1
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Magyar ZÉ, Bauer J, Bauerová-Hlinková V, Jóna I, Gaburjakova J, Gaburjakova M, Almássy J. Eu 3+ detects two functionally distinct luminal Ca 2+ binding sites in ryanodine receptors. Biophys J 2023; 122:3516-3531. [PMID: 37533257 PMCID: PMC10502479 DOI: 10.1016/j.bpj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels, gated by Ca2+ in the cytosol and the sarcoplasmic reticulum lumen. Their regulation is impaired in certain cardiac and muscle diseases. Although a lot of data is available on the luminal Ca2+ regulation of RyR, its interpretation is complicated by the possibility that the divalent ions used to probe the luminal binding sites may contaminate the cytoplasmic sites by crossing the channel pore. In this study, we used Eu3+, an impermeable agonist of Ca2+ binding sites, as a probe to avoid this complication and to gain more specific information about the function of the luminal Ca2+ sensor. Single-channel currents were measured from skeletal muscle and cardiac RyRs (RyR1 and RyR2) using the lipid bilayer technique. We show that RyR2 is activated by the luminal addition of Ca2+, whereas RyR1 is inhibited. These results were qualitatively reproducible using Eu3+. The luminal regulation of RyR1 carrying a mutation associated with malignant hyperthermia was not different from that of the wild-type. RyR1 inhibition by Eu3+ was extremely voltage dependent, whereas RyR2 activation did not depend on the membrane potential. These results suggest that the RyR1 inhibition site is in the membrane's electric field (channel pore), whereas the RyR2 activation site is outside. Using in silico analysis and previous results, we predicted putative Ca2+ binding site sequences. We propose that RyR2 bears an activation site, which is missing in RyR1, but both isoforms share the same inhibitory Ca2+ binding site near the channel gate.
Collapse
Affiliation(s)
- Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jacob Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - István Jóna
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - János Almássy
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
4
|
Sanchez C, Berthier C, Allard B, Perrot J, Bouvard C, Tsutsui H, Okamura Y, Jacquemond V. Tracking the sarcoplasmic reticulum membrane voltage in muscle with a FRET biosensor. J Gen Physiol 2018; 150:1163-1177. [PMID: 29899059 PMCID: PMC6080890 DOI: 10.1085/jgp.201812035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
The sarcoplasmic reticulum membrane contains ion channels, but it is unknown whether it experiences voltage changes during cellular activity. By expressing voltage-sensitive fluorescence biosensors in this membrane, Sanchez et al. suggest that it remains electrically silent during muscle activation. Ion channel activity in the plasma membrane of living cells generates voltage changes that are critical for numerous biological functions. The membrane of the endoplasmic/sarcoplasmic reticulum (ER/SR) is also endowed with ion channels, but whether changes in its voltage occur during cellular activity has remained ambiguous. This issue is critical for cell functions that depend on a Ca2+ flux across the reticulum membrane. This is the case for contraction of striated muscle, which is triggered by opening of ryanodine receptor Ca2+ release channels in the SR membrane in response to depolarization of the transverse invaginations of the plasma membrane (the t-tubules). Here, we use targeted expression of voltage-sensitive fluorescence resonance energy transfer (FRET) probes of the Mermaid family in differentiated muscle fibers to determine whether changes in SR membrane voltage occur during depolarization–contraction coupling. In the absence of an SR targeting sequence, FRET signals from probes present in the t-tubule membrane allow calibration of the voltage sensitivity and amplitude of the response to voltage-clamp pulses. Successful SR targeting of the probes was achieved using an N-terminal domain of triadin, which completely eliminates voltage-clamp–activated FRET signals from the t-tubule membrane of transfected fibers. In fibers expressing SR-targeted Mermaid probes, activation of SR Ca2+ release in the presence of intracellular ethyleneglycol-bis(β-amino-ethyl ether)-N,N,N′,N′-tetra acetic acid (EGTA) results in an accompanying FRET signal. We find that this signal results from pH sensitivity of the probe, which detects cytosolic acidification because of the release of protons upon Ca2+ binding to EGTA. When EGTA is substituted with either 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or the contraction blocker N-benzyl-p-toluene sulfonamide, we find no indication of a substantial change in the FRET response caused by a voltage change. These results suggest that the ryanodine receptor–mediated SR Ca2+ efflux is well balanced by concomitant counterion currents across the SR membrane.
Collapse
Affiliation(s)
- Colline Sanchez
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Christine Berthier
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Bruno Allard
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Jimmy Perrot
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Clément Bouvard
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| | - Hidekazu Tsutsui
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Bioscience and Bioengineering, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Vincent Jacquemond
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, Villeurbanne, France
| |
Collapse
|
5
|
Abstract
Ryanodine-sensitive intracellular Ca2+ channels (RyRs) open upon binding Ca2+ at cytosolic-facing sites. This results in concerted, self-reinforcing opening of RyRs clustered in specialized regions on the membranes of Ca2+ storage organelles (endoplasmic reticulum and sarcoplasmic reticulum), a process that produces Ca2+-induced Ca2+ release (CICR). The process is optimized to achieve large but brief and localized increases in cytosolic Ca2+ concentration, a feature now believed to be critical for encoding the multiplicity of signals conveyed by this ion. In this paper, I trace the path of research that led to a consensus on the physiological significance of CICR in skeletal muscle, beginning with its discovery. I focus on the approaches that were developed to quantify the contribution of CICR to the Ca2+ increase that results in contraction, as opposed to the flux activated directly by membrane depolarization (depolarization-induced Ca2+ release [DICR]). Although the emerging consensus is that CICR plays an important role alongside DICR in most taxa, its contribution in most mammalian muscles appears to be limited to embryogenesis. Finally, I survey the relevance of CICR, confirmed or plausible, to pathogenesis as well as the multiple questions about activation of release channels that remain unanswered after 50 years.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
6
|
Manno C, Figueroa L, Royer L, Pouvreau S, Lee CS, Volpe P, Nori A, Zhou J, Meissner G, Hamilton SL, Ríos E. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia. J Physiol 2013; 591:4439-57. [PMID: 23798496 DOI: 10.1113/jphysiol.2013.259572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Malignant hyperthermia (MH) is linked to mutations in the type 1 ryanodine receptor, RyR1, the Ca2+ channel of the sarcoplasmic reticulum (SR) of skeletal muscle. The Y522S MH mutation was studied for its complex presentation, which includes structurally and functionally altered cell 'cores'. Imaging cytosolic and intra-SR [Ca2+] in muscle cells of heterozygous YS mice we determined Ca2+ release flux activated by clamp depolarization, permeability (P) of the SR membrane (ratio of flux and [Ca2+] gradient) and SR Ca2+ buffering power (B). In YS cells resting [Ca2+]SR was 45% of the value in normal littermates (WT). P was more than doubled, so that initial flux was normal. Measuring [Ca2+]SR(t) revealed dynamic changes in B(t). The alterations were similar to those caused by cytosolic BAPTA, which promotes release by hampering Ca2+-dependent inactivation (CDI). The [Ca2+] transients showed abnormal 'breaks', decaying phases after an initial rise, traced to a collapse in flux and P. Similar breaks occurred in WT myofibres with calsequestrin reduced by siRNA; calsequestrin content, however, was normal in YS muscle. Thus, the Y522S mutation causes greater openness of the RyR1, lowers resting [Ca2+]SR and alters SR Ca2+ buffering in a way that copies the functional instability observed upon reduction of calsequestrin content. The similarities with the effects of BAPTA suggest that the mutation, occurring near the cytosolic vestibule of the channel, reduces CDI as one of its primary effects. The unstable SR buffering, mimicked by silencing of calsequestrin, may help precipitate the loss of Ca2+ control that defines a fulminant MH event.
Collapse
Affiliation(s)
- Carlo Manno
- S. L. Hamilton: ; E. Ríos: Rush University School of Medicine, Department of Molecular Biophysics and Physiology, 1750 West Harrison St., Suite 1279JS, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Saftenku EÈ. Effects of calretinin on Ca2+ signals in cerebellar granule cells: implications of cooperative Ca2+ binding. THE CEREBELLUM 2012; 11:102-20. [PMID: 21394464 DOI: 10.1007/s12311-011-0263-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Calretinin is thought to be the main endogenous calcium buffer in cerebellar granule cells (GrCs). However, little is known about the impact of cooperative Ca(2+) binding to calretinin on highly localized and more global (regional) Ca(2+) signals in these cells. Using numerical simulations, we show that an essential property of calretinin is a delayed equilibration with Ca(2+). Therefore, the amount of Ca(2+), which calretinin can accumulate with respect to equilibrium levels, depends on stimulus conditions. Based on our simulations of buffered Ca(2+) diffusion near a single Ca(2+) channel or a large cluster of Ca(2+) channels and previous experimental findings that 150 μM 1,2-bis(o-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid (BAPTA) and endogenous calretinin have similar effects on GrC excitability, we estimated the concentration of mobile calretinin in GrCs in the range of 0.7-1.2 mM. Our results suggest that this estimate can provide a starting point for further analysis. We find that calretinin prominently reduces the action potential associated increase in cytosolic free Ca(2+) concentration ([Ca(2+)]( i )) even at a distance of 30 nm from a single Ca(2+) channel. In spite of a buildup of residual Ca(2+), it maintains almost constant maximal [Ca(2+)]( i ) levels during repetitive channel openings with a frequency less than 80 Hz. This occurs because of accelerated Ca(2+) binding as calretinin binds more Ca(2+). Unlike the buffering of high Ca(2+) levels within Ca(2+) nano/microdomains sensed by large conductance Ca(2+)-activated K(+) channels, the buffering of regional Ca(2+) signals by calretinin can never be mimicked by certain concentration of BAPTA under all different experimental conditions.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, Bogomoletz St., 4, Kyiv 01024, Ukraine.
| |
Collapse
|
8
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Ríos E. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. ACTA ACUST UNITED AC 2012; 138:231-47. [PMID: 21788611 PMCID: PMC3149434 DOI: 10.1085/jgp.201010592] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms that terminate Ca2+ release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca2+ concentration inside the sarcoplasmic reticulum (SR), [Ca2+]SR, simultaneously with that in the cytosol, [Ca2+]c, during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca2+ release flux (derived from [Ca2+]c(t)) over the gradient that drives it (essentially equal to [Ca2+]SR) provided directly, for the first time, a dynamic measure of the permeability to Ca2+ of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca2+]SR stabilized at ∼35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ∼10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca2+ release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca2+]SR, sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca2+ release.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
A reappraisal of the Ca2+ dependence of fast inactivation of Ca2+ release in frog skeletal muscle. J Muscle Res Cell Motil 2010; 31:81-92. [PMID: 20544260 DOI: 10.1007/s10974-010-9212-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
Two procedures to inhibit Ca(2+) release designed to differentiate between local and common pool mechanisms for the Ca(2+) dependent, fast inactivation of Ca(2+) release in skeletal muscle of the frog were compared. Inhibition by voltage dependent inactivation of Ca(2+) release, without modification of the single channel current of the Ryanodine Receptor (RyR) and the [Ca(2+)] close to the open pore, produced a reduction in the rate of inactivation linearly related to the reduction in the peak of Ca(2+) release flux. Linear fits in the individual fibers were performed, giving average values (+/-SEM, N = 8) of the best fit parameters of 5.75 x 10(-3) +/- 7.35 x 10(-4 )microM(-1) for the slope and 0.07 +/- 0.015 ms(-1) for the ordinate intercept. Inhibition of Ca(2+) release by reducing the Ca content of the sarcoplasmic reticulum (SR) involves reduction of the Ca(2+) current through the single RyR. The reduction in rate of inactivation also followed linearly the reduction in Ca(2+) peak release flux. The average values (+/-SEM) of the best fit parameters of linear fits were 14 x 10(-3) +/- 3.76 x 10(-3 )microM(-1) and 0.019 +/- 0.006 ms(-1) (N = 7) for slope and ordinate intercept respectively. The differences between both parameters were statistically significant (by t test, at P = 0.05). The extent of inactivation, measured by the peak/final Ca(2+) release flux ratio, was differentially affected by the two procedures. Inhibition by voltage dependent inactivation, despite slowing down the fast inactivation, increased the peak/final Ca(2+) release flux ratio. In contrast, depletion of the SR reticulum reduced it. If the fast inactivation is driven by the high [Ca(2+)] attained locally, close to the open pore of the RyR, the inhibition of Ca(2+) release due to voltage dependent inactivation should not modify the rate of inactivation while inhibition by SR Ca(2+) depletion should reduce it. A process driven by [Ca(2+)] in a common pool should depend on the overall Ca(2+) release independently of how it was modified. In this case both inhibitory procedures should reduce the inactivation rate similarly. Our findings are generally consistent with a common pool process. The differences between the two protocols could be understood if the organization of RyR in junctional and parajunctional release units is considered.
Collapse
|
10
|
Royer L, Pouvreau S, Ríos E. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle. J Physiol 2008; 586:4609-29. [PMID: 18687715 PMCID: PMC2614033 DOI: 10.1113/jphysiol.2008.157990] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/06/2008] [Indexed: 01/21/2023] Open
Abstract
Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca(2+) from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca(2+)] within the store. In contrast with cardiac muscle, where depletion of Ca(2+) in the sarcoplasmic reticulum is a crucial determinant of termination of Ca(2+) release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca(2+) level on Ca(2+) release. To address this issue we measured Ca(2+) transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca(2+) monitor rhod-2. The evolution of Ca(2+) release flux was quantified during long-lasting depolarizations that reduced severely the Ca(2+) content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca(2+), was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca(2+) buffering power B of the SR, thus quantifying the 'evacuability' or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca(2+) output under conditions of diminishing store Ca(2+) load.
Collapse
Affiliation(s)
- Leandro Royer
- Department of Molecular Biophysics & Physiology, Section of Cellular Signalling, Rush University School of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
11
|
Akita T, Kuba K. Ca2+-dependent inactivation of Ca2+-induced Ca2+ release in bullfrog sympathetic neurons. J Physiol 2008; 586:3365-84. [PMID: 18483065 DOI: 10.1113/jphysiol.2008.153833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We studied inactivation of Ca(2+)-induced Ca(2+) release (CICR) via ryanodine receptors (RyRs) in bullfrog sympathetic neurons. The rate of rise in [Ca(2+)](i) due to CICR evoked by a depolarizing pulse decreased markedly within 10-20 ms to a much slower rate despite persistent Ca(2+) entry and little depletion of Ca(2+) stores. The Ca(2+) entry elicited by the subsequent pulse within 50 ms, during which the [Ca(2+)](i) level remained unchanged, did not generate a distinct [Ca(2+)](i) rise. This mode of [Ca(2+)](i) rise was unaffected by a mitochondrial uncoupler, carbonyl cyanide p-trifluromethoxy-phenylhydrazone (FCCP, 1 microm). Paired pulses of varying interval and duration revealed that recovery from inactivation became distinct >or= 50 ms after depolarization and depended on [Ca(2+)](i). The inactivation was prevented by BAPTA (>or= 100 microm) but not by EGTA (<or= 10 mM), whereas the activation was less affected by BAPTA. When CICR was partially activated, some of the non-activated RyRs were also inactivated directly. Thus, the inactivation in these neurons is induced by Ca(2+) binding to the high-affinity regulatory sites residing very close to Ca(2+) channels and/or RyRs, although the sites for activation are located much closer to those Ca(2+) sources. The rate of [Ca(2+)](i) decay after the pulse decreased with increasing pulse duration longer than 10 ms, and this was abolished by BAPTA. Thus, some mechanism counteracting Ca(2+) clearance is induced after full inactivation and potentiated during the pulse. Possible models for RyR inactivation were proposed and the roles of inactivation in Ca(2+) signalling were discussed.
Collapse
Affiliation(s)
- Tenpei Akita
- Laboratory of Anatomy and Physiology, Nagoya University of Arts and Sciences, School of Nutritional Sciences, Nisshin, Aichi 470-0196, Japan
| | | |
Collapse
|
12
|
Ríos E, Zhou J, Brum G, Launikonis BS, Stern MD. Calcium-dependent inactivation terminates calcium release in skeletal muscle of amphibians. ACTA ACUST UNITED AC 2008; 131:335-48. [PMID: 18347079 PMCID: PMC2279174 DOI: 10.1085/jgp.200709870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In skeletal muscle of amphibians, the cell-wide cytosolic release of calcium that enables contraction in response to an action potential appears to be built of Ca2+ sparks. The mechanism that rapidly terminates this release was investigated by studying the termination of Ca2+ release underlying sparks. In groups of thousands of sparks occurring spontaneously in membrane-permeabilized frog muscle cells a complex relationship was found between amplitude a and rise time T, which in sparks corresponds to the active time of the underlying Ca2+ release. This relationship included a range of T where a paradoxically decreased with increasing T. Three different methods were used to estimate Ca2+ release flux in groups of sparks of different T. Using every method, it was found that T and flux were inversely correlated, roughly inversely proportional. A simple model in which release sources were inactivated by cytosolic Ca2+ was able to explain the relationship. The predictive value of the model, evaluated by analyzing the variance of spark amplitude, was found to be high when allowance was made for the out-of-focus error contribution to the total variance. This contribution was estimated using a theory of confocal scanning (Ríos, E., N. Shirokova, W.G. Kirsch, G. Pizarro, M.D. Stern, H. Cheng, and A. González. Biophys. J. 2001. 80:169–183), which was confirmed in the present work by simulated line scanning of simulated sparks. Considering these results and other available evidence it is concluded that Ca2+-dependent inactivation, or CDI, provides the crucial mechanism for termination of sparks and cell-wide Ca2+ release in amphibians. Given the similarities in kinetics of release termination observed in cell-averaged records of amphibian and mammalian muscle, and in spite of differences in activation mechanisms, CDI is likely to play a central role in mammals as well. Trivially, an inverse proportionality between release flux and duration, in sparks or in global release of skeletal muscle, maintains constancy of the amount of released Ca2+.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Impaired calcium release from the sarcoplasmic reticulum (SR) has been identified as a contributor to fatigue in isolated skeletal muscle fibers. The functional importance of this phenomenon can be quantified by the use of agents, such as caffeine, which can increase SR Ca2+release during fatigue. A number of possible mechanisms for impaired calcium release have been proposed. These include reduction in the amplitude of the action potential, potentially caused by extracellular K+accumulation, which may reduce voltage sensor activation but is counteracted by a number of mechanisms in intact animals. Reduced effectiveness of SR Ca2+channel opening is caused by the fall in intracellular ATP and the rise in Mg2+concentrations that occur during fatigue. Reduced Ca2+available for release within the SR can occur if inorganic phosphate enters the SR and precipitates with Ca2+. Further progress requires the development of methods that can identify impaired SR Ca2+release in intact, blood-perfused muscles and that can distinguish between the various mechanisms proposed.
Collapse
|
14
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
15
|
Dutka TL, Murphy RM, Stephenson DG, Lamb GD. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue. J Physiol 2007; 586:875-87. [PMID: 18033812 DOI: 10.1113/jphysiol.2007.144667] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Contraction in skeletal muscle fibres is governed by excitation of the transverse-tubular (t-) system, but the properties of the t-system and their importance in normal excitability are not well defined. Here we investigate the properties of the t-system chloride conductance using rat skinned muscle fibres in which the sarcolemma has been mechanically removed but the normal excitation-contraction coupling mechanism kept functional. When the t-system chloride conductance was eliminated, either by removal of all Cl(-) or by block of the chloride channels with 9-anthracene carboxylic acid (9-AC) or by treating muscles with phorbol 12,13-dibutyrate, there was a marked reduction in the threshold electric field intensity required to elicit a t-system action potential (AP) and twitch response. Calculations of the t-system chloride conductance indicated that it constitutes a large proportion of the total chloride conductance observed in intact fibres. Blocking the chloride conductance increased the size of the twitch response and was indicative that Cl(-) normally carries part of the repolarizing current across the t-system membrane on each AP. Block of the t-system chloride conductance also reduced tetanic force responses at higher frequency stimulation (100 Hz) and greatly reduced twitch responses in the period shortly after a brief tetanus, owing to rapid loss of t-system excitability during the AP train. Blocking activity of the Na(+)-K(+) pump in the t-system membrane caused loss of excitability owing to K(+) build-up in the sealed t-system, and this occurred approximately 3-4 times faster when the chloride conductance was blocked. These findings show that the t-system chloride conductance plays a vital role during normal activity by countering the effects of K(+) accumulation in the t-system and maintaining muscle excitability.
Collapse
Affiliation(s)
- T L Dutka
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Pape PC, Fénelon K, Lamboley CRH, Stachura D. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres. J Physiol 2007; 581:319-67. [PMID: 17331996 PMCID: PMC2075213 DOI: 10.1113/jphysiol.2006.126474] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calsequestrin is a large-capacity Ca-binding protein located in the terminal cisternae of sarcoplasmic reticulum (SR) suggesting a role as a buffer of the concentration of free Ca in the SR ([Ca2+](SR)) serving to maintain the driving force for SR Ca2+ release. Essentially all of the functional studies on calsequestrin to date have been carried out on purified calsequestrin or on disrupted muscle preparations such as terminal cisternae vesicles. To obtain information about calsequestrin's properties during physiological SR Ca2+ release, experiments were carried out on frog cut skeletal muscle fibres using two optical methods. One - the EGTA-phenol red method - monitored the content of total Ca in the SR ([Ca(T)](SR)) and the other used the low affinity Ca indicator tetramethylmurexide (TMX) to monitor the concentration of free Ca in the SR. Both methods relied on a large concentration of the Ca buffer EGTA (20 mM), in the latter case to greatly reduce the increase in myoplasmic [Ca2+] caused by SR Ca2+ release thereby almost eliminating the myoplasmic component of the TMX signal. By releasing almost all of the SR Ca, these optical signals provided information about [Ca(T)](SR) versus [Ca2+](SR) as [Ca2+](SR) varied from its resting level ([Ca2+](SR,R)) to near zero. Since almost all of the Ca in the SR is bound to calsequestrin, this information closely resembles the binding curve of the Ca-calsequestrin reaction. Calcium binding to calsequestrin was found to be cooperative (estimated Hill coefficient = 2.95) and to have a very high capacity (at the start of Ca2+ release, 23 times more Ca was estimated to initiate from calsequestrin as opposed to the pool of free Ca in the SR). The latter result contrasts with an earlier report that only approximately 25% of released Ca2+ comes from calsequestrin and approximately 75% comes from the free pool. The value of [Ca2+](SR,R) was close to the K(D) for calsequestrin, which has a value near 1 mm in in vitro studies. Other evidence indicates that [Ca2+](SR,R) is near 1 mM in cut fibres. These results along with the known rapid kinetics of the Ca-calsequestrin binding reaction indicate that calsequestrin's properties are optimized to buffer [Ca2+](SR) during rapid, physiological SR Ca2+ release. Although the results do not entirely rule out a more active role in the excitation-contraction coupling process, they do indicate that passive buffering of [Ca2+](SR) is a very important function of calsequestrin.
Collapse
Affiliation(s)
- Paul C Pape
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de médicine, 3001, 12e Avenue Nord, Sherbrooke, Québec, Canada J1H5 N4.
| | | | | | | |
Collapse
|
17
|
Borst A, Abarbanel HDI. Relating a calcium indicator signal to the unperturbed calcium concentration time-course. Theor Biol Med Model 2007; 4:7. [PMID: 17284310 PMCID: PMC1800305 DOI: 10.1186/1742-4682-4-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 02/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.
Collapse
Affiliation(s)
| | - Henry DI Abarbanel
- Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography), University of California, San Diego, USA
| |
Collapse
|
18
|
Müller A, Kukley M, Uebachs M, Beck H, Dietrich D. Nanodomains of single Ca2+ channels contribute to action potential repolarization in cortical neurons. J Neurosci 2007; 27:483-95. [PMID: 17234581 PMCID: PMC6672794 DOI: 10.1523/jneurosci.3816-06.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The precise shape of action potentials in cortical neurons is a key determinant of action potential-dependent Ca2+ influx, as well as of neuronal signaling, on a millisecond scale. In cortical neurons, Ca2+-sensitive K+ channels, or BK channels (BKChs), are crucial for action potential termination, but the precise functional interplay between Ca2+ channels and BKChs has remained unclear. In this study, we investigate the mechanisms allowing for rapid and reliable activation of BKChs by single action potentials in hippocampal granule cells and the impact of endogenous Ca2+ buffers. We find that BKChs are operated by nanodomains of single Ca2+ channels. Using a novel approach based on a linear approximation of buffered Ca2+ diffusion in microdomains, we quantitatively analyze the prolongation of action potentials by the Ca2+ chelator BAPTA. This analysis allowed us to estimate that the mean diffusional distance for Ca2+ ions from a Ca2+ channel to a BKCh is approximately 13 nm. This surprisingly short diffusional distance cannot be explained by a random distribution of Ca2+ channels and renders the activation of BKChs insensitive to the relatively high concentrations of endogenous Ca2+ buffers in hippocampal neurons. These data suggest that tight colocalization of the two types of channels permits hippocampal neurons to regulate global Ca2+ signals by a high cytoplasmic Ca2+ buffer capacity without affecting the fast and brief activation of BKChs required for proper repolarization of action potentials.
Collapse
Affiliation(s)
| | | | - Mischa Uebachs
- Epileptology, University Clinic Bonn, 53105 Bonn, Germany
| | - Heinz Beck
- Epileptology, University Clinic Bonn, 53105 Bonn, Germany
| | | |
Collapse
|
19
|
Ríos E, Launikonis BS, Royer L, Brum G, Zhou J. The elusive role of store depletion in the control of intracellular calcium release. J Muscle Res Cell Motil 2006; 27:337-50. [PMID: 16933025 DOI: 10.1007/s10974-006-9082-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The contractile cycle of striated muscles, skeletal and cardiac, is controlled by a cytosolic [Ca2+] transient that requires rapid movements of the ion through channels in the sarcoplasmic reticulum (SR). A functional signature of these channels is their closure after a stereotyped time lapse of Ca2+ release. In cardiac muscle there is abundant evidence that termination of release is mediated by depletion of the Ca2+ store, even if the linkage mechanism remains unknown. By contrast, in skeletal muscle the mechanisms of release termination are not understood. This article reviews measurements of store depletion, the experimental evidence for dependence of Ca2+ release on the [Ca2+] level inside the SR, as well as tests of the molecular nature of putative intra-store Ca2+ sensors. Because Ca2+ sparks exhibit the basic release termination mechanism, much attention is dedicated to the studies of store depletion caused by sparks and its relationship with termination of sparks. The review notes the striking differences in volume, content and buffering power of the stores in cardiac vs. skeletal muscle, differences that explain why functional depletion is much greater for cardiac than skeletal muscle stores. Because in skeletal muscle store depletion is minimal and reduction in store [Ca2+] does not appear to greatly inhibit Ca2+ release, it is concluded that decrease in free SR [Ca2+] does not mediate physiological termination of Ca2+ release in this type of muscle. In spite of the apparent absence of store depletion and its putative channel closing effect, termination of Ca2+ sparks is faster and more robust in skeletal than cardiac muscle. A gating role of a hypothetical "proximate store" constituted by polymers of calsequestrin and associated proteins is invoked in an attempt to preserve a role for store depletion and unify mechanisms in both types of striated muscle.
Collapse
Affiliation(s)
- E Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
20
|
Ventura AC, Bruno L, Dawson SP. Simple data-driven models of intracellular calcium dynamics with predictive power. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011917. [PMID: 16907137 DOI: 10.1103/physreve.74.011917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 05/22/2006] [Indexed: 05/11/2023]
Abstract
Biology is complex. However, it is not clear how much of this complexity must necessarily translate into complicated mathematical models of biological processes. Simple models can be appealing to physicists but are usually deceiving for biologists. Complicated models, on the other hand, depend on too many parameters whose values are frequently unknown. Therefore, complicated models, although in principle more realistic, can lead to erroneous results if they are sensitive to these unknown parameter values. Intracellular calcium signals provide an example of utmost biological importance in which the issue of "simple vs complex" can be explored. In this paper we show that simple models describing the dynamics of intracellular calcium can be directly inferred from experimental data, without no a priori information on unknown parameters. A similar approach can be followed to study other reaction-diffusion systems. In spite of their simplicity, these models can provide quantitative information on some of the processes that shape calcium signals, such as the calcium current that underlies an experimental observation. This shows that simple models of biological systems are not limited to qualitative descriptions.
Collapse
Affiliation(s)
- Alejandra C Ventura
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, U.B.A., Ciudad Universitaria, Pabellón I, (1428) Buenos Aires, Argentina
| | | | | |
Collapse
|
21
|
Launikonis BS, Zhou J, Santiago D, Brum G, Ríos E. The changes in Ca2+ sparks associated with measured modifications of intra-store Ca2+ concentration in skeletal muscle. ACTA ACUST UNITED AC 2006; 128:45-54. [PMID: 16769796 PMCID: PMC2151548 DOI: 10.1085/jgp.200609545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cardiac muscle and amphibian skeletal muscle, the intracellular Ca2+ release that signals contractile activation proceeds by discrete local packets, which result in Ca2+ sparks. The remarkably stereotyped duration of these release events requires a robustly timed termination mechanism. In cardiac muscle the mechanism of spark termination appears to crucially involve depletion of Ca2+ in the lumen of the sarcoplasmic reticulum (SR), but in skeletal muscle, the mechanism is unknown. We used SEER (shifted excitation and emission ratioing of fluorescence) of SR-trapped mag-indo-1 and confocal imaging of fluorescence of cytosolic rhod-2 to image Ca2+ sparks while reversibly changing and measuring [Ca2+] in the SR ([Ca2+]SR) of membrane-permeabilized frog skeletal muscle cells. Sparks were collected in cells immersed in a solution promoting production of events at moderate frequency. Just after permeabilization, event frequency was zero, and in 10 minutes it reached close to a steady value. Controlled interventions modified [Ca2+]SR reversibly between a low value (299 μM on average in 10 experiments) and a high value (433 μM, a 45% average increase). This change increased sparks frequency by 93%, spatial width by 7%, rise time by 10%, and peak amplitude by 38% (provided that it was calculated in absolute terms, rather than normalized by resting fluorescence). The changes in event frequency and amplitude were statistically significant. The “strength” of the effect of [Ca2+]SR on frequency, quantified by decomposition of variance, was <6%. While the average change in [Ca2+]SR was limited, it reached up to 200% in individual fibers, without causing massive Ca2+ release or an increase of >3.5-fold in event frequency. Taken together with existing evidence that depletion is modest during Ca2+ sparks or release elicited by an action potential, the mild effects of [Ca2+]SR reported here do not support a major role of depletion in either the termination of sparks or the strong inactivation that terminates Ca2+ release at the global level in frog skeletal muscle.
Collapse
Affiliation(s)
- Bradley S Launikonis
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
22
|
Müller A, Kukley M, Stausberg P, Beck H, Müller W, Dietrich D. Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. J Neurosci 2005; 25:558-65. [PMID: 15659591 PMCID: PMC6725329 DOI: 10.1523/jneurosci.3799-04.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca2+-binding proteins are ubiquitously expressed throughout the CNS and serve as valuable immunohistochemical markers for certain types of neurons. However, the functional role of most Ca2+-binding proteins has to date remained obscure because their concentration in central neurons is not known. In this study, we investigate the intracellular concentration of the widely expressed Ca2+-binding protein calbindin-D28k in adult hippocampal slices using patch-clamp recordings and immunohistochemistry. First, we show that calbindin-D28k freely exchanges between patch pipette and cytoplasm during whole cell patch-clamp recordings with a time constant of approximately 10 min. Substituting known concentrations of recombinant calbindin-D28k in patch pipettes enabled us to determine the endogenous calbindin-D28k concentration by postrecording immunohistochemistry. Using this calibration procedure, we find that mature granule cells (doublecortin-) contain approximately 40 microm, and newborn granule cells (doublecortin+) contain 0-20 microm calbindin-D28k. CA3 stratum radiatum interneurons and CA1 pyramidal cells enclose approximately 47 and approximately 45 microm calbindin-D28k, respectively. Numerical simulations showed that 40 microm calbindin-D28k is capable of tuning Ca2+ microdomains associated with action potentials at the mouth of single or clustered Ca2+ channels: calbindin-D28k reduces the increment in free Ca2+ at a distance of 100 and 200 nm by 20 and 35%, respectively, and strongly accelerates the collapse of the Ca2+ gradient after cessation of Ca2+ influx. These data suggest that calbindin-D28k equips hippocampal neurons with approximately 160 microm mobile, high-affinity Ca2+-binding sites (kappa(S) approximately 200) that slow and reduce global Ca2+ signals while they enhance the spatiotemporal fidelity of submicroscopic Ca2+ signals.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Neurosurgery, University Clinic Bonn, D-53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Pizarro G, Ríos E. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. ACTA ACUST UNITED AC 2005; 124:239-58. [PMID: 15337820 PMCID: PMC2233888 DOI: 10.1085/jgp.200409071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In skeletal muscle, the waveform of Ca2+ release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca2+ sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca2+ content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca2+ release and a way to reliably modify the SR content, we combined in the same cells the “EGTA/phenol red” method (Pape et al., 1995) to evaluate Ca2+ release, with the “removal” method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Δ[H+] and Δ[Ca2+] from which the amount of released Ca2+ and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (CaSR). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as CaSR was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting CaSR (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low CaSR. The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca2+ release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca2+ on the activity of Ca2+ release channels.
Collapse
Affiliation(s)
- Gonzalo Pizarro
- Dept. of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St., Suite 1279JS, Chicago, IL 60612, USA
| | | |
Collapse
|
24
|
Macdonald WA, Stephenson DG. Effects of ADP on action potential-induced force responses in mechanically skinned rat fast-twitch fibres. J Physiol 2004; 559:433-47. [PMID: 15235084 PMCID: PMC1665135 DOI: 10.1113/jphysiol.2004.067603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 07/01/2004] [Indexed: 12/24/2022] Open
Abstract
Mechanically skinned muscle fibres from the extensor digitorum longus (EDL) muscle of the rat were electrically stimulated in solutions mimicking the myoplasmic environment in the resting muscle fibre but containing different [ADP] of < 0.1 microm, 40 microm and 1.0 mm, to investigate the effects of myoplasmic ADP on the twitch response. The amplitude of the twitch response markedly and gradually decreased by 47 +/- 6% (n=9) as [ADP] was increased from < 0.1 microm to 40 microm without changing [Ca2+] in the myoplamsic solution (50 nm). The times for the twitch to rise from 10 to 90% (Trise,10-90) and to decrease from 90 to 10% (Tfall,90-10) initially increased by 8 and 21% and then decreased by 16 and 30% (compared to controls), respectively, at steady state. When [ADP] was raised from < 0.1 microm to 1.0 mm and fibres were electrically stimulated, the first response was biphasic and very prolonged (by at least a factor of 10) but of an amplitude similar to that in the control solution. The following twitch response and the steady state twitch responses were much reduced in size by about a factor of 6 and more prolonged by about 40% compared to control responses. All these ADP effects were fully reversible and appear to be predominantly due to several ADP-dependent alterations in SR Ca2+ handling properties (ADP-dependent decrease in SR Ca2+ capacity together with an increase in Ca2+ binding to the SR pump sites facing the myoplasm). The ADP-dependent effects on the contractile apparatus and Ca2+ regulatory system were relatively minor. Taken together, the results demonstrate that ADP accumulation is likely to play a crucial role in metabolic fatigue of skeletal muscle and can explain the marked reduction in the amplitude and the slower time course of the twitch response during fatigue as well as the elevation of myoplasmic [Ca2+] in fatigued fibres at rest.
Collapse
Affiliation(s)
- W A Macdonald
- Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia
| | | |
Collapse
|
25
|
Matveev V, Zucker RS, Sherman A. Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 2004; 86:2691-709. [PMID: 15111389 PMCID: PMC1304141 DOI: 10.1016/s0006-3495(04)74324-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 01/02/2004] [Indexed: 11/24/2022] Open
Abstract
Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca(2+), its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca(2+) buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca(2+) channel cluster, and increases with increasing external Ca(2+), [Ca(2+)](ext), for small levels of [Ca(2+)](ext). We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca(2+) buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM.
Collapse
Affiliation(s)
- Victor Matveev
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
26
|
Posterino GS, Lamb GD. Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres. J Physiol 2003; 551:219-37. [PMID: 12844504 PMCID: PMC2343158 DOI: 10.1113/jphysiol.2003.040022] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 06/02/2003] [Indexed: 11/08/2022] Open
Abstract
This study examined the relationship between the level of Ca2+ loading in the sarcoplasmic reticulum (SR) and the amount of Ca2+ released by an action potential (AP) in fast-twitch skeletal muscle fibres of the rat. Single muscle fibres were mechanically skinned and electric field stimulation was used to induce an AP in the transverse-tubular system and a resulting twitch response. Responses were elicited in the presence of known amounts (0-0.38 mM) of BAPTA, a fast Ca2+ buffer, with the SR Ca2+ pump either functional or blocked by 50 microM 2,5-di-tert-butyl-1,4-hydroquinone (TBQ). When Ca2+ reuptake was blocked, an estimate of the amount of Ca2+ released by an AP could be derived from the size of the force response. In a fibre with the SR loaded with Ca2+ at the endogenous level (approximately 1.2 mM, expressed as total Ca2+ per litre fibre volume; approximately one-third of maximal loading), a single AP triggered the release of approximately 230 microM Ca2+. If a second AP was elicited 10 ms after the first, only a further approximately 60 microM Ca2+ was released, the reduction probably being due to Ca2+ inactivation of Ca2+ release. When Ca2+ reuptake was blocked, APs applied 15 s apart elicited similar amounts of Ca2+ release (approximately 230 microM) on the first two or three occasions and then progressively less Ca2+ was released until the SR was fully depleted after a total of approximately eight APs. When the SR was loaded to near-maximal capacity (approximately 3-4 mM), each AP (or pair of APs 10 ms apart) still only released approximately the same amount of Ca2+ as that released when the fibre was endogenously loaded. Consistent with this, successive APs (15 s apart) elicited similar amounts of Ca2+ release approximately 10-16 times before the amount released declined, and the SR was fully depleted of Ca2+ after a total release calculated to be approximately 3-4 mM. When the SR was loaded maximally, increasing the [BAPTA] above 280 microM resulted in an increase in the amount of Ca2+ released per AP, probably because the greater level of cytoplasmic Ca2+ buffering prevented Ca2+ inactivation from adequately limiting Ca2+ release. These results show that the amount of Ca2+ released by AP stimulation in rat fast-twitch fibres normally stays virtually constant over a wide range of SR Ca2+ content, in spite of the likely large change in the electrochemical gradient for Ca2+. This was also found to be the case in toad twitch fibres. This constancy in Ca2+ release should help ensure precise regulation of force production in fast-twitch muscle in a range of circumstances.
Collapse
Affiliation(s)
- G S Posterino
- Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia
| | | |
Collapse
|
27
|
Novo D, DiFranco M, Vergara JL. Comparison between the predictions of diffusion-reaction models and localized Ca2+ transients in amphibian skeletal muscle fibers. Biophys J 2003; 85:1080-97. [PMID: 12885654 PMCID: PMC1303228 DOI: 10.1016/s0006-3495(03)74546-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We developed a three-dimensional cylindrical diffusion-reaction model of a single amphibian myofibril in which Ca(2+) release occurred only at the Z-line. The model incorporated diffusion of Ca(2+), Mg(2+), and all relevant buffer species, as well as the kinetic binding reactions between the buffers and appropriate ions. Model data was blurred according to a Gaussian approximation of the point spread function of the microscope and directly compared with experimental data obtained using the confocal spot methodology. The flux parameters were adjusted until the simulated Z-line transient matched the experimental one. This model could not simultaneously predict key parameters of the experimental M- and Z-line transients, even when model parameters were adjusted to unreasonably extreme values. Even though the model was accurate in predicting the Z-line transient under conditions of high [EGTA], it predicted a significantly narrower Ca(2+) domain than observed experimentally. We modified the model to incorporate a broader band of release centered at the Z-line. This extended release model was superior both in simultaneously predicting critical features of the Z- and M-line transients as well as the domain profile under conditions of high [EGTA]. We conclude that a model of release occurring exclusively at the Z-line cannot explain our experimental data and suggest that Ca(2+) may be released from a broader region of the sarcoplasmic reticulum than just the T-tubule-sarcoplasmic reticulum junction.
Collapse
Affiliation(s)
- David Novo
- Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA
| | | | | |
Collapse
|
28
|
Fénelon K, Pape PC. Recruitment of Ca(2+) release channels by calcium-induced Ca(2+) release does not appear to occur in isolated Ca(2+) release sites in frog skeletal muscle. J Physiol 2002; 544:777-91. [PMID: 12411523 PMCID: PMC2290617 DOI: 10.1113/jphysiol.2002.026658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscle in response to small depolarisations (e.g. to -60 mV) should be the sum of release from many isolated Ca(2+) release sites. Each site has one SR Ca(2+) release channel activated by its associated T-tubular voltage sensor. The aim of this study was to evaluate whether it also includes neighbouring Ca(2+) release channels activated by Ca-induced Ca(2+) release (CICR). Ca(2+) release in frog cut muscle fibres was estimated with the EGTA/phenol red method. The fraction of SR Ca content ([Ca(SR)]) released by a 400 ms pulse to -60 mV (denoted f(Ca)) provided a measure of the average Ca(2+) permeability of the SR associated with the pulse. In control experiments, f(Ca) was approximately constant when [Ca(SR)] was 1500-3000 microM (plateau region) and then increased as [Ca(SR)] decreased, reaching a peak when [Ca(SR)] was 300-500 microM that was 4.8 times larger on average than the plateau value. With 8 mM of the fast Ca(2+) buffer BAPTA in the internal solution, f(Ca) was 5.0-5.3 times larger on average than the plateau value obtained before adding BAPTA when [Ca(SR)] was 300-500 microM. In support of earlier results, 8 mM BAPTA did not affect Ca(2+) release in the plateau region. At intermediate values of [Ca(SR)], BAPTA resulted in a small, if any, increase in f(Ca), presumably by decreasing Ca inactivation of Ca(2+) release. Since BAPTA never decreased f(Ca), the results indicate that neighbouring channels are not activated by CICR with small depolarisations when [Ca(SR)] is 300-3000 microM.
Collapse
Affiliation(s)
- Karine Fénelon
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de medicine, 3001, 12e Avenue Nord, Sherbrooke (Québec), Canada J1H 5N4
| | | |
Collapse
|
29
|
Rengifo J, Rosales R, González A, Cheng H, Stern MD, Ríos E. Intracellular Ca(2+) release as irreversible Markov process. Biophys J 2002; 83:2511-21. [PMID: 12414685 PMCID: PMC1302337 DOI: 10.1016/s0006-3495(02)75262-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In striated muscles, intracellular Ca(2+) release is tightly controlled by the membrane voltage sensor. Ca(2+) ions are necessary mediators of this control in cardiac but not in skeletal muscle, where their role is ill-understood. An intrinsic gating oscillation of Ca(2+) release-not involving the voltage sensor-is demonstrated in frog skeletal muscle fibers under voltage clamp. A Markov model of the Ca(2+) release units is shown to reproduce the oscillations, and it is demonstrated that for Markov processes to have oscillatory transients, its transition rates must violate thermodynamic reversibility. Such irreversibility results in permanent cycling of the units through a ring of states, which requires a source of free energy. Inhibition of the oscillation by 20 to 40 mM EGTA or partial depletion of Ca(2+) in the sarcoplasmic reticulum (SR) identifies the SR [Ca(2+)] gradient as the energy source, and indicates a location of the critical Ca(2+)-sensing site at distances greater than 35 nm from the open channel. These results, which are consistent with a recent demonstration of irreversibility in gating of cardiac Ca(2+) sparks, (Wang, S.-Q., L.-S. Song, L. Xu, G. Meissner, E. G. Lakatta, E. Ríos, M. D. Stern, and H. Cheng. 2002. Biophys. J. 83:242-251) exemplify a cell-wide oscillation caused by coupling between ion permeation and channel gating.
Collapse
Affiliation(s)
- Juliana Rengifo
- Department of Molecular Biophysics and Physiology, Rush University, 1750 W. Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pape PC, Carrier N. Calcium release and intramembranous charge movement in frog skeletal muscle fibres with reduced (< 250 microM) calcium content. J Physiol 2002; 539:253-66. [PMID: 11850517 PMCID: PMC2290119 DOI: 10.1113/jphysiol.2001.012728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is generally accepted that activation of voltage sensors in the T-tubular membranes is a critical step of excitation-contraction coupling in skeletal muscle. The purpose of this study was to evaluate further whether the Qgamma component (delayed 'hump' component) of the intramembranous charge movement current (I(cm)) results from movement of these voltage sensors. Ca2+ release and I(cm) were measured in voltage-clamped frog cut fibres mounted in a double Vaseline-gap chamber. In order to reduce effects of Ca2+ feedback mechanisms, the calcium content of the sarcoplasmic reticulum (SR) during rest was reduced to < 250 microM (referred to volume of myoplasm) and maintained approximately constant. The early (Qbeta) and Qgamma components of charge movement were estimated by fitting the sum of two Boltzmann functions to the total steady-state intramembranous charge vs. voltage data. The average voltage steepness factor (k) and half-maximal voltage (V-) for Qgamma were 4.3 and -57.4 mV (n = 6), respectively. The SR membrane permeability for Ca2+ release was assessed when a constant amount of calcium remained in the SR (usually about 60 microM). A single Boltzmann function fitted to these data gave values on average for k and V- of 4.7 and -45.3 mV, respectively. The similarity of the values of k for Qgamma and Ca2+ release supports the idea that Qgamma reflects movement of voltage sensors for Ca2+ release. The greater value of V- for Ca2+ release compared to Qgamma is consistent with multi-state models of the voltage sensor involving movement of Qgamma charge during non-activating transitions.
Collapse
Affiliation(s)
- Paul C Pape
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de médicine, 3001, 12e Avenue Nord, Sherbrooke, Québec, Canada J1H5N4.
| | | |
Collapse
|
31
|
Szentesi P, Collet C, Sárközi S, Szegedi C, Jona I, Jacquemond V, Kovács L, Csernoch L. Effects of dantrolene on steps of excitation-contraction coupling in mammalian skeletal muscle fibers. J Gen Physiol 2001; 118:355-75. [PMID: 11585849 PMCID: PMC2233700 DOI: 10.1085/jgp.118.4.355] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of the muscle relaxant dantrolene on steps of excitation-contraction coupling were studied on fast twitch muscles of rodents. To identify the site of action of the drug, single fibers for voltage-clamp measurements, heavy SR vesicles for calcium efflux studies and solubilized SR calcium release channels/RYRs for lipid bilayer studies were isolated. Using the double Vaseline-gap or the silicone-clamp technique, dantrolene was found to suppress the depolarization-induced elevation in intracellular calcium concentration ([Ca2+]i) by inhibiting the release of calcium from the SR. The suppression of [Ca2+]i was dose-dependent, with no effect at or below 1 microM and a 53 +/- 8% (mean +/- SEM, n = 9, cut fibers) attenuation at 0 mV with 25 microM of extracellularly applied dantrolene. The drug was not found to be more effective if injected than if applied extracellularly. Calculating the SR calcium release revealed an equal suppression of the steady (53 +/- 8%) and of the early peak component (46 +/- 6%). The drug did not interfere with the activation of the voltage sensor in as much as the voltage dependence of both intramembrane charge movements and the L-type calcium currents (I(Ca)) were left, essentially, unaltered. However, the inactivation of I(Ca) was slowed fourfold, and the conductance was reduced from 200 +/- 16 to 143 +/- 8 SF(-1) (n = 10). Dantrolene was found to inhibit thymol-stimulated calcium efflux from heavy SR vesicles by 44 +/- 10% (n = 3) at 12 microM. On the other hand, dantrolene failed to affect the isolated RYR incorporated into lipid bilayers. The channel displayed a constant open probability for as long as 30-50 min after the application of the drug. These data locate the binding site for dantrolene to be on the SR membrane, but be distinct from the purified RYR itself.
Collapse
Affiliation(s)
- Péter Szentesi
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - Claude Collet
- Laboratoire de Physiologie des Elémentes Excitables, Université Claude Bernard Lyon 1, ERS CNRS 2019, F69622, Villeurbanne, France
| | - Sándor Sárközi
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - Csaba Szegedi
- Cell Physiology Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary, H-4012
| | - István Jona
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - Vincent Jacquemond
- Laboratoire de Physiologie des Elémentes Excitables, Université Claude Bernard Lyon 1, ERS CNRS 2019, F69622, Villeurbanne, France
| | - László Kovács
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| | - László Csernoch
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, H-4012
| |
Collapse
|
32
|
Prakriya M, Lingle CJ. Activation of BK channels in rat chromaffin cells requires summation of Ca(2+) influx from multiple Ca(2+) channels. J Neurophysiol 2000; 84:1123-35. [PMID: 10979988 DOI: 10.1152/jn.2000.84.3.1123] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca(2+) and voltage-dependent K(+) channels (BK channels) in many tissues require high Ca(2+) concentrations for activation and therefore might be expected to be tightly coupled to Ca(2+) channels. However, in most cases, little is known about the relative organization of the BK channels and the Ca(2+) channels involved in their activation. We probed the nature of the organization of BK and Ca(2+) channels in rat chromaffin cells by manipulating Ca(2+) influx through Ca(2+) channels and by altering cellular Ca(2+) buffering using EGTA and bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid (BAPTA). The results were analyzed to determine the distance between Ca(2+) and BK channels that would be most consistent with the experimental data. Most BK channels are close enough to Ca(2+) channels to be resistant to the buffering action of millimolar of EGTA, but are far enough to be inhibited by BAPTA. Analysis of the EGTA/BAPTA results suggests that BK channels are at a distance of 50 to 160 nm from Ca(2+) channels. A model that assumes random distribution of Ca(2+) and BK channels fails to account for the observed [Ca(2+)](i) detected by BK channels, suggesting that a specific mechanism may exist to mediate the functional coupling between these channels. Importantly, the effects of EGTA and BAPTA cannot be explained by assuming a one-to-one coupling between Ca(2+) and BK channels. Rather, Ca(2+) influx through a number of Ca(2+) channels appears to act in concert to regulate the behavior of any individual BK channel. Thus differences in BK channel open probabilities may be explained by differences in the extent of Ca(2+) domain overlap at the sites of individual BK channels.
Collapse
Affiliation(s)
- M Prakriya
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
33
|
Hollingworth S, Soeller C, Baylor SM, Cannell MB. Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy. J Physiol 2000; 526 Pt 3:551-60. [PMID: 10922007 PMCID: PMC2270039 DOI: 10.1111/j.1469-7793.2000.t01-1-00551.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Intra-sarcomeric gradients of [Ca2+] during activation of action potential stimulated frog single fibres were investigated with the Ca2+ indicator fluo-3 and confocal and two-photon microscopy. The object of these experiments was to look for evidence of extra-junctional Ca2+ release and examine the microscopic diffusion of Ca2+ within the sarcomere. By exploiting the spatial periodicity of sarcomeres within the fibre, we could achieve a high effective line-scanning rate ( approximately 8000 lines s-1), although the laser scanning microscope was limited to < 1000 lines s-1. At this high time resolution, the time course of fluorescence changes was very different at the z- and m-lines, with a significant delay ( approximately 1 ms; 22 C) between the rise of fluorescence at the z-line and the m-line. To calculate the expected fluorescence changes, we used a multi-compartment model of Ca2+ movements in the half-sarcomere in which Ca2+ release was restricted to triadic junctions (located at z-lines). Optical blurring by the microscope was simulated to generate fluorescence signals which could be compared directly to experimental data. The model which reproduced our experimental findings most accurately included Ca2+ binding by ATP, as well as indicator binding to immobile sarcomeric proteins. After taking sarcomeric misregistration within the fibre into account, there was very good agreement between the model and experimental results. We conclude that there is no experimental evidence for Ca2+ release at locations other than at z-lines. In addition, our calculations support the conclusion that rapidly diffusing Ca2+ buffers (such as ATP) are important in shaping the Ca2+ transient and that the details of intracellular indicator binding need to be considered to explain correctly the time course of fluorescence change in the fibre.
Collapse
Affiliation(s)
- S Hollingworth
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
34
|
Hui CS. Calcium release in frog cut twitch fibers exposed to different ionic environments under voltage clamp. Biophys J 1999; 77:2123-36. [PMID: 10512832 PMCID: PMC1300493 DOI: 10.1016/s0006-3495(99)77053-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Calcium release was measured in highly stretched frog cut twitch fibers mounted in a double Vaseline-gap voltage clamp chamber, with the internal solution containing 20 mM EGTA plus 0.4 or 1.8 mM added calcium. Rise in myoplasmic [Ca(2+)] was monitored with antipyrylazo III as the indicator at a temperature of 13 to 14 degrees C. The waveform of calcium release rate (Rel) computed from the absorbance change showed an early peak (Rel(p)) followed by a maintained phase (Rel(m)). Each Rel(p)-versus-V plot was fitted with a Boltzmann distribution function. The maximum value of Rel(p) (Rel(p,max)) was compared in various calcium-containing external solutions. The average value in a Cl(-) solution was about one-third larger than those in a CH(3)SO(3)(-) or gluconate solution, whereas the values in the CH(3)SO(3)(-) and gluconate solutions had no statistically significant difference. In external solutions containing CH(3)SO(3)(-) or gluconate, a replacement of the Ca(2+) with Mg(2+) reduced Rel(p,max) by 30 to 50%, on average. The values of Rel(p, max) also had no statistically significant difference among calcium-free external solutions containing different impermeant anions. An increase of the nominal free [Ca(2+)] in the end-pool solution from a reduced to the normal physiological level increased the value of Rel(p,max), and also slowed the decay of the maintained phase of the Rel waveform. The Rel waveforms in the Cl(-) and CH(3)SO(3)(-) solutions were compared in the same fiber at a fixed potential. CH(3)SO(3)(-) increased the time to peak, reduced Rel(p), and increased Rel(m), and the effects were partially reversible. Under the hypothesis that the decay of the peak was due to calcium inactivation of calcium release, the inactivation was larger in Cl(-) than in CH(3)SO(3)(-), in qualitative agreement with the ratio of Rel(p) in the two solutions. Under the alternative hypothesis that the peak and the maintained phase were separately gated by calcium and depolarization, respectively, then CH(3)SO(3)(-) appeared to decrease the calcium-gated component and increase the voltage-gated component.
Collapse
Affiliation(s)
- C S Hui
- Department of Physiology and Biophysics, Indiana University Medical Center, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
35
|
Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 1999; 77:1528-39. [PMID: 10465763 PMCID: PMC1300440 DOI: 10.1016/s0006-3495(99)77000-1] [Citation(s) in RCA: 453] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excitation contraction (e-c) coupling in skeletal and cardiac muscles involves an interaction between specialized junctional domains of the sarcoplasmic reticulum (SR) and of exterior membranes (either surface membrane or transverse (T) tubules). This interaction occurs at special structures named calcium release units (CRUs). CRUs contain two proteins essential to e-c coupling: dihydropyridine receptors (DHPRs), L-type Ca(2+) channels of exterior membranes; and ryanodine receptors (RyRs), the Ca(2+) release channels of the SR. Special CRUs in cardiac muscle are constituted by SR domains bearing RyRs that are not associated with exterior membranes (the corbular and extended junctional SR or EjSR). Functional groupings of RyRs and DHPRs within calcium release units have been named couplons, and the term is also loosely applied to the EjSR of cardiac muscle. Knowledge of the structure, geometry, and disposition of couplons is essential to understand the mechanism of Ca(2+) release during muscle activation. This paper presents a compilation of quantitative data on couplons in a variety of skeletal and cardiac muscles, which is useful in modeling calcium release events, both macroscopic and microscopic ("sparks").
Collapse
Affiliation(s)
- C Franzini-Armstrong
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
36
|
Struk A, Melzer W. Modification of excitation-contraction coupling by 4-chloro-m-cresol in voltage-clamped cut muscle fibres of the frog (R. pipiens). J Physiol 1999; 515 ( Pt 1):221-31. [PMID: 9925891 PMCID: PMC2269131 DOI: 10.1111/j.1469-7793.1999.221ad.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The effect of 5 microM 4-chloro-m-cresol (4-CmC) on voltage-controlled Ca2+ release was studied in cut muscle fibres of the frog loaded with internal solutions containing 15 mM EGTA. Fibres were voltage clamped using a double Vaseline gap system, and Ca2+ signals were recorded with the fluorescent indicator dye fura-2 2. Resting intracellular free Ca2+ concentration increased from 61 to 100 nM upon application of 4-CmC. 3. Both peak rate of release of intracellularly stored Ca2+ and the steady level attained after 50 ms of depolarization increased, but the potentiation of the latter was more pronounced (by a factor of 1.7 versus 1.3). The voltage of half-maximal activation remained unchanged. 4. Non-linear intramembranous charge movements showed no significant change in voltage dependence while the maximal charge displaced by depolarization increased by 25 %. 5. The dependence of peak release flux on total intramembranous charge was not different in 4-CmC, but for the steady level of release the steepness of the relation increased by a factor of 1.3. 6. The stimulating effect of 5 microM 4-CmC on depolarization-induced Ca2+ release resembled the potentiation by 0.5 mM caffeine. However, 0.5 mM caffeine increased the peak and steady levels of the release rate by a similar factor and caused no increase in the resting free calcium concentration, indicating different modes of action of the two substances. 7. Neither 5 microM 4-CmC nor 0.5 mM caffeine led to a loss of voltage control of Ca2+ release during repolarization after short depolarizations, as has been reported previously for caffeine. Potentiated Ca2+ release could be terminated by repolarization as fast as under control conditions both with 15 mM and 0.1 mM internal EGTA. 8. The effects of 4-CmC may result from a direct opening of the release channel combined with an enhancement of the transduction mechanism that couples channel opening to displacement of voltage sensor charges.
Collapse
Affiliation(s)
- A Struk
- Department of Applied Physiology, University of Ulm, D-89069 Ulm, Germany
| | | |
Collapse
|
37
|
Abstract
Simple approximations to some limiting cases of Ca++ signalling provide insight into the complex problems of buffered diffusion and of Ca++ homeostasis in the presence of buffers. Three cases are presented, where the influence of Ca++ buffers can readily be understood in the limit of small signals: the return of global cellular [Ca++] following a short stimulus in a 'Single Compartment', buffered diffusion along a cylindrical axon in the 'Rapid Buffer Approximation', and nonequilibrium microdomains of elevated [Ca++] in the immediate vicinity of open Ca++ channels.
Collapse
Affiliation(s)
- E Neher
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
38
|
Affiliation(s)
- M D Stern
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|