with extremely slow voltage-dependent kinetics and combined properties not previously reported for an L-type Ca(2+) channel. The T-type Ca(2+) channel antagonist 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2) inhibited Cav3.2 current in these cells, as well as ACTH- and ANG II-stimulated cortisol secretion, at concentrations that did not affect L-type currents. In contrast, nifedipine specifically inhibited L-type currents and cortisol secretion, but less effectively than TTA-P2. Diphenylbutylpiperidine Ca(2+) antagonists, including pimozide, penfluridol, and fluspirilene, and the dihydropyridine niguldipine blocked Cav3.2 and L-type currents and inhibited ACTH-stimulated cortisol secretion with similar potency. This study shows that bovine AZF cells express three Ca(2+) channels, the voltage-dependent gating and kinetics of which could orchestrate complex mechanisms linking peptide hormone receptors to cortisol secretion through action potentials or sustained depolarization. The function of the novel, slowly activating L-type channel is of particular interest in this respect. Regardless, the well-correlated selective inhibition of T- and L-type currents and ACTH- and ANG II-stimulated cortisol secretion by TTA-P2 and nifedipine establish the critical importance of these channels in AZF cell physiology.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Judith A Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Enyeart JJ, Enyeart JA. Ca2+ and K+ channels of normal human adrenal zona fasciculata cells: properties and modulation by ACTH and AngII. ACTA ACUST UNITED AC 2013; 142:137-55. [PMID: 23858003 PMCID: PMC3727308 DOI: 10.1085/jgp.201310964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In whole cell patch clamp recordings, we found that normal human adrenal zona fasciculata (AZF) cells express voltage-gated, rapidly inactivating Ca2+ and K+ currents and a noninactivating, leak-type K+ current. Characterization of these currents with respect to voltage-dependent gating and kinetic properties, pharmacology, and modulation by the peptide hormones adrenocorticotropic hormone (ACTH) and AngII, in conjunction with Northern blot analysis, identified these channels as Cav3.2 (encoded by CACNA1H), Kv1.4 (KCNA4), and TREK-1 (KCNK2). In particular, the low voltage–activated, rapidly inactivating and slowly deactivating Ca2+ current (Cav3.2) was potently blocked by Ni2+ with an IC50 of 3 µM. The voltage-gated, rapidly inactivating K+ current (Kv1.4) was robustly expressed in nearly every cell, with a current density of 95.0 ± 7.2 pA/pF (n = 64). The noninactivating, outwardly rectifying K+ current (TREK-1) grew to a stable maximum over a period of minutes when recording at a holding potential of −80 mV. This noninactivating K+ current was markedly activated by cinnamyl 1-3,4-dihydroxy-α-cyanocinnamate (CDC) and arachidonic acid (AA) and inhibited almost completely by forskolin, properties which are specific to TREK-1 among the K2P family of K+ channels. The activation of TREK-1 by AA and inhibition by forskolin were closely linked to membrane hyperpolarization and depolarization, respectively. ACTH and AngII selectively inhibited the noninactivating K+ current in human AZF cells at concentrations that stimulated cortisol secretion. Accordingly, mibefradil and CDC at concentrations that, respectively, blocked Cav3.2 and activated TREK-1, each inhibited both ACTH- and AngII-stimulated cortisol secretion. These results characterize the major Ca2+ and K+ channels expressed by normal human AZF cells and identify TREK-1 as the primary leak-type channel involved in establishing the membrane potential. These findings also suggest a model for cortisol secretion in human AZF cells wherein ACTH and AngII receptor activation is coupled to membrane depolarization and the activation of Cav3.2 channels through inhibition of hTREK-1.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
4
|
Enyeart JJ, Liu H, Enyeart JA. Evidence for cAMP-independent bTREK-1 inhibition by ACTH and NPS-ACTH in adrenocortical cells. Mol Cell Endocrinol 2012; 348:305-12. [PMID: 21952081 DOI: 10.1016/j.mce.2011.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/30/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K(+) channels that are inhibited by ACTH through cAMP-dependent pathways. In whole cell patch clamp recordings from AZF cells, we found that ACTH may also inhibit bTREK-1 by a cAMP-independent mechanism. When the potent adenylyl cyclase (AC) antagonist 2,5-dideoxyadenosine-3'-triphosphate (2,5-dd-3'-ATP) was applied intracellularly through the patch pipette, bTREK-1 inhibition by the AC activator forskolin was blocked. In contrast, bTREK-1 inhibition by ACTH was unaltered. The selective G(Sα) antagonist NF449 also failed to blunt bTREK-1 inhibition by ACTH. At concentrations that produce little measurable increase in cAMP in bovine AZF cells, the O-nitrophenyl, sulfenyl-derivative of ACTH (NPS-ACTH) also inhibited bTREK-1 almost completely. Accordingly, 2,5-dd-3'-ATP at concentrations more than 1000× its reported IC(50) did not block bTREK-1 inhibition by NPS-ACTH. These results indicate that ACTH and NPS-ACTH can inhibit native bTREK-1 K(+) channels in AZF cells by a mechanism that does not involve activation of AC.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
5
|
Enyeart JJ, Liu H, Enyeart JA. Calcium-dependent inhibition of adrenal TREK-1 channels by angiotensin II and ionomycin. Am J Physiol Cell Physiol 2011; 301:C619-29. [PMID: 21613605 DOI: 10.1152/ajpcell.00117.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bovine adrenocortical cells express bTREK-1 K(+) (bovine KCNK2) channels that are inhibited by ANG II through a Gq-coupled receptor by separate Ca(2+) and ATP hydrolysis-dependent signaling pathways. Whole cell and single patch clamp recording from adrenal zona fasciculata (AZF) cells were used to characterize Ca(2+)-dependent inhibition of bTREK-1. In whole cell recordings with pipette solutions containing 0.5 mM EGTA and no ATP, the Ca(2+) ionophore ionomycin (1 μM) produced a transient inhibition of bTREK-1 that reversed spontaneously within minutes. At higher concentrations, ionomycin (5-10 μM) produced a sustained inhibition of bTREK-1 that was reversible upon washing, even in the absence of hydrolyzable [ATP](i). BAPTA was much more effective than EGTA at suppressing bTREK-1 inhibition by ANG II. When intracellular Ca(2+) concentration ([Ca(2+)](i)) was buffered to 20 nM with either 11 mM BAPTA or EGTA, ANG II (10 nM) inhibited bTREK-1 by 12.0 ± 4.5% (n=11) and 59.3 ± 8.4% (n=4), respectively. Inclusion of the water-soluble phosphatidylinositol 4,5-bisphosphate (PIP(2)) analog DiC(8)PI(4,5)P(2) in the pipette failed to increase bTREK-1 expression or reduce its inhibition by ANG II. The open probability (P(o)) of unitary bTREK-1 channels recorded from inside-out patches was reduced by Ca(2+) (10-35 μM) in a concentration-dependent manner. These results are consistent with a model in which ANG II inhibits bTREK-1 K(+) channels by a Ca(2+)-dependent mechanism that does not require the depletion of membrane-associated PIP(2). They further indicate that the Ca(2+) source is located in close proximity within a "Ca(2+) nanodomain" of bTREK-1 channels, where [Ca(2+)](i) may reach concentrations of >10 μM. bTREK-1 is the first two-pore K(+) channel shown to be inhibited by Ca(2+) through activation of a G protein-coupled receptor.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, 43210-1239, USA.
| | | | | |
Collapse
|
6
|
Enyeart JA, Liu H, Enyeart JJ. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells. Mol Pharmacol 2010; 77:469-82. [PMID: 20028740 PMCID: PMC2835421 DOI: 10.1124/mol.109.061861] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022] Open
Abstract
bTREK-1 K(+) channels set the resting membrane potential of bovine adrenal zona fasciculata (AZF) cells and function pivotally in the physiology of cortisol secretion. Adrenocorticotropic hormone controls the function and expression of bTREK-1 channels through signaling mechanisms that may involve cAMP and downstream effectors including protein kinase A (PKA) and exchange protein 2 directly activated by cAMP (Epac2). Using patch-clamp and Northern blot analysis, we explored the regulation of bTREK-1 mRNA and K(+) current expression by cAMP analogs and several of their putative metabolites in bovine AZF cells. At concentrations sufficient to activate both PKA and Epac2, 8-bromoadenosine-cAMP enhanced the expression of both bTREK-1 mRNA and K(+) current. N(6)-Benzoyladenosine-cAMP, which activates PKA but not Epac, also enhanced the expression of bTREK-1 mRNA and K(+) current measured at times from 24 to 96 h. An Epac-selective cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8CPT-2'-OMe-cAMP), potently stimulated bTREK-1 mRNA and K(+) current expression, whereas the nonhydrolyzable Epac activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, Sp-isomer was ineffective. Metabolites of 8CPT-2'-OMe-cAMP, including 8-(4-chlorophenylthio)-2'-O-methyladenosine-5'-O-monophosphate and 8CPT-2'-OMe-adenosine, promoted the expression of bTREK-1 transcripts and ion current with a temporal pattern, potency, and effectiveness resembling that of the parent compound. Likewise, at low concentrations, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP; 30 microM) but not its nonhydrolyzable analog 8-(4-chlorophenylthio)-cAMP, Sp-isomer, enhanced the expression of bTREK-1 mRNA and current. 8CPT-cAMP metabolites, including 8CPT-adenosine and 8CPT-adenine, also increased bTREK-1 expression. These results indicate that cAMP increases the expression of bTREK-1 mRNA and K(+) current through a cAMP-dependent but Epac2-independent mechanism. They further demonstrate that one or more metabolites of 8-(4-chlorophenylthio)-cAMP analogs potently stimulate bTREK-1 expression by activation of a novel cAMP-independent mechanism. These findings raise significant questions regarding the specificity of 8-(4-chlorophenylthio)-cAMP analogs as cAMP mimetics.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, 5196 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
7
|
Liu H, Enyeart JA, Enyeart JJ. N6-substituted cAMP analogs inhibit bTREK-1 K+ channels and stimulate cortisol secretion by a protein kinase A-independent mechanism. Mol Pharmacol 2009; 76:1290-301. [PMID: 19734321 PMCID: PMC2784727 DOI: 10.1124/mol.109.057075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/04/2009] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels whose inhibition by cAMP is coupled to membrane depolarization and cortisol secretion through complex signaling mechanisms. cAMP analogs with substitutions in the 6 position of the adenine ring selectively activate cAMP-dependent protein kinase (PKA) but not exchange proteins activated by cAMP (Epacs). In whole-cell patch-clamp recordings from AZF cells, we found that 6-benzoyl-cAMP (6-Bnz-cAMP) and 6-monobutyryl-cAMP potently inhibit bTREK-1 K+ channels, even under conditions in which PKA activity was abolished. Specifically, when applied through the patch electrode, 6-Bnz-cAMP inhibited bTREK-1 with an IC(50) of less than 0.2 microM. Inhibition of bTREK-1 by 6-Bnz-cAMP was not diminished by PKA antagonists, including N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H-89), adenosine 3'-5'cyclic monophosphothiate, Rp-isomer, protein kinase inhibitor (PKI) (6-22) amide, and myristoylated PKI (14-22), applied alone or in combination, externally and intracellularly through the patch pipette. Under similar conditions, these same antagonists completely blocked PKA activation by 6-Bnz-cAMP. Inhibition of bTREK-1 by 6-Bnz-cAMP was voltage-independent and eliminated in the absence of ATP in the pipette solution. 6-Bnz-cAMP also produced delayed increases in cortisol synthesis and the expression of CYP11a1 mRNA that were only partially blocked by PKA antagonists. These results indicate that 6-Bnz-cAMP and other 6-substituted cAMP analogs can inhibit bTREK-1 K+ channels and stimulate delayed increases in cortisol synthesis by AZF cells through a PKA- and Epac-independent mechanism. They also suggest that adrenocorticotropin and cAMP function in these cells through a third cAMP-dependent protein. Finally, although 6-modified cAMP analogs exhibit high selectivity in activating PKA over Epac, they also may interact with other unidentified proteins expressed by eukaryotic cells.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, OSU College of Medicine and Public Health, Columbus, OH, USA
| | | | | |
Collapse
|
8
|
Liu H, Enyeart JA, Enyeart JJ. ACTH inhibits bTREK-1 K+ channels through multiple cAMP-dependent signaling pathways. ACTA ACUST UNITED AC 2008; 132:279-94. [PMID: 18663135 PMCID: PMC2483331 DOI: 10.1085/jgp.200810003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential and function pivotally in the physiology of cortisol secretion. Inhibition of these K+ channels by adrenocorticotropic hormone (ACTH) or cAMP is coupled to depolarization and Ca2+ entry. The mechanism of ACTH and cAMP-mediated inhibition of bTREK-1 was explored in whole cell patch clamp recordings from AZF cells. Inhibition of bTREK-1 by ACTH and forskolin was not affected by the addition of both H-89 and PKI(6–22) amide to the pipette solution at concentrations that completely blocked activation of cAMP-dependent protein kinase (PKA) in these cells. The ACTH derivative, O-nitrophenyl, sulfenyl-adrenocorticotropin (NPS-ACTH), at concentrations that produced little or no activation of PKA, inhibited bTREK-1 by a Ca2+-independent mechanism. Northern blot analysis showed that bovine AZF cells robustly express mRNA for Epac2, a guanine nucleotide exchange protein activated by cAMP. The selective Epac activator, 8-pCPT-2′-O-Me-cAMP, applied intracellularly through the patch pipette, inhibited bTREK-1 (IC50 = 0.63 μM) at concentrations that did not activate PKA. Inhibition by this agent was unaffected by PKA inhibitors, including RpcAMPS, but was eliminated in the absence of hydrolyzable ATP. Culturing AZF cells in the presence of ACTH markedly reduced the expression of Epac2 mRNA. 8-pCPT-2′-O-Me-cAMP failed to inhibit bTREK-1 current in AZF cells that had been treated with ACTH for 3–4 d while inhibition by 8-br-cAMP was not affected. 8-pCPT-2′-O-Me-cAMP failed to inhibit bTREK-1 expressed in HEK293 cells, which express little or no Epac2. These findings demonstrate that, in addition to the well-described PKA-dependent TREK-1 inhibition, ACTH, NPS-ACTH, forskolin, and 8-pCPT-2′-O-Me-cAMP also inhibit these K+ channels by a PKA-independent signaling pathway. The convergent inhibition of bTREK-1 through parallel PKA- and Epac-dependent mechanisms may provide for failsafe membrane depolarization by ACTH.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | |
Collapse
|
9
|
Enyeart JA, Liu H, Enyeart JJ. Curcumin inhibits bTREK-1 K+ channels and stimulates cortisol secretion from adrenocortical cells. Biochem Biophys Res Commun 2008; 370:623-8. [PMID: 18406348 PMCID: PMC2394713 DOI: 10.1016/j.bbrc.2008.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022]
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K(+) channels that set the resting membrane potential. Inhibition of these channels by adrenocorticotropic hormone (ACTH) is coupled to membrane depolarization and cortisol secretion. Curcumin, a phytochemical with medicinal properties extracted from the spice turmeric, was found to modulate both bTREK-1 K(+) currents and cortisol secretion from AZF cells. In whole-cell patch clamp experiments, curcumin inhibited bTREK-1 with an IC(50) of 0.93muM by a mechanism that was voltage-independent. bTREK-1 inhibition by curcumin occurred through interaction with an external binding site and was independent of ATP hydrolysis. Curcumin produced a concentration-dependent increase in cortisol secretion that persisted for up to 24h. At a maximally effective concentration of 50muM, curcumin increased secretion as much as 10-fold. These results demonstrate that curcumin potently inhibits bTREK-1 K(+) channels and stimulates cortisol secretion from bovine AZF cells. The inhibition of bTREK-1 by curcumin may be linked to cortisol secretion through membrane depolarization. Since TREK-1 is widely expressed in a variety of cells, it is likely that some of the biological actions of curcumin, including its therapeutic effects, may be mediated through inhibition of these K(+) channels.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, 5196 Graves Hall, 333 W.10th Avenue, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
10
|
Liu H, Enyeart JA, Enyeart JJ. Potent inhibition of native TREK-1 K+ channels by selected dihydropyridine Ca2+ channel antagonists. J Pharmacol Exp Ther 2007; 323:39-48. [PMID: 17622574 DOI: 10.1124/jpet.107.125245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 background K+ channels that set the resting membrane potential. Whole-cell and single-channel patch-clamp recording were used to compare five Ca2+ channel antagonists with respect to their potency as inhibitors of native bTREK-1 K+ channels. The dihydropyridine (DHP) Ca2+ channel antagonists amlodipine and niguldipine potently and specifically inhibited bTREK-1 with IC50 values of 0.43 and 0.75 microM, respectively. The other Ca2+ channel antagonists, including the DHP nifedipine, the diphenyldiperazine flunarizine, and the cannabinoid anandamide were less potent, with IC50 values of 8.18, 2.48, and 5.07 microM, respectively. Additional studies with the highly prescribed antihypertensive amlodipine showed that inhibition of bTREK-1 by this agent was voltage-independent and specific. At concentrations that produced near complete block of bTREK-1, amlodipine inhibited voltage-gated Kv1.4 K+ and T-type Ca2+ currents in AZF cells by less than 10%. At the single-channel level, amlodipine reduced bTREK-1 open probability without altering the unitary conductance. The results demonstrate that selected DHP L-type Ca2+ channel antagonists potently inhibit native bTREK-1 K+ channels, whereas other Ca2+ channel antagonists also inhibit bTREK-1 at higher concentrations. Collectively, organic Ca2+ channel antagonists make up the most potent class of TREK-1 inhibitors yet described. Because TREK-1 K+ channels are widely expressed in the central nervous and cardiovascular systems, it is possible that some of the therapeutic or toxic effects of frequently prescribed drugs such as amlodipine may be due to their interaction with TREK-1 K+ rather L-type Ca2+ channels.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, 5196 Graves Hall, College of Medicine and Public Health, The Ohio State University, 333 W. 10th Ave., Columbus, OH 43210-1239, USA
| | | | | |
Collapse
|
11
|
Liu H, Enyeart JA, Enyeart JJ. Angiotensin II inhibits native bTREK-1 K+ channels through a PLC-, kinase C-, and PIP2-independent pathway requiring ATP hydrolysis. Am J Physiol Cell Physiol 2007; 293:C682-95. [PMID: 17494631 DOI: 10.1152/ajpcell.00087.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiotensin II (ANG II) inhibits bTREK-1 (bovine KCNK2) K(+) channels in bovine adrenocortical cells through a Gq-coupled AT(1) receptor by activation of separate Ca(2+)- and ATP hydrolysis-dependent signaling pathways. Whole cell patch-clamp recording from bovine adrenal zona fasciculata (AZF) cells was used to characterize the ATP-dependent signaling mechanism for inhibition of bTREK-1 by ANG II. We discovered that ATP-dependent inhibition of bTREK-1 by ANG II occurred through a novel mechanism that was independent of PLC and its established downstream effectors. The ATP-dependent inhibition of bTREK-1 by ANG II was not reduced by the PLC antagonists edelfosine and U73122, or by the PKC antagonists bisindolylmaleimide I (BIM) or calphostin C. bTREK-1 was partially inhibited ( approximately 25%) by the PKC activator phorbol 12,13 dibutyrate (PDBu) through an ATP-dependent mechanism that was blocked by BIM. Addition of Phosphatidylinositol(4,5) bisphosphate diC8 [DiC(8)PI(4,5)P(2)], a water-soluble derivative of phosphotidyl inositol 4,5 bisphosphate (PIP(2)) to the pipette solution failed to alter inhibition by ANG II. bTREK-1 inhibition by ANG II was also insensitive to antagonists of other protein kinases activated by ANG II in adrenocortical cells but was completely blocked by inorganic polytriphosphate PPPi. DiC(8)PI(4,5)P(2) was a weak activator of bTREK-1 channels, compared with the high-affinity ATP analog N(6)-(2-phenylethyl)adenosine-5'-O-triphosphate (6-PhEt-ATP). These results demonstrate that the modulation of bTREK-1 channels in bovine AZF cells is distinctive with respect to activation by phosphoinositides and nucleotides and inhibition by Gq-coupled receptors. Importantly, ANG II inhibits bTREK-1 channels through a novel pathway that is different from that described for inhibition of native TREK-1 channels in neurons, or cloned channels expressed in cell lines. They also indicate that, under physiological conditions, ANG II inhibits bTREK-1 and depolarizes AZF cells by two, novel, independent pathways that diverge proximal to the activation of PLC.
Collapse
Affiliation(s)
- Haiyan Liu
- Dept of Neuroscience, The Ohio State University, College of Medicine and Public Health, 5196 Graves Hall, Columbus, OH 43210-1239, USA
| | | | | |
Collapse
|
12
|
Takimoto K, Hayashi Y, Ren X, Yoshimura N. Species and tissue differences in the expression of DPPY splicing variants. Biochem Biophys Res Commun 2006; 348:1094-100. [PMID: 16899223 DOI: 10.1016/j.bbrc.2006.07.157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 07/26/2006] [Indexed: 11/29/2022]
Abstract
The non-functional dipeptidyl peptidase, DPPY (DPP10), regulates the expression and gating of K+ channels in Kv4 family by tightly binding to these pore-forming subunits. Neural tissue-specific expression of this and the related DPPX (DPP6) is thought to confer rapid inactivation and other unique properties of neuronal Kv4 channels. Here we report that DPPY mRNA is abundant in human adrenal gland, but very low in the corresponding rat tissue. Furthermore, multiple DPPY splicing variants with alternative first exons are significant in the brain, whereas the expression of DPPY gene in the adrenal gland and pancreas is predominantly initiated at the two latter sites. These splicing variants, as well as an N-terminal peptide-deleted DPPY, produce similar changes in Kv4.3 gating. Thus, transcription of DPPY gene is species- and tissue-specifically controlled.
Collapse
Affiliation(s)
- Koichi Takimoto
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
13
|
Liu H, Danthi SJ, Enyeart JJ. Curcumin potently blocks Kv1.4 potassium channels. Biochem Biophys Res Commun 2006; 344:1161-5. [PMID: 16647042 PMCID: PMC2656109 DOI: 10.1016/j.bbrc.2006.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 11/29/2022]
Abstract
Curcumin, a major constituent of the spice turmeric, is a nutriceutical compound reported to possess therapeutic properties against a variety of diseases ranging from cancer to cystic fibrosis. In whole-cell patch-clamp experiments on bovine adrenal zona fasciculata (AZF) cells, curcumin reversibly inhibited the Kv1.4K+ current with an IC50 of 4.4 microM and a Hill coefficient of 2.32. Inhibition by curcumin was significantly enhanced by repeated depolarization; however, this agent did not alter the voltage-dependence of steady-state inactivation. Kv1.4 is the first voltage-gated ion channel demonstrated to be inhibited by curcumin. Furthermore, these results identify curcumin as one of the most potent antagonists of these K+ channels identified thus far. It remains to be seen whether any of the therapeutic actions of curcumin might originate with its ability to inhibit Kv1.4 or other voltage-gated K+ channel.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210-1239, USA
| | - Sanjay J. Danthi
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210-1239, USA
- Mathematical Biosciences Institute, The Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210, USA
| | - John J. Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210-1239, USA
| |
Collapse
|
14
|
Enyeart JJ, Danthi SJ, Liu H, Enyeart JA. Angiotensin II inhibits bTREK-1 K+ channels in adrenocortical cells by separate Ca2+- and ATP hydrolysis-dependent mechanisms. J Biol Chem 2005; 280:30814-28. [PMID: 15994319 DOI: 10.1074/jbc.m504283200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bovine adrenocortical cells express bTREK-1 K+ channels that set the resting membrane potential (V(m)) and couple angiotensin II (AngII) and adrenocorticotropic hormone (ACTH) receptors to membrane depolarization and corticosteroid secretion. In this study, it was discovered that AngII inhibits bTREK-1 by separate Ca2+- and ATP hydrolysis-dependent signaling pathways. When whole cell patch clamp recordings were made with pipette solutions that support activation of both Ca2+- and ATP-dependent pathways, AngII was significantly more potent and effective at inhibiting bTREK-1 and depolarizing adrenal zona fasciculata cells, than when either pathway is activated separately. External ATP also inhibited bTREK-1 through these two pathways, but ACTH displayed no Ca2+-dependent inhibition. AngII-mediated inhibition of bTREK-1 through the novel Ca2+-dependent pathway was blocked by the AT1 receptor antagonist losartan, or by including guanosine-5'-O-(2-thiodiphosphate) in the pipette solution. The Ca2+-dependent inhibition of bTREK-1 by AngII was blunted in the absence of external Ca2+ or by including the phospholipase C antagonist U73122, the inositol 1,4,5-trisphosphate receptor antagonist 2-amino-ethoxydiphenyl borate, or a calmodulin inhibitory peptide in the pipette solution. The activity of unitary bTREK-1 channels in inside-out patches from adrenal zona fasciculata cells was inhibited by application of Ca2+ (5 or 10 microM) to the cytoplasmic membrane surface. The Ca2+ ionophore ionomycin also inhibited bTREK-1 currents through channels expressed in CHO-K1 cells. These results demonstrate that AngII and selected paracrine factors that act through phospholipase C inhibit bTREK-1 in adrenocortical cells through simultaneous activation of separate Ca2+- and ATP hydrolysis-dependent signaling pathways, providing for efficient membrane depolarization. The novel Ca2+-dependent pathway is distinctive in its lack of ATP dependence, and is clearly different from the calmodulin kinase-dependent mechanism by which AngII modulates T-type Ca2+ channels in these cells.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210-1239, USA.
| | | | | | | |
Collapse
|
15
|
Enyeart JJ. Biochemical and Ionic signaling mechanisms for ACTH-stimulated cortisol production. VITAMINS AND HORMONES 2005; 70:265-79. [PMID: 15727807 DOI: 10.1016/s0083-6729(05)70008-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adrenocorticotropic hormone (ACTH)-stimulated cortisol production by adrenal zona fasciculata cells requires coordinated biochemical and ionic signaling mechanisms that employ adenosine 3', 5'-cyclic monophosphate (cAMP) and Ca(2+) as intracellular messengers. As the primary messenger generated in response to ACTH receptor activation, cAMP acts at multiple sites to produce the full steroidogenic response that includes both rapid and delayed components. Biochemically, cAMP activates and induces the expression of multiple proteins that function in converting cholesterol to cortisol. These include the steroid acute regulatory (StAR) protein as well as steroidogenic enzymes. cAMP also inhibits a background K(+) channel (bTREK-1), which sets the resting potential of adrenal zona fasciculata (AZF) cells, thereby triggering membrane depolarization and Ca(2+) entry through voltage-gated Ca(2+) channels. Ca(2+) also accelerates the production of cortisol from cholesterol by activating or inducing the synthesis of steroidogenic proteins. In this scheme, background K(+) channels act pivotally by transducing a hormonal signal at the cell membrane to an ionic signal, leading to depolarization-dependent Ca(2+) entry. In this way, ACTH receptor activation increases cAMP and Ca(2+) in the AZF cell, yielding the full steroidogenic response. In addition to acutely regulating the activity of AZF cell ion channels, ACTH and cAMP also regulate the expression of genes coding for these ion channels. The tonic control of the expression of AZF cell ion channels through the hypothalamic-pituitary-adrenal axis suggests that prolonged stimulation of the AZF cell by ACTH may alter the electrical properties of these cells in a manner which matches the organism's requirement for cortisol.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210, USA
| |
Collapse
|
16
|
Dupré-Aucouturier S, Penhoat A, Rougier O, Bilbaut A. Volume-sensitive Cl- current in bovine adrenocortical cells: comparison with the ACTH-induced Cl- current. J Membr Biol 2004; 199:99-111. [PMID: 15383920 DOI: 10.1007/s00232-004-0680-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/26/2004] [Indexed: 11/29/2022]
Abstract
In a previous study performed on zona fasciculata (ZF) cells isolated from calf adrenal glands, we identified an ACTH-induced Cl- current involved in cell membrane depolarization. In the present work, we describe a volume-sensitive Cl- current and compare it with the ACTH-activated Cl- current. Experiments were performed using the whole-cell patch-clamp recording method, video microscopy and cortisol-secretion measurements. In current-clamp experiments, hypotonic solutions induced a membrane depolarization to -22 mV. This depolarization, correlated with an increase in the membrane conductance, was sensitive to different Cl- channel inhibitors. In voltage-clamp experiments, hypotonic solution induced a membrane current that slowly decayed and reversed at -21 mV. This ionic current displayed no time dependence and showed a slight outward rectification. It was blocked to variable extent by different conventional Cl- channel inhibitors. Under hypotonic conditions, membrane depolarizations were preceded by an increase in cell volume that was not detected under ACTH stimulation. It was concluded that hypotonic solution induced cell swelling, which activated a Cl- current involved in membrane depolarization. Although cell volume change was not observed in the presence of ACTH, biophysical properties and pharmacological profile of the volume-sensitive Cl- current present obvious similarities with the ACTH-activated Cl- current. As compared to ACTH, hypotonic solutions failed to trigger cortisol production that was weakly stimulated in the presence of high-K+ solution. This shows that in ZF cells, membrane depolarization is not a sufficient condition to fully activate secretory activities.
Collapse
Affiliation(s)
- S Dupré-Aucouturier
- Université Claude Bernard Lyon I, UMR-CNRS 5123, Physiologie des Eléments Excitables, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|
17
|
Enyeart JA, Danthi SJ, Enyeart JJ. TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and aldosterone secretion in bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 2004; 287:E1154-65. [PMID: 15315905 DOI: 10.1152/ajpendo.00223.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine adrenal glomerulosa (AZG) cells were shown to express bTREK-1 background K(+) channels that set the resting membrane potential and couple angiotensin II (ANG II) receptor activation to membrane depolarization and aldosterone secretion. Northern blot and in situ hybridization studies demonstrated that bTREK-1 mRNA is uniformly distributed in the bovine adrenal cortex, including zona fasciculata and zona glomerulosa, but is absent from the medulla. TASK-3 mRNA, which codes for the predominant background K(+) channel in rat AZG cells, is undetectable in the bovine adrenal cortex. In whole cell voltage clamp recordings, bovine AZG cells express a rapidly inactivating voltage-gated K(+) current and a noninactivating background K(+) current with properties that collectively identify it as bTREK-1. The outwardly rectifying K(+) current was activated by intracellular acidification, ATP, and superfusion of bTREK-1 openers, including arachidonic acid (AA) and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC). Bovine chromaffin cells did not express this current. In voltage and current clamp recordings, ANG II (10 nM) selectively inhibited the noninactivating K(+) current by 82.1 +/- 6.1% and depolarized AZG cells by 31.6 +/- 2.3 mV. CDC and AA overwhelmed ANG II-mediated inhibition of bTREK-1 and restored the resting membrane potential to its control value even in the continued presence of ANG II. Vasopressin (50 nM), which also physiologically stimulates aldosterone secretion, inhibited the background K(+) current by 73.8 +/- 9.4%. In contrast to its potent inhibition of bTREK-1, ANG II failed to alter the T-type Ca(2+) current measured over a wide range of test potentials by using pipette solutions of identical nucleotide and Ca(2+)-buffering compositions. ANG II also failed to alter the voltage dependence of T channel activation under these same conditions. Overall, these results identify bTREK-1 K(+) channels as a pivotal control point where ANG II receptor activation is transduced to depolarization-dependent Ca(2+) entry and aldosterone secretion.
Collapse
Affiliation(s)
- Judith A Enyeart
- Dept. of Neuroscience, College of Medicine and Public Health, The Ohio State University, 5196 Graves Hall, 333 W.10th Ave, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
18
|
Danthi S, Enyeart JA, Enyeart JJ. Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids. J Membr Biol 2004; 195:147-64. [PMID: 14724761 DOI: 10.1007/s00232-003-0616-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Indexed: 11/30/2022]
Abstract
The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1-20 microM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1-5 microM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels.
Collapse
Affiliation(s)
- S Danthi
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210-1239, USA
| | | | | |
Collapse
|
19
|
Enyeart JA, Danthi S, Enyeart JJ. Corticotropin induces the expression of TREK-1 mRNA and K+ current in adrenocortical cells. Mol Pharmacol 2003; 64:132-42. [PMID: 12815169 DOI: 10.1124/mol.64.1.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express a two-pore/four-transmembrane segment bTREK-1 K+ channel that sets the resting potential and couples hormonal signals to depolarization-dependent Ca2+ entry and cortisol secretion. It was discovered that corticotropin (1-2000 pM) enhances the expression of bTREK-1 mRNA and membrane current in cultured AZF cells. Forskolin and 8-pcpt-cAMP mimicked corticotropin induction of bTREK-1 mRNA, but angiotensin II (AII) was ineffective. The induction of bTREK-1 mRNA by corticotropin was partially blocked by the A-kinase antagonist H-89. 8-(4-Chloro-phenylthio)-2-O-methyladenosine-3'-5'-cyclic monophosphate, a cAMP analog that activates cAMP-regulated guanine nucleotide exchange factors (Epac), failed to increase bTREK-1 mRNA. Corticotropin-stimulated increases in bTREK-1 mRNA were eliminated by inhibitors of protein synthesis or gene transcription. bTREK-1 current disappeared after 24 h in serum-supplemented medium, but in the presence of corticotropin, bTREK-1 expression was maintained for at least 48 h. The enhancement of bTREK-1 mRNA and ionic current contrasts with the corticotropin-induced down-regulation of the Kv1.4 voltage-gated K+ current and associated mRNA in AZF cells. These results demonstrate that corticotropin rapidly and potently induces the expression of bTREK-1 in AZF cells at the pretranslational level by a cAMP-dependent mechanism that is partially dependent on A-kinase but independent of Epac and Ca2+. They further indicate that prolonged stimulation of AZF cells by corticotropin, as occurs during long-term stress or disease, may produce pronounced changes in the expression of genes encoding ion channels, thereby reshaping the electrical properties of these cells to enhance or limit cortisol secretion.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine, Columbus, OH, USA.
| | | | | |
Collapse
|
20
|
Enyeart JJ, Xu L, Danthi S, Enyeart JA. An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1. J Biol Chem 2002; 277:49186-99. [PMID: 12368289 DOI: 10.1074/jbc.m207233200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express a background K(+) channel (I(AC)) that sets the resting potential and acts pivotally in ACTH-stimulated cortisol secretion. We have cloned a bTREK-1 (KCNK2) tandem-pore K(+) channel cDNA from AZF cells with properties that identify it as the native I(AC). The bTREK-1 cDNA is expressed robustly in AZF cells and includes transcripts of 4.9, 3.6, and 2.8 kb. In patch clamp recordings made from transiently transfected cells, bTREK-1 displayed distinctive properties of I(AC) in AZF cells. Specifically, bTREK-1 currents were outwardly rectifying with a large instantaneous and smaller time-dependent component. Similar to I(AC), bTREK-1 increased spontaneously in amplitude over many minutes of whole cell recording and was blocked potently by Ca(2+) antagonists including penfluridol and mibefradil and by 8-(4-chlorophenylthio)-cAMP. Unitary TREK-1 and I(AC) currents were nearly identical in amplitude. The native I(AC) current, in turn, displayed properties that together are specific to TREK-1 K(+) channels. These include activation by intracellular acidification, enhancement by the neuroprotective agent riluzole, and outward rectification. bTREK-1 current differed from native K(+) current only in its lack of ATP dependence. In contrast to I(AC), the current density of bTREK-1 in human embryonic kidney-293 cells was not increased by raising pipette ATP from 0.1 to 5 mm. Further, the enhancement of I(AC) current in AZF cells by low pH and riluzole was facilitated by, and dependent on, ATP at millimolar concentrations in the pipette solution. Overall, these results establish the identity of I(AC) K(+) channels, demonstrate the expression of bTREK-1 in a specific endocrine cell, identify potent new TREK-1 antagonists, and assign a pivotal role for these tandem-pore channels in the physiology of cortisol secretion. The activation of I(AC) by ATP indicates that native bTREK-1 channels may function as sensors that couple the metabolic state of the cell to membrane potential, perhaps through an associated ATP-binding protein.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine, 5190 Graves Hall, 333 W. 10th Avenue, Columbus, OH 43210-1239, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Bovine adrenal zona fasciculata cells express background K(+) channels (I(AC) channels) whose activity is potently inhibited by ACTH. In whole cell patch clamp recordings, it was discovered that the trivalent lanthanides (Ln(3+)s) lanthanum and ytterbium interact with two binding sites to modulate K(+) flow through these channels. Despite large differences in ionic radii, these Ln(3+)s inhibited I(AC) channels half-maximally with IC(50) values near 50 microM. In addition, these Ln(3+)s blocked and reversed ACTH-mediated inhibition of I(AC) K(+) channels at similar concentrations. The Ln(3+)s did not alter inhibition of I(AC) by angiotensin II or cAMP. Ln(3+)-induced uncoupling of ACTH receptor activation from I(AC) inhibition was prevented by raising the external Ca(2+) concentration from 2 to 10 mM. The divalent cation Ni(2+) (500 microM) also blocked ACTH-dependent inhibition of I(AC) through a Ca(2+)-sensitive mechanism. The results are consistent with a model in which Ln(3+)s produce opposing actions on I(AC) K(+) currents through two separate binding sites. In addition to directly inhibiting I(AC), Ln(3+)s (and Ni(2+)) bind with high affinity to a Ca(2+)-selective site associated with the ACTH receptor. By displacing Ca(2+) from this site, Ln(3+)s prevent ACTH from binding and accelerate its dissociation. These results identify Ln(3+)s as a relatively potent group of noncompetitive ACTH receptor antagonists. Allosteric actions of trivalent and divalent metal cations on hormone binding, mediated through Ca(2+)-specific sites, may be common to a variety of peptide hormone receptors.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine, Columbus, Ohio 43210
| | | | | |
Collapse
|
22
|
Enyeart JJ, Xu L, Gomora JC, Enyeart JA. Reciprocal modulation of voltage-gated and background K(+) channels mediated by nucleotides and corticotropin. Mol Pharmacol 2001; 60:114-23. [PMID: 11408606 DOI: 10.1124/mol.60.1.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express two types of K(+)-selective ion channels including a rapidly inactivating bKv1.4 current (I(A)) and an ATP-dependent noninactivating background current (I(AC)) that sets the resting membrane potential. Whole-cell, patch-clamp recording from cultured AZF cells was used to demonstrate a novel reciprocal modulation of these two K(+) channels by intracellular nucleotides and corticotropin. Specifically, increases in I(AC) activity induced by intracellular ATP, as well as GTP and 5'-adenylyl-imidodiphosphate (AMP-PNP), were accompanied by a corresponding decrease in the amplitude of the voltage-gated I(A) current. The reduction in I(A) current was observed only when patch pipettes contained ATP or other nucleotides at concentrations sufficient to support activation of I(AC). Conversely, the nearly complete inhibition of I(AC) by corticotropin was accompanied by the coincident reappearance of functional I(A) channels. In the absence of I(AC) current, corticotropin failed to alter I(A). The reciprocal modulation of AZF cell K(+) channels by nucleotides and corticotropin was independent of membrane voltage. These results demonstrate a new form of channel modulation in which the activity of two different K(+) channels is reciprocally modulated in tandem through hormonal and metabolic signaling pathways. They further suggest that I(A) and I(AC) K(+) channels may be functionally coupled in a dynamic equilibrium driven by intracellular ATP and G-protein-coupled receptors. This may represent a unique mechanism for transducing biochemical signals to ionic events involved in cortisol secretion.
Collapse
Affiliation(s)
- J J Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine, Columbus, Ohio 43210-1239, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Bovine adrenocortical zona fasciculata (AZF) cells express a novel ATP-dependent K(+)-permeable channel (I(AC)). Whole cell and single-channel recordings were used to characterize I(AC) channels with respect to ionic selectivity, conductance, and modulation by nucleotides, inorganic phosphates, and angiotensin II (ANG II). In outside-out patch recordings, the activity of unitary I(AC) channels is enhanced by ATP in the patch pipette. These channels were K(+) selective with no measurable Na(+) or Ca(2+) conductance. In symmetrical K(+) solutions with physiological concentrations of divalent cations (M(2+)), I(AC) channels were outwardly rectifying with outward and inward chord conductances of 94.5 and 27.0 pS, respectively. In the absence of M(2+), conductance was nearly ohmic. Hydrolysis-resistant nucleotides including AMP-PNP and NaUTP were more potent than MgATP as activators of whole cell I(AC) currents. Inorganic polytriphosphate (PPP(i)) dramatically enhanced I(AC) activity. In current-clamp recordings, nucleotides and PPP(i) produced resting potentials in AZF cells that correlated with their effectiveness in activating I(AC). ANG II (10 nM) inhibited whole cell I(AC) currents when patch pipettes contained 5 mM MgATP but was ineffective in the presence of 5 mM NaUTP and 1 mM MgATP. Inhibition by ANG II was not reduced by selective kinase antagonists. These results demonstrate that I(AC) is a distinctive K(+)-selective channel whose activity is increased by nucleotide triphosphates and PPP(i). Furthermore, they suggest a model for I(AC) gating that is controlled through a cycle of ATP binding and hydrolysis.
Collapse
Affiliation(s)
- L Xu
- Department of Neuroscience, Ohio State University, College of Medicine, Columbus, Ohio 43210-1239, USA
| | | |
Collapse
|
24
|
Enyeart JA, Xu L, Enyeart JJ. A bovine adrenocortical Kv1.4 K(+) channel whose expression is potently inhibited by ACTH. J Biol Chem 2000; 275:34640-9. [PMID: 10913143 DOI: 10.1074/jbc.m004214200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have cloned a bovine adrenal cortical (bKv1.4) K(+) channel cDNA whose expression is rapidly inhibited by adrenocorticotropic hormone (ACTH). The 4386-nucleotide cDNA is homologous to other voltage-gated, rapidly inactivating Kv1.4 channels, and includes a 1986-nucleotide coding region and large 5'- and 3'-untranslated regions. Bovine Kv1.4-specific mRNA from adrenal zona fasciculata (AZF) cells was rapidly and potently reduced by ACTH, with a t(12) of approximately 1 h and an IC(50) of 1.2 pm. The membrane-permeable cAMP analog 8-pcpt-cAMP also reduced bKv1.4 mRNA expression with kinetics similar to that observed with ACTH. Reduction of bKv1.4 mRNA expression by ACTH and 8-pcpt-cAMP was only partially inhibited by the selective protein kinase A antagonist H-89. Consistent with their effect on bKv1.4 mRNA, ACTH and 8-pcpt-cAMP both dramatically reduced the expression of bKv1.4-associated A-type current measured over 72 h. These results demonstrate that bovine AZF cells synthesize a Kv1.4-type channel whose expression is inhibited at the pretranslational level by ACTH and 8-pcpt-cAMP by a mechanism that is partially dependent on the activation of protein kinase A. The rapid, potent reduction of bKv1.4 mRNA produced by ACTH and 8-pcpt-cAMP indicates that the expression of this K(+) channel is under tonic inhibitory control of the hypothalamic-pituitary-adrenal axis. The basic electrical properties of AZF cells might be tightly regulated at the transcriptional level by the normal diurnal pattern of ACTH secretion, and altered during bouts of stress by the enhanced release of this pituitary peptide. Under conditions of prolonged stress or adrenal insufficiency, persistent ACTH-induced changes in the electrical properties of AZF cells could be coupled to parallel changes in cortisol secretion.
Collapse
Affiliation(s)
- J A Enyeart
- Department of Neuroscience, Ohio State University, College of Medicine, Columbus, Ohio 43210-1239, USA
| | | | | |
Collapse
|
25
|
Xu L, Enyeart JJ. Adenosine inhibits a non-inactivating K+ current in bovine adrenal cortical cells by activation of multiple P1 receptors. J Physiol 1999; 521 Pt 1:81-97. [PMID: 10562336 PMCID: PMC2269642 DOI: 10.1111/j.1469-7793.1999.00081.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Bovine adrenal zona fasciculata (AZF) cells express a non-inactivating K+ current (IAC) that sets the resting potential while it is activated by intracellular ATP. In whole-cell patch clamp recordings from bovine AZF cells, we found that adenosine selectively inhibited IAC by a maximum of 78.4 +/- 4.6 % (n = 8) with an IC50 of 71 nM. The non-selective adenosine receptor agonist NECA effectively inhibited IAC by 79.3 +/- 2.9 % (n = 24) at a concentration of 100 nM. 2. Inhibition of IAC was mediated through multiple P1 adenosine receptor subtypes. The A1-selective agonist CCPA (10 nM), the A2A-selective agonist CGS 21680 (100 nM) and the A3-selective agonist IB-MECA (10 nM) inhibited IAC by 64.8 +/- 8.4, 78.4 +/- 4.6 and 69.3 +/- 6.9 %, respectively. 3. Specific adenosine receptor subtype antagonists including DPCPX (A1), ZM 241385 (A2A) and MRS 1191 (A3) effectively blocked inhibition of IAC by adenosine receptor-selective agonists. 4. A mixture of the three adenosine receptor antagonists completely suppressed inhibition of IAC by adenosine, but failed to alter inhibition by external ATP which acts through a separate P2 nucleotide receptor. 5. Inhibition of IAC by adenosine or NECA was eliminated by substituting GDP-beta-S for GTP in the pipette, or by replacing ATP with AMP-PNP or UTP. 6. In addition to inhibiting IAC, adenosine (10 microM) depolarized AZF cells by 46.2 +/- 5.8 mV (n = 6). 7. These results show that bovine AZF cells express at least three adenosine receptor subtypes (A1, A2A, A3), each of which is coupled to the inhibition of IAC K+ channels through a G-protein-dependent mechanism requiring ATP hydrolysis. Adenosine-mediated inhibition of IAC is associated with membrane depolarization. Adenosine and other purines may co-ordinate the stress-induced secretion of corticosteroids and catecholamines from the adrenal gland.
Collapse
Affiliation(s)
- L Xu
- Department of Pharmacology, The Ohio State University, College of Medicine, Columbus, OH 43210-1239, USA
| | | |
Collapse
|
26
|
Xu L, Enyeart JJ. Purine and pyrimidine nucleotides inhibit a noninactivating K+ current and depolarize adrenal cortical cells through a G protein-coupled receptor. Mol Pharmacol 1999; 55:364-76. [PMID: 9927630 DOI: 10.1124/mol.55.2.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that sets the resting membrane potential and may mediate depolarization-dependent cortisol secretion. External ATP stimulates cortisol secretion through activation of a nucleotide receptor. In whole-cell patch clamp recordings from bovine AZF cells, we found that ATP selectively inhibited IAC K+ current by a maximum of 75.7 +/- 3% (n = 13) with a 50% inhibitory concentration of 1.3 microM. A rapidly inactivating A-type K+ current was not inhibited by ATP. Other nucleotides, including ADP and the pyrimidines UTP and UDP, also inhibited IAC, whereas 2-methylthio-ATP (2-MeSATP) and CTP were completely ineffective. The rank order of potency for six nucleotides was UTP = ADP > ATP > UDP >> 2-MeSATP = CTP. At maximally effective concentrations, UTP, ADP, and UDP inhibited IAC current by 81.4 +/- 5.2% (n = 7), 70.7 +/- 7.2% (n = 4), and 65.2 +/- 7.9% (n = 5), respectively. Inhibition of IAC by external ATP was reduced from 71. 3 +/- 3.2% to 22.8 +/- 4.5% (n = 18) by substituting guanosine 5'-O-2-(thio) diphosphate for GTP in the patch pipette. Inhibition of IAC by external ATP (10 microM) was markedly suppressed (to 17.3 +/- 5.5%, n = 9) by the nonspecific protein kinase antagonist staurosporine (1 microM) and eliminated by substituting the nonhydrolyzable ATP analog 5-adenylyl-imidodiphosphate or UTP for ATP in the pipette. ATP-mediated inhibition of IAC was not altered by the kinase C antagonist calphostin C, the calmodulin inhibitory peptide, or by buffering the intracellular (pipette) Ca++ with 20 mM 1,2-bis-(2-aminophenoxy)ethane-N, N,N',N'-tetraacetic acid. In current clamp recordings, ATP and UTP (but not CTP) depolarized AZF cells at concentrations that inhibited IAC K+ current. These results demonstrate that bovine AZF cells express a nucleotide receptor with a P2Y3 agonist profile that is coupled to the inhibition of IAC K+ channels through a GTP-binding protein. The inhibition of IAC K+ current and associated membrane depolarization are the first cellular responses demonstrated to be mediated through this receptor. Nucleotide inhibition of IAC proceeds through a pathway that is independent of phospholipase C, but that requires ATP hydrolysis. The identification of a new signaling pathway in AZF cells, whereby activation of a nucleotide receptor is coupled to membrane depolarization through inhibition of a specific K+ channel, suggests a mechanism for ATP-stimulated corticosteroid secretion that depends on depolarization-dependent Ca++ entry. This may be a means of synchronizing the stress-induced secretion of corticosteroids and catecholamines from the adrenal gland.
Collapse
Affiliation(s)
- L Xu
- Department of Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | |
Collapse
|
27
|
Gomora JC, Enyeart JJ. Ca2+ depolarizes adrenal cortical cells through selective inhibition of an ATP-activated K+ current. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1526-37. [PMID: 9843714 DOI: 10.1152/ajpcell.1998.275.6.c1526] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine adrenal zona fasciculata cells (AZF) express a noninactivating K+ current (IAC) whose inhibition by adrenocorticotropic hormone and ANG II may be coupled to membrane depolarization and Ca2+-dependent cortisol secretion. We studied IAC inhibition by Ca2+ and the Ca2+ ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette) Ca2+ concentration ([Ca2+]i) buffered to 0.02 microM, IAC reached maximum current density of 25.0 +/- 5.1 pA/pF (n = 16); raising [Ca2+]i to 2.0 microM reduced it 76%. In inside-out patches, elevated [Ca2+]i dramatically reduced IAC channel activity. Ionomycin inhibited IAC by 88 +/- 4% (n = 14) without altering rapidly inactivating A-type K+ current. Inhibition of IAC by ionomycin was unaltered by adding calmodulin inhibitory peptide to the pipette or replacing ATP with its nonhydrolyzable analog 5'-adenylylimidodiphosphate. IAC inhibition by ionomycin was associated with membrane depolarization. When [Ca2+]i was buffered to 0.02 microM with 2 and 11 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid (BAPTA), ionomycin inhibited IAC by 89.6 +/- 3.5 and 25.6 +/- 14.6% and depolarized the same AZF by 47 +/- 8 and 8 +/- 3 mV, respectively (n = 4). ANG II inhibited IAC significantly more effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising [Ca2+]i inhibits IAC through a mechanism not requiring calmodulin or protein kinases, suggesting direct interaction with IAC channels. ANG II may inhibit IAC and depolarize AZF by activating parallel signaling pathways, one of which uses Ca2+ as a mediator.
Collapse
Affiliation(s)
- J C Gomora
- Department of Pharmacology, Ohio State University College of Medicine, Columbus, Ohio 43210-1239, USA
| | | |
Collapse
|
28
|
Enyeart JJ, Gomora JC, Xu L, Enyeart JA. Adenosine triphosphate activates a noninactivating K+ current in adrenal cortical cells through nonhydrolytic binding. J Gen Physiol 1997; 110:679-92. [PMID: 9382896 PMCID: PMC2229405 DOI: 10.1085/jgp.110.6.679] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1997] [Accepted: 10/01/1997] [Indexed: 02/05/2023] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone and angiotensin II at subnanomolar concentrations. Since IAC appears to set the membrane potential of AZF cells, these channels may function critically in coupling peptide receptors to membrane depolarization, Ca2+ entry, and cortisol secretion. IAC channel activity may be tightly linked to the metabolic state of the cell. In whole cell patch clamp recordings, MgATP applied intracellularly through the patch electrode at concentrations above 1 mM dramatically enhanced the expression of IAC K+ current. The maximum IAC current density varied from a low of 8.45 +/- 2.74 pA/pF (n = 17) to a high of 109.2 +/- 26. 3 pA/pF (n = 6) at pipette MgATP concentrations of 0.1 and 10 mM, respectively. In the presence of 5 mM MgATP, IAC K+ channels were tonically active over a wide range of membrane potentials, and voltage-dependent open probability increased by only approximately 30% between -40 and +40 mV. ATP (5 mM) in the absence of Mg2+ and the nonhydrolyzable ATP analog AMP-PNP (5 mM) were also effective at enhancing the expression of IAC, from a control value of 3.7 +/- 0.1 pA/pF (n = 3) to maximum values of 48.5 +/- 9.8 pA/pF (n = 11) and 67.3 +/- 23.2 pA/pF (n = 6), respectively. At the single channel level, the unitary IAC current amplitude did not vary with the ATP concentration or substitution with AMP-PNP. In addition to ATP and AMP-PNP, a number of other nucleotides including GTP, UTP, GDP, and UDP all increased the outwardly rectifying IAC current with an apparent order of effectiveness: MgATP > ATP = AMP-PNP > GTP = UTP > ADP >> GDP > AMP and ATP-gamma-S. Although ATP, GTP, and UTP all enhanced IAC amplitude with similar effectiveness, inhibition of IAC by ACTH (200 pM) occurred only in the presence of ATP. As little as 50 microM MgATP restored complete inhibition of IAC, which had been activated by 5 mM UTP. Although the opening of IAC channels may require only ATP binding, its inhibition by ACTH appears to involve a mechanism other than hydrolysis of this nucleotide. These findings describe a novel form of K+ channel modulation by which IAC channels are activated through the nonhydrolytic binding of ATP. Because they are activated rather than inhibited by ATP binding, IAC K+ channels may represent a distinctive new variety of K+ channel. The combined features of IAC channels that allow it to sense and respond to changing ATP levels and to set the resting potential of AZF cells, suggest a mechanism where membrane potential, Ca2+ entry, and cortisol secretion could be tightly coupled to the metabolic state of the cell through the activity of IAC K+ channels.
Collapse
Affiliation(s)
- J J Enyeart
- Department of Pharmacology, The Ohio State University, College of Medicine, Columbus, Ohio 43210-1239, USA.
| | | | | | | |
Collapse
|
29
|
Mei YA, Louiset E, Vaudry H, Cazin L. A-type potassium current modulated by A1 adenosine receptor in frog melanotrophs. J Physiol 1995; 489 ( Pt 2):431-42. [PMID: 8847638 PMCID: PMC1156770 DOI: 10.1113/jphysiol.1995.sp021063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Transient outward current was recorded in cultured frog melanotrophs with the whole-cell configuration of the patch-clamp technique. The ionic dependence, kinetics and pharmacological properties of the current were studied. The effects of the A1 adenosine receptor agonist R-N6-phenylisopropyl-adenosine (R-PIA) on this current were also investigated. 2. In tetrodotoxin- and cobalt-containing solution, depolarization from -120 mV elicited both transient and delayed outward currents. Pulses from -60 mV activated only a sustained late current. 3. 4-Aminopyridine (4 mM) reduced the transient outward current much more than the delayed outward current. In contrast, tetraethylammonium (10-20 mM) selectively reduced the delayed current. 4. Tail current measurements showed a positive shift in the reversal potential when external K+ concentration was increased, indicating that K+ was the predominant charge carrier. 5. Steady-state inactivation was complete at potentials positive to -10 mV and removed by hyperpolarization. 6. Inactivation of the transient current was slowed and accelerated in oxidizing and reducing conditions, respectively, confirming the involvement of an inactivating 'ball and chain' peptide. 7. R-PIA increased the transient current. The steady-state inactivation curve was shifted towards more positive potentials without changing the activation kinetics. Pretreatment with pertussis toxin (1 microgram ml-1) blocked the response to R-PIA. 8. It is concluded that frog melanotrophs possess an A-type current that is likely to play an important role in excitability. This current, which is directly modulated by A1 adenosine receptors through a Gi/G(o) protein, appears to be responsible for the inhibitory effects of adenosine on electrical activity.
Collapse
Affiliation(s)
- Y A Mei
- European Institute for Peptide Research No. 23, University of Rouen, Mont Saint Aignan, France
| | | | | | | |
Collapse
|
30
|
Schoenmakers TJ, Vaudry H, Cazin L. Osmo- and mechanosensitivity of the transient outward K+ current in a mammalian neuronal cell line. J Physiol 1995; 489 ( Pt 2):419-30. [PMID: 8847637 PMCID: PMC1156769 DOI: 10.1113/jphysiol.1995.sp021062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The transient outward current in NG108-15 cells was investigated with the whole-cell patch-clamp technique. The current was inhibited by external 4-aminopyridine or tetra-ethylammonium. The reversal potential shifted rightward with increased external K+ concentrations. 2. Current inactivation was markedly accelerated in hyperosmotic media (+30 mosmol l-1) and after nearby ejection of isosmotic solution with maximal acceleration occurring after 15-20 s and full recovery within 2-4 min, thus demonstrating an osmo- and mechanosensitivity of this current. Voltage-dependent Na+ and Ca2+ currents were unaffected. 3. Hyperosmotic solution shifted the voltage dependence of inactivation leftward. Inactivation was sensitive to reducing and oxidizing intracellular conditions. Reduction blocked the acceleration of current inactivation induced by hyperosmotic media, while oxidation did not hamper the response. 4. Action potentials had a decreased amplitude and a slower repolarization after hyperosmotic ejections. 5. It is concluded that the transient K+ current is osmo- and mechanosensitive, thus providing a mechanism for extracellular osmolarity to modulate neuronal excitability. The response appeared to be mediated through a changed sensitivity of the inactivating principle to the membrane electric field and was dependent on the redox state of the cell.
Collapse
Affiliation(s)
- T J Schoenmakers
- European Institute for Peptide Research No. 23, University of Rouen, Mont-Saint-Aignan, France
| | | | | |
Collapse
|
31
|
Barbara JG, Takeda K. Voltage-dependent currents and modulation of calcium channel expression in zona fasciculata cells from rat adrenal gland. J Physiol 1995; 488 ( Pt 3):609-22. [PMID: 8576852 PMCID: PMC1156728 DOI: 10.1113/jphysiol.1995.sp020994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Whole-cell voltage-activated currents from single zona fasciculata (ZF) cells from rat adrenal glands were studied. T- and L-type Ca2+ currents and a slowly inactivating A-type K+ current were the three major currents observed. 2. In freshly isolated cells, the A-type K+ current and the T-type Ca2+ current were predominant. The A-type current was activated at -50 mV and inhibited by 4-amino-pyridine with a half-maximal block (IC50) at 130 microM while the T-type current was activated at -70 mV and blocked by Cd2+, Ni2+ and amiloride with IC50 values of 24.1, 132.4 and 518.9 microM, respectively. 3. Under current clamp, depolarizing current pulses produced a single Ca2+ action potential with Cs+ in the pipette internal solution. Upon replacement of Cs+ by K+, the half-amplitude width of the action potential was shortened and membrane potential oscillations were seen after the spike. 4. In freshly isolated cells and during the first 24 h after plating, the T-type current was observed in all cells, with L-type current being observed in < 2% of cells, even in the presence of (+)SDZ 202,791, a dihydropyridine Ca2+ channel agonist. With time in culture, the T-type current disappeared, and a high-voltage-activated L-type current became increasingly apparent. In cells tested after > 2 days in culture, (+)SDZ 202,791 potentiated L-type current by 407 +/- 12% and the antagonist (-)SDZ 202,791 blocked this increase. The L-type current was activated between -30 and -20 mV and was sensitive to nitrendipine and omega-conotoxin GVIA. 5. Pre-incubation of cultured ZF cells with adrenocorticotrophic hormone (ACTH) or vasoactive intestinal peptide (VIP) for 3 days resulted in a high, sustained level of expression of T-type current, with a mean amplitude of 34.2 +/- 5.5 pA pF-1 for ACTH-treated cells compared with 3.4 +/- 1.8 pA pF-1 for untreated cells. Cycloheximide strongly inhibited this effect. Neither treatment affected L-type current expression. 6. The expression of both Ca2+ current types was unaffected by pre-incubation with 8-bromo-cAMP or forskolin. The protein kinase A antagonist, H89, did not inhibit the ACTH-induced upregulation of T-type Ca2+ currents. 7. It is concluded that the main voltage-dependent currents involved in cell excitability and steroidogenesis in rat adrenal ZF cells are an A-type K+ current and a T-type Ca2+ current. The physiological role and control of expression of L-type Ca2+ channels in rat ZF cells remain less clear.
Collapse
Affiliation(s)
- J G Barbara
- Laboratoire de Pharmacologie Cellulaire et Moléculaire-CNRS URA600, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | |
Collapse
|
32
|
Mlinar B, Biagi BA, Enyeart JJ. Losartan-sensitive AII receptors linked to depolarization-dependent cortisol secretion through a novel signaling pathway. J Biol Chem 1995; 270:20942-51. [PMID: 7673118 DOI: 10.1074/jbc.270.36.20942] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In bovine adrenal zona fasciculata (AZF) cells, angiotensin II (AII) may stimulate depolarization-dependent Ca2+ entry and cortisol secretion through inhibition of a novel potassium channel (IAC), which appears to set the resting potential of these cells. Aspects of the signaling pathway, which couples AII receptors to membrane depolarization and secretion, were characterized in patch clamp and membrane potential recordings and in secretion studies. AII-mediated inhibition of IAC, membrane depolarization, and cortisol secretion were all blocked by the AII type I (AT1) receptor antagonist losartan. These responses were unaffected by the AT2 antagonist PD123319. Inhibition of IAC by AII was prevented by intracellular application of guanosine 5'-O-2-(thio)-diphosphate but was not affected by pre-incubation of cells with pertussis toxin. Although mediated through an AT1 receptor, several lines of evidence indicated that AII inhibition of IAC occurred through an unusual phospholipase C (PLC)-independent pathway. Acetylcholine, which activates PLC in AZF cells, did not inhibit IAC. Neither the PLC antagonist neomycin nor PLC-generated second messengers prevented IAC expression or mimicked the inhibition of this current by AII. IAC expression and inhibition by AII were insensitive to variations in intracellular or extracellular Ca2+ concentration. AII-mediated inhibition of IAC was markedly reduced by the non-hydrolyzable ATP analog adenosine 5'-(beta, gamma-imino)triphosphate and by the non-selective protein kinase inhibitor staurosporine. The protein phosphatase antagonist okadaic acid reversibly inhibited IAC in whole cell recordings. These findings indicate that AII-stimulated effects on IAC current, membrane voltage, and cortisol secretion are linked through a common AT1 receptor. Inhibition of IAC in AZF cells appears to occur through a novel signaling pathway, which may include a losartan-sensitive AT1 receptor coupled through a pertussis-insensitive G protein to a staurosporine-sensitive protein kinase. Apparently, the mechanism linking AT1 receptors to IAC inhibition and Ca2+ influx in adrenocortical cells is separate from that involving inositol trisphosphate-stimulated Ca2+ release from intracellular stores. AII-stimulated cortisol secretion may occur through distinct parallel signaling pathways.
Collapse
Affiliation(s)
- B Mlinar
- Department of Pharmacology, Ohio State University, College of Medicine, Columbus 43210-1239, USA
| | | | | |
Collapse
|