1
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
2
|
Liu Y, Pike MC, Wu N, Lin YG, Mucowski S, Punj V, Tang Y, Yen HY, Stanczyk FZ, Enbom E, Austria T, Widschwendter M, Maxson R, Dubeau L. Brca1 Mutations Enhance Mouse Reproductive Functions by Increasing Responsiveness to Male-Derived Scent. PLoS One 2015; 10:e0139013. [PMID: 26488398 PMCID: PMC4619541 DOI: 10.1371/journal.pone.0139013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
We compared the gene expression profiles of ovarian granulosa cells harboring either mutant or wild type Brca1 to follow up on our earlier observation that absence of a functional Brca1 in these important regulators of menstrual/estrous cycle progression leads to prolongation of the pre-ovulatory phase of the estrous cycle and to increased basal levels of circulating estradiol. Here we show that ovarian granulosa cells from mice carrying a conditional Brca1 gene knockout express substantially higher levels of olfactory receptor mRNA than granulosa cells from wild type littermates. This led us to hypothesize that reproductive functions in mutant female mice might be more sensitive to male-derived scent than in wild type female mice. Indeed, it is well established that isolation from males leads to complete cessation of mouse estrous cycle activity while exposure to olfactory receptor ligands present in male urine leads to resumption of such activity. We found that Brca1-/- female mice rendered anovulatory by unisexual isolation resumed ovulatory activity more rapidly than their wild type littermates when exposed to bedding from cages where males had been housed. The prime mediator of this increased responsiveness appears to be the ovary and not olfactory neurons. This conclusion is supported by the fact that wild type mice in which endogenous ovaries had been replaced by Brca1-deficient ovarian transplants responded to male-derived scent more robustly than mutant mice in which ovaries had been replaced by wild type ovarian transplants. Our findings not only have important implications for our understanding of the influence of olfactory signals on reproductive functions, but also provide insights into mechanisms whereby genetic risk factors for breast and extra uterine Müllerian carcinomas may influence menstrual activity in human, which is itself an independent risk factor for these cancers.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Malcolm C. Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nancy Wu
- Department of Biochemistry and Molecular Biology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Yvonne G. Lin
- Department of Obstetrics and Gynecology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Sara Mucowski
- Department of Obstetrics and Gynecology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Vasu Punj
- USC Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Yuan Tang
- Department of Pathology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Hai-Yun Yen
- Department of Biochemistry and Molecular Biology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Frank Z. Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Elena Enbom
- Department of Pathology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Theresa Austria
- Department of Pathology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | | | - Robert Maxson
- Department of Biochemistry and Molecular Biology, University of Southern California Los Angeles, Los Angeles, California, United States of America
| | - Louis Dubeau
- Department of Pathology, University of Southern California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels. J Neurosci 2012; 32:3142-53. [PMID: 22378887 DOI: 10.1523/jneurosci.5518-11.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide-gated (CNG) ion channels. The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 aa protein that interacts with the N terminus of the β subunit of the cGMP-gated channel and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxatilis). Immunohistochemistry and single-cell PCR demonstrate that CNG-modulin is expressed in cone but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP dependence from ∼91 μM in the absence of Ca(2+) to ∼332 μM in the presence of 20 μM Ca(2+). At a fixed cGMP concentration, the midpoint of the Ca(2+) dependence is ∼857 nM Ca(2+). These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca(2+) with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca(2+)-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium, and the inner ear, and may modulate the function of ion channels in those tissues as well.
Collapse
|
4
|
Waldeck C, Vocke K, Ungerer N, Frings S, Möhrlen F. Activation and desensitization of the olfactory cAMP-gated transduction channel: identification of functional modules. ACTA ACUST UNITED AC 2009; 134:397-408. [PMID: 19822638 PMCID: PMC2768803 DOI: 10.1085/jgp.200910296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca2+-permeable channels and Ca2+-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca2+-dependent feedback inhibition by calmodulin. Attempts to understand the operation of these channels have been hampered by the fact that the channel protein is composed of three different subunits, CNGA2, CNGA4, and CNGB1b. Here, we explore the individual role that each subunit plays in the gating process. Using site-directed mutagenesis and patch clamp analysis, we identify three functional modules that govern channel operation: a module that opens the channel, a module that stabilizes the open state at low cAMP concentrations, and a module that mediates rapid Ca2+-dependent feedback inhibition. Each subunit could be assigned to one of these functions that, together, define the gating logic of the olfactory transduction channel.
Collapse
Affiliation(s)
- Clemens Waldeck
- Department of Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
5
|
Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 2008; 33:839-59. [PMID: 18703537 DOI: 10.1093/chemse/bjn048] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows positive cooperativity that is attributed to the channel properties. This cooperativity amplifies the responses to sufficiently strong stimuli but reduces sensitivity and dynamic range. The odor response is transient, and prolonged or repeated stimulation causes adaptation and desensitization. At least 10 mechanisms may contribute to termination of the response; several of these result from an increase in intraciliary Ca2+. It is not known to what extent regulation of ionic concentrations in the cilium depends on the dendrite and soma. Although many of the major mechanisms have been identified, odor transduction is not well understood at a quantitative level.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, PO Box 670667, 231 Albert Sabin Way, Cincinnati, OH 45267-0667, USA.
| |
Collapse
|
6
|
Pifferi S, Boccaccio A, Menini A. Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 2006; 580:2853-9. [PMID: 16631748 DOI: 10.1016/j.febslet.2006.03.086] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 03/31/2006] [Indexed: 11/16/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels, directly activated by the binding of cyclic nucleotides, were first discovered in retinal rods, cones and olfactory sensory neurons. In the visual and olfactory systems, CNG channels mediate sensory transduction by conducting cationic currents carried primarily by sodium and calcium ions. In olfactory transduction, calcium in combination with calmodulin exerts a negative feedback on CNG channels that is the main molecular mechanism responsible for fast adaptation in olfactory sensory neurons. Six mammalian CNG channel genes are known and some human visual disorders are caused by mutations in retinal rod or cone CNG genes.
Collapse
Affiliation(s)
- Simone Pifferi
- International School for Advanced Studies, S.I.S.S.A., Sector of Neurobiology, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | |
Collapse
|
7
|
Bradley J, Bönigk W, Yau KW, Frings S. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 2004; 7:705-10. [PMID: 15195096 PMCID: PMC2885912 DOI: 10.1038/nn1266] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 04/30/2004] [Indexed: 11/08/2022]
Abstract
An important mechanism by which vertebrate olfactory sensory neurons rapidly adapt to odorants is feedback modulation of the Ca(2+)-permeable cyclic nucleotide-gated (CNG) transduction channels. Extensive heterologous studies of homomeric CNGA2 channels have led to a molecular model of channel modulation based on the binding of calcium-calmodulin to a site on the cytoplasmic amino terminus of CNGA2. Native rat olfactory CNG channels, however, are heteromeric complexes of three homologous but distinct subunits. Notably, in heteromeric channels, we found no role for CNGA2 in feedback modulation. Instead, an IQ-type calmodulin-binding site on CNGB1b and a similar but previously unidentified site on CNGA4 are necessary and sufficient. These sites seem to confer binding of Ca(2+)-free calmodulin (apocalmodulin), which is then poised to trigger inhibition of native channels in the presence of Ca(2+).
Collapse
Affiliation(s)
- Jonathan Bradley
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
8
|
|
9
|
Wetzel CH, Spehr M, Hatt H. Phosphorylation of voltage-gated ion channels in rat olfactory receptor neurons. Eur J Neurosci 2001; 14:1056-64. [PMID: 11683897 DOI: 10.1046/j.0953-816x.2001.01722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In olfactory receptor neurons (ORNs), ligand-odorant receptor interactions cause G protein-mediated activation of adenylate cyclase and a subsequent increase in concentration of the intracellular messenger cAMP. Odorant-evoked elevation in cAMP is thought to directly activate a cation-selective cyclic nucleotide-gated channel, which causes external Ca2+ influx, leading to membrane depolarization and the generation of action potentials. Our data show that in freshly dissociated rat ORNs, odorant-induced elevation in cAMP also activates cAMP-dependent protein kinase (PKA), which is then able to phosphorylate various protein targets in the olfactory signal transduction pathway, specifically voltage-gated sodium and calcium channels. The presence of PKI (PKA inhibitor peptide) blocked the modulatory action of cAMP on voltage-gated ion channels. By modulating the input/output properties of the sensory neurons, this mechanism could take part in the complex adaptation process in odorant perception. In addition, we found modulation of voltage-gated sodium and calcium channel currents by 5-hydroxytryptamine and the dopamine D1 receptor agonist SKF 38393. These findings suggest that in situ ORNs might also be a target for efferent modulation.
Collapse
Affiliation(s)
- C H Wetzel
- Department of Cell Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | |
Collapse
|
10
|
Kleene SJ. Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to CAMP. J Neurophysiol 1999; 81:2675-82. [PMID: 10368387 DOI: 10.1152/jn.1999.81.6.2675] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vertebrate olfaction, odorous stimuli are first transduced into an electrical signal in the cilia of olfactory receptor neurons. Many odorants cause an increase in ciliary cAMP, which gates cationic channels in the ciliary membrane. The resulting influx of Ca2+ and Na+ produces a depolarizing receptor current. Modulation of the cyclic-nucleotide-gated (CNG) channels is one mechanism of adjusting olfactory sensitivity. Modulation of these channels by divalent cations was studied by patch-clamp recording from single cilia of frog olfactory receptor neurons. In accord with previous reports, it was found that cytoplasmic Ca2+ above 1 microM made the channels less sensitive to cAMP. The effect of cytoplasmic Ca2+ was eliminated by holding the cilium in a divalent-free cytoplasmic solution and was restored by adding calmodulin (CaM). An unexpected result was that external Ca2+ could also greatly reduce the sensitivity of the channels to cAMP. This reduction was seen when external Ca2+ exceeded 30 microM and was not affected by the divalent-free solution, by CaM, or by Ca2+ buffering. The effects of cytoplasmic and external Ca2+ were additive. Thus the effects of cytoplasmic and external Ca2+ are apparently mediated by different mechanisms. There was no effect of CaM on a Ca2+-activated Cl- current that also contributes to the receptor current. Increases in Ca2+ concentration on either side of the ciliary membrane may influence olfactory adaptation.
Collapse
Affiliation(s)
- S J Kleene
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA
| |
Collapse
|
11
|
Rebrik TI, Korenbrot JI. In intact cone photoreceptors, a Ca2+-dependent, diffusible factor modulates the cGMP-gated ion channels differently than in rods. J Gen Physiol 1998; 112:537-48. [PMID: 9806963 PMCID: PMC2229438 DOI: 10.1085/jgp.112.5.537] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in membrane patches detached from the same cell. This sensitivity, measured as the ligand concentration necessary to activate half-maximal currents, K1/2, also increases as Ca2+ concentration decreases. In electropermeabilized cones, K1/2 for cGMP is 335.5 +/- 64.4 microM in the presence of 20 microM Ca2+, and 84.3 +/- 12.6 microM in its absence. For 8Br-cGMP, K1/2 is 72.7 +/- 11.3 microM in the presence of 20 microM Ca2+ and 15.3 +/- 4.5 microM in its absence. The Ca2+-dependent change in agonist sensitivity is larger in extent than that measured in rods. In electropermeabilized tiger salamander rods, K1/2 for 8Br-cGMP is 17.9 +/- 3.8 microM in the presence of 20 microM Ca2+ and 7.2 +/- 1.2 microM in its absence. The Ca2+-dependent modulation is reversible in intact cone outer segments, but is progressively lost in the absence of divalent cations, suggesting that it is mediated by a diffusible factor. Comparison of data in intact cells and detached membrane fragments from cones indicates that this factor is not calmodulin. At 40 microM 8Br-cGMP, the Ca2+-dependent change in sensitivity in cones is half-maximal at KCa = 286 +/- 66 nM Ca2+. In rods, by contrast, KCa is approximately 50 nM Ca2+. The difference in magnitude and Ca2+ dependence of channel modulation between photoreceptor types suggests that this modulation may play a more significant role in the regulation of photocurrent gain in cones than in rods.
Collapse
Affiliation(s)
- T I Rebrik
- Department of Physiology, School of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
12
|
Abstract
Considerable progress has been made in the understanding of transduction mechanisms in olfactory receptor neurons (ORNs) over the last decade. Odorants pass through a mucus interface before binding to odorant receptors (ORs). The molecular structure of many ORs is now known. They belong to the large class of G protein-coupled receptors with seven transmembrane domains. Binding of an odorant to an OR triggers the activation of second messenger cascades. One second messenger pathway in particular has been extensively studied; the receptor activates, via the G protein Golf, an adenylyl cyclase, resulting in an increase in adenosine 3',5'-cyclic monophosphate (cAMP), which elicits opening of cation channels directly gated by cAMP. Under physiological conditions, Ca2+ has the highest permeability through this channel, and the increase in intracellular Ca2+ concentration activates a Cl- current which, owing to an elevated reversal potential for Cl-, depolarizes the olfactory neuron. The receptor potential finally leads to the generation of action potentials conveying the chemosensory information to the olfactory bulb. Although much less studied, other transduction pathways appear to exist, some of which seem to involve the odorant-induced formation of inositol polyphosphates as well as Ca2+ and/or inositol polyphosphate -activated cation channels. In addition, there is evidence for odorant-modulated K+ and Cl- conductances. Finally, in some species, ORNs can be inhibited by certain odorants. This paper presents a comprehensive review of the biophysical and electrophysiological evidence regarding the transduction processes as well as subsequent signal processing and spike generation in ORNs.
Collapse
Affiliation(s)
- D Schild
- Physiologisches Institut, Universität Göttingen, Germany
| | | |
Collapse
|
13
|
Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 1997. [PMID: 9151731 DOI: 10.1523/jneurosci.17-11-04136.1997] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient elevations of intracellular Ca2+ play an important role in regulating the sensitivity of olfactory transduction, but such elevations have not been demonstrated in the olfactory cilia, which are the site of primary odor transduction. To begin to understand Ca2+ signaling in olfactory cilia, we used high-resolution imaging techniques to study the Ca2+ transients that occur in salamander olfactory receptor neurons (ORNs) as a result of cyclic nucleotide-gated (CNG) channel activation. To visualize ciliary Ca2+ signals, we loaded ORNs with the Ca2+ indicator dye Fluo-3 AM and measured fluorescence with a laser scanning confocal microscope. Application of the phosphodiesterase inhibitor IBMX increased fluorescence in the cilia and other neuronal compartments; the ciliary signal occurred first and was more transient. This signal could be abolished by lowering external Ca2+ or by applying LY83583, a potent blocker of CNG channels, indicating that Ca2+ entry through CNG channels was the primary source of fluorescence increases. Direct activation of CNG channels with low levels of 8-Br-cGMP (1 microM) led to tonic Ca2+ signals that were restricted locally to the cilia and the dendritic knob. Elevated external K+, which depolarizes cell membranes, increased fluorescence signals in the cell body and dendrite but failed to increase ciliary Ca2+ fluorescence. The results demonstrate the existence and spatiotemporal properties of Ca2+ transients in individual olfactory cilia and implicate CNG channels as a major pathway for Ca2+ entry into ORN cilia during odor transduction.
Collapse
|
14
|
Broillet MC, Firestein S. Beta subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca2+ channel. Neuron 1997; 18:951-8. [PMID: 9208862 DOI: 10.1016/s0896-6273(00)80334-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyclic nucleotide-gated channels are important in visual and olfactory transduction, and possibly in other neuronal functions. These channels have a complex permeability to Ca2+ ions that may be important in their cellular functions. They are composed of two different subunits, alpha and beta, that have been cloned and expressed, but the beta subunit alone cannot be activated by cyclic nucleotides, confounding the analysis of its characteristics. However, we found that nitric oxide can activate the homomeric expressed beta subunit, and the resulting channel possesses many properties of the L-type Ca2+ channels, including high permeability to Ca2+ ions and sensitivity to Ca2+ channel blockers. Thus, the Ca2+ permeability characteristics of native channels are mostly conferred by properties of the beta subunit, and the beta subunit alone can act as a NO-sensitive Ca2+ channel. A nearly identical conductance activated by NO is present in the membrane of rat vomeronasal neurons, indicating that homomeric beta channels exist in vivo.
Collapse
Affiliation(s)
- M C Broillet
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
15
|
Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 1997; 17:4136-48. [PMID: 9151731 PMCID: PMC6573532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1997] [Revised: 03/11/1997] [Accepted: 03/18/1997] [Indexed: 02/04/2023] Open
Abstract
Transient elevations of intracellular Ca2+ play an important role in regulating the sensitivity of olfactory transduction, but such elevations have not been demonstrated in the olfactory cilia, which are the site of primary odor transduction. To begin to understand Ca2+ signaling in olfactory cilia, we used high-resolution imaging techniques to study the Ca2+ transients that occur in salamander olfactory receptor neurons (ORNs) as a result of cyclic nucleotide-gated (CNG) channel activation. To visualize ciliary Ca2+ signals, we loaded ORNs with the Ca2+ indicator dye Fluo-3 AM and measured fluorescence with a laser scanning confocal microscope. Application of the phosphodiesterase inhibitor IBMX increased fluorescence in the cilia and other neuronal compartments; the ciliary signal occurred first and was more transient. This signal could be abolished by lowering external Ca2+ or by applying LY83583, a potent blocker of CNG channels, indicating that Ca2+ entry through CNG channels was the primary source of fluorescence increases. Direct activation of CNG channels with low levels of 8-Br-cGMP (1 microM) led to tonic Ca2+ signals that were restricted locally to the cilia and the dendritic knob. Elevated external K+, which depolarizes cell membranes, increased fluorescence signals in the cell body and dendrite but failed to increase ciliary Ca2+ fluorescence. The results demonstrate the existence and spatiotemporal properties of Ca2+ transients in individual olfactory cilia and implicate CNG channels as a major pathway for Ca2+ entry into ORN cilia during odor transduction.
Collapse
Affiliation(s)
- T Leinders-Zufall
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
16
|
Functional expression of the heteromeric "olfactory" cyclic nucleotide-gated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons. J Neurosci 1997. [PMID: 9045728 DOI: 10.1523/jneurosci.17-06-01993.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide-gated (cng) channels are important components of signaling systems mediating sensory transduction. In vertebrate photoreceptors, light activates a signaling cascade that causes a decrease in intracellular cGMP concentrations, closing retinal cng channels. Signal transduction in olfactory receptor neurons is believed to proceed via G-protein-mediated elevation of intracellular cAMP in response to odorant binding by 7-helix receptors. cAMP opens the olfactory cng channel, which is highly permeable to Ca2+. Here we demonstrate by in situ hybridization and immunohistochemistry with subunit-specific antibodies that both subunits of the heteromeric rat olfactory cng channel are also widely expressed in the brain. Expression of the retinal rod cng channel, however, can be detected only in the eye. In the adult hippocampus, the olfactory cng channel is expressed on cell bodies and processes of CA1 and CA3 neurons. In cultured embryonic hippocampal neurons, the channel is localized to a subset of growth cones and processes. We recorded conductances with the electrophysiological characteristics of the heteromeric olfactory cng channel in excised inside-out patches from these cultured neurons. We also show that Ca2+ influx into hippocampal neurons in response to cyclic nucleotide elevation can be detected using fura-2 imaging. Cyclic nucleotide elevation has been implicated in several mechanisms of synaptic plasticity in the hippocampus, and these mechanisms also require elevation of intracellular Ca2+. Our results suggest that the "olfactory" cng channel could regulate synaptic efficacy in brain neurons by modulating Ca2+ levels in response to changes in cyclic nucleotide concentrations.
Collapse
|
17
|
Bradley J, Zhang Y, Bakin R, Lester HA, Ronnett GV, Zinn K. Functional expression of the heteromeric "olfactory" cyclic nucleotide-gated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons. J Neurosci 1997; 17:1993-2005. [PMID: 9045728 PMCID: PMC6793760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclic nucleotide-gated (cng) channels are important components of signaling systems mediating sensory transduction. In vertebrate photoreceptors, light activates a signaling cascade that causes a decrease in intracellular cGMP concentrations, closing retinal cng channels. Signal transduction in olfactory receptor neurons is believed to proceed via G-protein-mediated elevation of intracellular cAMP in response to odorant binding by 7-helix receptors. cAMP opens the olfactory cng channel, which is highly permeable to Ca2+. Here we demonstrate by in situ hybridization and immunohistochemistry with subunit-specific antibodies that both subunits of the heteromeric rat olfactory cng channel are also widely expressed in the brain. Expression of the retinal rod cng channel, however, can be detected only in the eye. In the adult hippocampus, the olfactory cng channel is expressed on cell bodies and processes of CA1 and CA3 neurons. In cultured embryonic hippocampal neurons, the channel is localized to a subset of growth cones and processes. We recorded conductances with the electrophysiological characteristics of the heteromeric olfactory cng channel in excised inside-out patches from these cultured neurons. We also show that Ca2+ influx into hippocampal neurons in response to cyclic nucleotide elevation can be detected using fura-2 imaging. Cyclic nucleotide elevation has been implicated in several mechanisms of synaptic plasticity in the hippocampus, and these mechanisms also require elevation of intracellular Ca2+. Our results suggest that the "olfactory" cng channel could regulate synaptic efficacy in brain neurons by modulating Ca2+ levels in response to changes in cyclic nucleotide concentrations.
Collapse
Affiliation(s)
- J Bradley
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Adaptation to odorants begins at the level of sensory receptor cells, presumably through modulation of their transduction machinery. The olfactory signal transduction involves the activation of the adenylyl cyclase/cyclic AMP second messenger system which leads to the sequential opening of cAMP-gated channels and Ca2+-activated chloride ion channels. Several reports of results obtained from in vitro preparations describe the possible molecular mechanisms involved in odorant adaptation; namely, ordorant receptor phosphorylation, activation of phosphodiesterase, and ion channel regulation. However, it is still unknown whether these putative mechanisms work in the intact olfactory receptor cell. Here we investigate the nature of the adaptational mechanism in intact olfactory cells by using a combination of odorant stimulation and caged cAMP photolysis which produces current responses that bypass the early stages of signal transduction (involving the receptor, G protein and adenylyl cyclase). Odorant- and cAMP-induced responses showed the same adaptation in a Ca2+-dependent manner, indicating that adaptation occurs entirely downstream of the cyclase. Moreover, we show that phosphodiesterase activity remains constant during adaptation and that an affinity change of the cAMP-gated channel for ligands accounts well for our results. We conclude that the principal mechanism underlying odorant adaptation is actually a modulation of the cAMP-gated channel by Ca2+ feedback.
Collapse
Affiliation(s)
- T Kurahashi
- National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| | | |
Collapse
|
19
|
Thüraüf N, Gjuric M, Kobal G, Hatt H. Cyclic nucleotide-gated channels in identified human olfactory receptor neurons. Eur J Neurosci 1996; 8:2080-9. [PMID: 8921299 DOI: 10.1111/j.1460-9568.1996.tb00729.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Patch-clamp recordings revealed the presence of a non-desensitizing cyclic nucleotide-gated channel on human olfactory receptor neurons and a fast-desensitizing non-specific cation channel activated by nucleotides on human supporting cells. Cyclic nucleotide-gated channels on olfactory receptor neurons showed selective channel activation by cAMP (K1/2 = 5 microM) and cGMP (K1/2 = 2 microM), a unitary conductance of approximately 20 pS, a reversal potential of single-channel currents close to 0 mV, a linear current-voltage relationship over the range of -80 to 80 mV and a strong extracellular but a weaker intracellular blocking effect of Ca2+. The channel activity outlasted the cyclic nucleotide pulses for hundreds of milliseconds when higher agonist concentrations (> 50 microM cAMP) were applied. The duration of the response was longer than in cyclic nucleotide-gated channels from other species studied so far. The plateau duration and the decay remained constant for pulses with a length of 50-150 ms, whereas pulses shorter than 50 ms successively reduced the time required by shortening the plateau phase. A larger difference for the K1/2 values of cAMP (K1/2 = 22 microM) and cGMP (K1/2 = 2.5 microM) were found for a small group (n = 3) of cyclic nucleotide-gated channels, pointing to the selective expression of the alpha-subunit in a small subgroup of olfactory receptor neurons.
Collapse
Affiliation(s)
- N Thüraüf
- Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Olfactory receptor neurons respond to odorants with G-protein mediated increases in the concentration of cyclic adenosine 3',5'-monophosphate (cAMP) and/or inositol 1,4,5-trisphospahte (InsP3). These two second messengers directly regulate opening of cAMP- and InsP3-regulated conductances localized to the apical transduction compartments of the cell (cilia and olfactory knob). In the presence of physiological concentrations of extracellular Ca2+, these second messenger regulated conductances mediate influx of Ca2+ into the olfactory neuron resulting in large, localized increases in intracellular Ca2+ ([Ca2+]i). A significant advance in our understanding of the molecular mechanisms of olfaction is the recent realization that this increase in [Ca2+]i plays an important role as a "third messenger" in olfactory transduction. Second messenger dependent increases in [Ca2+]i cause opening of ciliary Ca(2+)-activated Cl-, cation and/ or K+ channels that can carry a large percentage of the generator current, thus amplifying the signal substantially. As a result of this sequence of events, the generator potential in olfactory neurons can be depolarizing, leading to excitation of the neuron, or hyperpolarizing, leading to suppression of basal action potential firing rate. This dual effect of odorants on olfactory neurons may play an important role in quality coding and in the ability to detect low concentrations of odorants, particularly in complex mixtures.
Collapse
Affiliation(s)
- D Restrepo
- Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
21
|
Tareilus E, Noé J, Breer H. Calcium signals in olfactory neurons. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1269:129-38. [PMID: 7488645 DOI: 10.1016/0167-4889(95)00105-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.
Collapse
Affiliation(s)
- E Tareilus
- University Stuttgart-Hohenheim, Institute of Zoophysiology, Stuttgart, Germany
| | | | | |
Collapse
|
22
|
Abstract
Increasing evidence indicates that inositol phosphate as well as cyclic nucleotide signalling pathways mediate olfactory transduction. Both pathways can target multiple ion channel effectors, suggesting that olfactory receptor cells serve as more than simple selectivity filters and that they possibly represent the first stage of olfactory integration.
Collapse
Affiliation(s)
- B W Ache
- Whitney Laboratory, University of Florida 32086, USA
| | | |
Collapse
|
23
|
Balasubramanian S, Lynch JW, Barry PH. The permeation of organic cations through cAMP-gated channels in mammalian olfactory receptor neurons. J Membr Biol 1995; 146:177-91. [PMID: 7473687 DOI: 10.1007/bf00238007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The permeation of monovalent organic cations through adenosine 3',5'-cyclic monophosphate-(cAMP) activated channels was studied by recording macroscopic currents in excised inside-out membrane patches from the dendritic knobs of isolated mammalian olfactory receptor neurons (ORNs). Current-voltage relations were measured when bathing solution Na+ was replaced by monovalent organic cations. Permeability ratios relative to Na+ ions were calculated from changes in reversal potentials. Some of the small organic cations tested included ammonium (NH4+), hydroxylammonium and formamidinium, with relative permeability ratios of 1.41, 2.3 and 1.01 respectively. The larger methylated and ethylated ammonium ions studied included: DMA (dimethylammonium), TMA (tetramethylammonium) and TEA (tetraethylammonium) and they all had permeability ratios larger than 0.09. Even large cations such as choline, arginine and tris(hydroxymethyl)aminomethane (Tris) were appreciably permeant through the cAMP-activated channel with permeability ratios ranging from 0.19 to 0.7. The size of the permeating cations, as assessed by molecular weight, was a good predictor of the permeability. The permeability sequence of the cAMP-activated channel in our study was PNH4 > PNa > PDMA > PTMA > PCholine > PTEA. Higher permeability ratios of hydroxylammonium, arginine and tris(hydroxymethyl)aminomethane cannot be explained by ionic size alone. Our results indicate that: (i) cAMP-activated channels poorly select between monovalent cations; (ii) the pore dimension must be at least 6.5 x 6.5 A, in order to allow TEA and Tris to permeate and (iii) molecular sieving must be an important mechanism for the permeation of large organic ions through the channels with specific ion binding playing a smaller role than in other structurally similar channels. In addition, the results clearly indicate that cyclic nucleotide-gated (CNG) channels in different cells are not the same, the olfactory CNG channel being different from that of the photoreceptors, particularly with respect to the permeation of large organic cations, which the ORN channels allow to permeate readily.
Collapse
Affiliation(s)
- S Balasubramanian
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
24
|
Kleene SJ. Block by external calcium and magnesium of the cyclic-nucleotide-activated current in olfactory cilia. Neuroscience 1995; 66:1001-8. [PMID: 7651604 DOI: 10.1016/0306-4522(94)00634-h] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Olfactory transduction occurs on the cilia of olfactory receptor neurons, which are in close proximity to the external environment. Transduction is mediated by cyclic AMP, which directly gates channels in the ciliary membrane. Previous evidence indicates that one environmental influence, the level of divalent cations in the mucus, may strongly influence olfactory transduction by blocking the cyclic-AMP-gated channels. In this report the effects of external calcium and magnesium on the ciliary macroscopic current activated by cytoplasmic cyclic AMP were measured. External calcium and magnesium each reduced the cyclic-AMP-activated current at both negative and positive potentials. At the neuronal resting potential (-50 mV), half-maximal inhibition of the current was produced by 250 microM calcium or 1.3 mM magnesium. Reduction in current by external calcium was strongly voltage-dependent, with larger effects at negative potentials. Reduction by magnesium was weaker and less voltage-dependent. Block of the cyclic-AMP-activated current by divalent cations in the mucus may be one element of a system that increases the signal-to-noise ratio for detection of odorants.
Collapse
Affiliation(s)
- S J Kleene
- University of Cincinnati, Department of Cell Biology, Neurobiology and Anatomy, OH 45267-0521, USA
| |
Collapse
|
25
|
Abstract
Recent studies have revealed that cyclic nucleotide gated channels have a variety of forms and functions. These channels are now thought to be heteromultimers of at least two kinds of subunits and to undergo functional modulation. Ion permeation involves at least two ion-binding sites, and recent work on the alpha subunit suggests that many structural regions are involved in the control of channel gating. The continued use of both molecular and physiological approaches promises to further our understanding of how these channels work and how they are involved in cellular function.
Collapse
Affiliation(s)
- A L Zimmerman
- Department of Physiology, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|