1
|
Jain A, Lopus M, Kishore N. From Self-Assembly to Drug Delivery: Understanding and Exploring Protein Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:473-495. [PMID: 39745783 DOI: 10.1021/acs.langmuir.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127). The effect of pluronics on protein aggregation and fibrillation has been studied mechanistically using a combination of calorimetric and spectroscopic techniques. TEM images and the ThT binding experiment were used to analyze the conformation of protein fibrils, and the results showed that pluronics accelerated the fibrillation process. When pluronics interact with protein at different stages of fibrillation, their pre- and postmicellar concentrations show a decrease in ΔHm° value as the time of incubation increases. This indicates the formation of amorphous aggregates due to which endothermic enthalpy is observed. As a consequence, it was investigated if these generated aggregates can also act as drug delivery vehicle; therefore, the work was carried out with 5-fluorouracil and cytarabine. The endothermic enthalpy of interaction suggests that hydrophobic interaction is more prevalent when cytarabine is employed with protein fibrils, whereas the electrostatic interaction is more prevalent when 5-fluorouracil is combined with it. The former drug, however, showed a greater adsorption than the latter on the surface of protein fibrils. It is therefore determined that 5-fluorouracil has relatively significant adsorption on fibril surfaces, whereas cytarabine has weak adsorption and is easily desorbed in cells. Consequently, the combination of LFF127 and 5-FU is lethal to malignant cells. The drug encapsulation and delivery aspect of protein fibrils/aggregates needs further exploration.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Shirmovsky SE. On the possibility of implementing a quantum entanglement distribution in a biosystem: Microtubules. Biosystems 2024; 245:105320. [PMID: 39214493 DOI: 10.1016/j.biosystems.2024.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The paper considers the possibility of implementing a quantum entanglement distribution in the cell microtubule. It has been shown that a quantum entanglement distribution proposed in the paper determines the process of quantum state teleportation through microtubule tryptophan chain. The work shows that the system of tryptophans in a microtubule essentially is a quantum network that consists of: spatially spaced nodes - tryptophans, quantum communication channels connecting tryptophans and qubits transmitted through these communication channels. The connection between the process of quantum teleportation in living nature and its classical analogue is discussed. The quantum protocol established in the work determines the possible principle of quantum information transmission in biosystems and also in the similar nanostructures.
Collapse
Affiliation(s)
- Sergey E Shirmovsky
- Far Eastern Federal University, Institute of High Technologies and Advanced Materials, Department of General and Experimental Physics, 10Ajax settlement, Russkiy Island, Vladivostok, Primorsky Region, 690922, Russia; Far Eastern Federal University, Institute of Mathematics and Computer Technologies, Department of Information Security, 10Ajax settlement, Russkiy Island, Vladivostok, Primorsky Region, 690922, Russia.
| |
Collapse
|
3
|
Datta B, Bhatt P, Dutta G. A Redox Mediator-Free Highly Selective and Sensitive Electrochemical Aptasensor for Patulin Mycotoxin Detection in Apple Juice Using Ni-NiO Pseudocapacitive Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5993-6005. [PMID: 38450613 DOI: 10.1021/acs.jafc.3c07886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Pseudocapacitive nanomaterials have recently gained significant attention in electrochemical biosensors due to their rapid response, long cycle life, high surface area, biomolecule compatibility, and superior energy storage capabilities. In our study, we introduce the potential of using Ni-NiO nanofilm's pseudocapacitive traits as transducer signals in electrochemical aptasensors. Capitalizing on the innate affinity between histidine and nickel, we immobilized histidine-tagged streptavidin (HTS) onto Ni-NiO-modified electrodes. Additionally, we employed a biolayer interferometry-based SELEX to generate biotinylated patulin aptamers. These aptamers, when placed on Ni-NiO-HTS surfaces, make a suitable biosensing platform for rapid patulin mycotoxin detection in apple juice using electrochemical amperometry in microseconds. The novelty lies in optimizing pseudocapacitive nanomaterials structurally and electrochemically, offering the potential for redox mediator-free electrochemical aptasensors. Proof-of-concept is conducted by applying this surface for the ultrasensitive detection of a model analyte, patulin mycotoxin. The aptamer-functionalized bioelectrode showed an excellent linear response (10-106 fg/mL) and an impressive detection limit (1.65 fg/mL, +3σ of blank signal). Furthermore, reproducibility tests yielded a low relative standard deviation of 0.51%, indicating the good performance of the developed biosensor. Real sample analysis in freshly prepared apple juice revealed no significant difference (P < 0.05) in current intensity between spiked and real samples. The sensor interface maintained excellent stability for up to 2 weeks (signal retention 96.45%). The excellent selectivity, stability, and sensitivity of the electrochemical aptasensor exemplify the potential for using nickel-based pseudocapacitive nanomaterials for a wide variety of electrochemical sensing applications.
Collapse
Affiliation(s)
- Brateen Datta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Praveena Bhatt
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysore 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Shirmovsky SE, Chizhov AV. Modeling of the entangled states transfer processes in microtubule tryptophan system. Biosystems 2023; 231:104967. [PMID: 37400052 DOI: 10.1016/j.biosystems.2023.104967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
The paper simulates the process of the migration of a single energy excitation along a chain of tryptophans in cell microtubules connected by dipole-dipole interaction. The paper shows that the excited states propagation rate falls within the range of nerve impulse velocity. It was shown that such a process also causes a transfer of quantum entanglement between tryptophans, so that microtubules can be considered as signaling system, the basis for transmitting information via the quantum channel. The conditions under which the migration of entangled states in the microtubule is possible are obtained. In a certain sense, it allows us to argue that the signal function of tryptophans works as an analogue of a quantum repeater that transmits entangled states over microtubule by relaying through intermediate tryptophans. Thus, the paper shows that the tryptophan system can be considered as an environment that supports the existence of entangled states during the time comparable with the time of the processes in biosystems.
Collapse
Affiliation(s)
- S Eh Shirmovsky
- Far Eastern Federal University, Institute of Mathematics and Computer Technologies, Department of Information Security, 10Ajax settlement, Russkiy Island, Vladivostok, Primorsky Region, 690922, Russia.
| | - A V Chizhov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980, Russia; Dubna State University, Dubna, Moscow region, 141980, Russia.
| |
Collapse
|
5
|
Gibbs C, Fedoretz-Maxwell BP, MacNeil GA, Walsby CJ, Warren JJ. Proximal Methionine Amino Acid Residue Affects the Properties of Redox-Active Tryptophan in an Artificial Model Protein. ACS OMEGA 2023; 8:19798-19806. [PMID: 37305310 PMCID: PMC10249128 DOI: 10.1021/acsomega.3c01589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Redox-active amino acid residues are at the heart of biological electron-transfer reactions. They play important roles in natural protein functions and are implicated in disease states (e.g., oxidative-stress-associated disorders). Tryptophan (Trp) is one such redox-active amino acid residue, and it has long been known to serve a functional role in proteins. Broadly speaking, there is still much to learn about the local features that make some Trp redox active and others inactive. Herein, we describe a new protein model system where we investigate how a methionine (Met) residue proximal to a redox-active Trp affects its reactivity and spectroscopy. We use an artificial variant of azurin from Pseudomonas aeruginosa to produce these models. We employ a series of UV-visible spectroscopy, electrochemistry, electron paramagnetic resonance, and density functional theory experiments to demonstrate the effect that placing Met near Trp radicals has in the context of redox proteins. The introduction of Met proximal to Trp lowers its reduction potential by ca. 30 mV and causes clear shifts in the optical spectra of the corresponding radicals. While the effect may be small, it is significant enough to be a way for natural systems to tune Trp reactivity.
Collapse
|
6
|
Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183605. [PMID: 33766534 DOI: 10.1016/j.bbamem.2021.183605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Light absorption by rhodopsin leads to the release of all-trans retinal (ATRal) in the lipid phase of photoreceptor disc membranes. Retinol dehydrogenase 8 (RDH8) then reduces ATRal into all-trans retinol, which is the first step of the visual cycle. The membrane binding of RDH8 has been postulated to be mediated by one or more palmitoylated cysteines located in its C-terminus. Different peptide variants of the C-terminus of RDH8 were thus used to obtain information on the mechanism of membrane binding of this enzyme. Steady-state and time-resolved fluorescence measurements were performed using short and long C-terminal segments of bovine RDH8, comprising one or two tryptophan residues. The data demonstrate that the amphipathic alpha helical structure of the first portion of the C-terminus of RDH8 strongly contributes to its membrane binding, which is also favored by palmitoylation of at least one of the cysteines located in the last portion of the C-terminus.
Collapse
|
7
|
Inhibitory effect of melittin on endonuclease-like activity of centrin. J Inorg Biochem 2018; 186:280-293. [PMID: 29990752 DOI: 10.1016/j.jinorgbio.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 07/01/2018] [Indexed: 11/21/2022]
Abstract
The xeroderma pigmentosum group C protein (XPC) and centrin2 are the primary initiators of global genome nucleotide excision repair (NER). Centrin, acts as a member of the EF-hand super family of calcium-binding proteins, playing roles in reconstitution of the vitro NER reaction. To understand the possible molecular and structural properties of the multiprotein process, the interactions of Euplotes octocarinatus centrin (EoCen), melittin, and DNA are described. EoCen shares a sequence identity of 66% with centrin2. Melittin possesses inverse direction hydrophobic triads-leucine-leucine-tryptophan (LLW) which are responsible for centrin binding. It is applied as a natural peptide to mimic centrin target peptide. As a result, it is proved that the integrated protein shows an endonuclease-like activity to DNA. Melittin is capable of interaction with both EoCen and DNA. More importantly, it is found that melittin displays an inhibitory effect on the endonuclease-like activity of centrin when it co-exists with EoCen and DNA in solution. Meanwhile, the DNA-melittin-EoCen ternary complex forms in the process. Quantitative analyses demonstrated by extensive biophysical assays reveal that binding of the peptide to DNA or centrin modulates the binding properties of it to another component. Furthermore, a possible positioning model of DNA and EoCen on melittin is proposed. This finding may constitute a model for that existing between centrin and its target peptide in NER process.
Collapse
|
8
|
Sack JT, Stephanopoulos N, Austin DC, Francis MB, Trimmer JS. Antibody-guided photoablation of voltage-gated potassium currents. ACTA ACUST UNITED AC 2013; 142:315-24. [PMID: 23940262 PMCID: PMC3753605 DOI: 10.1085/jgp.201311023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of 40 mammalian voltage-gated potassium (Kv) channels control membrane excitability in electrically excitable cells. The contribution of individual Kv channel types to electrophysiological signaling has been difficult to assign, as few selective inhibitors exist for individual Kv subunits. Guided by the exquisite selectivity of immune system interactions, we find potential for antibody conjugates as selective Kv inhibitors. Here, functionally benign anti-Kv channel monoclonal antibodies (mAbs) were chemically modified to facilitate photoablation of K currents. Antibodies were conjugated to porphyrin compounds that upon photostimulation inflict localized oxidative damage. Anti-Kv4.2 mAb–porphyrin conjugates facilitated photoablation of Kv4.2 currents. The degree of K current ablation was dependent on photon dose and conjugate concentration. Kv channel photoablation was selective for Kv4.2 over Kv4.3 or Kv2.1, yielding specificity not present in existing neurotoxins or other Kv channel inhibitors. We conclude that antibody–porphyrin conjugates are capable of selective photoablation of Kv currents. These findings demonstrate that subtype-specific mAbs that in themselves do not modulate ion channel function are capable of delivering functional payloads to specific ion channel targets.
Collapse
Affiliation(s)
- Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
9
|
Lin J, Gao C, Liu R. Interaction Mechanism of Trp-Arg Dipeptide with Calf Thymus DNA. J Fluoresc 2013; 23:921-7. [DOI: 10.1007/s10895-013-1217-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/01/2013] [Indexed: 11/30/2022]
|
10
|
Daly S, Bianchini R, Polefka T, Jumbelic L, Jachowicz J. Fluorescence and coloration of grey hair. Int J Cosmet Sci 2009; 31:347-59. [DOI: 10.1111/j.1468-2494.2009.00500.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Liang S, Yang F, Zhou C, Wang Y, Li S, Sun CK, Puglisi JL, Bers D, Sun C, Zheng J. Temperature-dependent activation of neurons by continuous near-infrared laser. Cell Biochem Biophys 2008; 53:33-42. [PMID: 19034696 DOI: 10.1007/s12013-008-9035-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 01/28/2023]
Abstract
Optical control of neuronal activity has a number of advantages over electrical methods and can be conveniently applied to intact individual neurons in vivo. In this study, we demonstrated an experimental approach in which a focused continuous near-infrared (CNI) laser beam was used to activate single rat hippocampal neurons by transiently elevating the local temperature. Reversible changes in the amplitude and kinetics of neuronal voltage-gated Na and K channel currents were recorded following irradiation with a single-mode 980 nm CNI-laser. Using single-channel recordings under controlled temperatures as a means of calibration, it was estimated that temperature at the neuron rose by 14 degrees C in 500 ms. Computer simulation confirmed that small temperature changes of about 5 degrees C were sufficient to produce significant changes in neuronal excitability. The method should be broadly applicable to studies of neuronal activity under physiological conditions, in particular studies of temperature-sensing neurons expressing thermoTRP channels.
Collapse
Affiliation(s)
- Shanshan Liang
- Lab of Biomedical Optics, College of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hirth IC, Britz FC, Deitmer JW. G protein activation by uncaging of GTP-gamma-S in the leech giant glial cell. ACTA ACUST UNITED AC 2008; 210:3771-9. [PMID: 17951418 DOI: 10.1242/jeb.008037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glial cells can be activated by neurotransmitters via metabotropic, G protein-coupled receptors. We have studied the effects of 'global' G protein activation by GTP-gamma-S on the membrane potential, membrane conductance, intracellular Ca(2+) and Na(+) of the giant glial cell in isolated ganglia of the leech Hirudo medicinalis. Uncaging GTP-gamma-S (injected into a giant glial cell as caged compound) by moderate UV illumination hyperpolarized the membrane due to an increase in K+ conductance. Uncaging GTP-gamma-S also evoked rises in cytosolic Ca(2+) and Na+, both of which were suppressed after depleting the intracellular Ca(2+) stores with cyclopiazonic acid (20 micromol l(-1)). Uncaging inositol-trisphosphate evoked a transient rise in cytosolic Ca(2+) and Na+ but no change in membrane potential. Injection of the fast Ca(2+) chelator BAPTA or depletion of intracellular Ca(2+) stores did not suppress the membrane hyperpolarization induced by uncaging GTP-gamma-S. Our results suggest that global activation of G proteins in the leech giant glial cell results in a rise of Ca(2+)-independent membrane K+ conductance, a rise of cytosolic Ca(2+), due to release from intracellular stores, and a rise of cytosolic Na+, presumably due to increased Na+/Ca(2+) exchange.
Collapse
Affiliation(s)
- Ingo C Hirth
- Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Kaiserslautern, Germany
| | | | | |
Collapse
|
13
|
La C, You Y, Zhabyeyev P, Pelzer DJ, McDonald TF. Ultraviolet photoalteration of late Na+ current in guinea-pig ventricular myocytes. J Membr Biol 2006; 210:43-50. [PMID: 16783617 DOI: 10.1007/s00232-005-0844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 01/10/2006] [Indexed: 10/24/2022]
Abstract
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca(2+) imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at -80 mV, dialyzed with K(+)-, Na(+)-free pipette solution, and bathed with K(+)-free Tyrode's solution at 22 degrees C. During experiments that lasted for approximately 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from -80 to -40 mV, but had little effect on background current or on L-type Ca(2+) current. Trials with depolarized holding potential, Ca(2+) channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na(+) current (I(Na)). The amplitude of the late inward current sensitive to 100 microM: TTX was increased by 3.5-fold after 20-30 min of irradiation. UVA modulation of late I(Na) may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac I(Na).
Collapse
Affiliation(s)
- C La
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| | | | | | | | | |
Collapse
|
14
|
Nache V, Schulz E, Zimmer T, Kusch J, Biskup C, Koopmann R, Hagen V, Benndorf K. Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative. J Physiol 2005; 569:91-102. [PMID: 16081488 PMCID: PMC1464204 DOI: 10.1113/jphysiol.2005.092304] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels play a key role in the sensory transduction of vision and olfaction. The channels are opened by the binding of cyclic nucleotides. Native olfactory CNG channels are heterotetramers of CNGA2, CNGA4, and CNGB1b subunits. Upon heterologous expression, only CNGA2 subunits can form functional homotetrameric channels. It is presently not known how the binding of the ligands to the four subunits is translated to channel opening. We studied activation of olfactory CNG channels by photolysis-induced jumps of cGMP or cAMP, two cyclic nucleotides with markedly different apparent affinity. It is shown that at equal degree of activation, the activation time course of homotetrameric channels is similar with cGMP and cAMP and it is also similar in homo- and heterotetrameric channels with the same cyclic nucleotide. Kinetic models were globally fitted to activation time courses of homotetrameric channels. While all models containing equivalent binding sites failed, a model containing three binding sites with a ligand affinity high-low-high described the data adequately. Only the second binding step switches from a very low to a very high open probability. We propose a unique gating mechanism for homotetrameric and heterotetrameric channels that involves only three highly cooperative binding steps.
Collapse
Affiliation(s)
- Vasilica Nache
- Institut für Physiologie II, Friedrich-Schiller-Universität Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Leszkiewicz DN, Aizenman E. Reversible modulation of GABA(A) receptor-mediated currents by light is dependent on the redox state of the receptor. Eur J Neurosci 2003; 17:2077-83. [PMID: 12786974 DOI: 10.1046/j.1460-9568.2003.02656.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Light has recently been shown to be a physical modulator of GABAA receptor activity. Here, we further characterize the effects of light on a native cortical and retinal population of GABAA receptors, and identify a possible mechanism for light induced potentiation using recombinant receptors. GABA-induced currents in cortical neurons were observed to be rapidly and reversibly potentiated following exposure to a brief flash of light (0.5-2 s; > 280 nm) directed via an optical fibre (50 micro m i.d.). GABAA receptor-mediated responses in retinal ganglion cells were also enhanced by light, while glycine-induced currents in these cells were unaffected by the same stimulus. We also determined that physiological levels of light, that is, those that would normally reach the retina, also enhanced GABA-induced currents. Finally, we observed that chemical reduction of recombinant alpha1beta2 and alpha1beta2gamma2S GABAA receptors by dithiothreitol substantially attenuated the effects of light. These results suggest that GABAA receptors can be reversibly modified by a brief pulse of light via an allosteric mechanism that is intimately linked to redox modulation.
Collapse
Affiliation(s)
- Daniel N Leszkiewicz
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA 15261, USA
| | | |
Collapse
|
16
|
Abstract
Light has been shown to modulate NMDA receptor function. In this study, we have performed experiments aimed at elucidating the putative site of action of light within the receptor structure. Whole-cell recordings were performed in Chinese hamster ovary cells expressing various combinations of NMDA receptor subunits. Although there was no apparent difference in the actions of light between wild-type NR1-NR2A and NR1-NR2B subunit configurations, the light enhancement of NMDA-induced currents was either completely abolished or substantially diminished in the redox site mutants NR1a (C744A, C798A)-NR2B and NR1a (C744A, C798A)-NR2A. Further studies demonstrated that chemical reduction of NR1a-NR2B NMDA receptors decreased its sensitivity to light. In addition, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES), used to irreversibly bind free sulfhydryl groups and inactivate the redox site, abolished the effects of light on wild-type receptors. In contrast, no free sulfhydryls were available for MTSES following light stimulation, suggesting that light itself could not reduce the redox modulatory site. Our results suggest that a functionally intact, oxidized redox site is necessary for light-induced potentiation. Hence, light and redox modulation of the NMDA receptor may share a common intramolecular pathway for altering the function of this ion channel.
Collapse
Affiliation(s)
- Daniel Leszkiewicz
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
17
|
Abstract
Visual transduction captures widespread interest because its G-protein signaling motif recurs throughout nature yet is uniquely accessible for study in the photoreceptor cells. The light-activated currents generated at the photoreceptor outer segment provide an easily observed real-time measure of the output of the signaling cascade, and the ease of obtaining pure samples of outer segments in reasonable quantity facilitates biochemical experiments. A quiet revolution in the study of the mechanism has occurred during the past decade with the advent of gene-targeting techniques. These have made it possible to observe how transduction is perturbed by the deletion, overexpression, or mutation of specific components of the transduction apparatus.
Collapse
Affiliation(s)
- M E Burns
- Department of Neurobiology, Stanford University Medical Center, Stanford, California 94305, USA.
| | | |
Collapse
|
18
|
Middendorf TR, Aldrich RW. Effects of ultraviolet modification on the gating energetics of cyclic nucleotide-gated channels. J Gen Physiol 2000; 116:253-82. [PMID: 10919870 PMCID: PMC2229492 DOI: 10.1085/jgp.116.2.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Middendorf et al. (Middendorf, T.R., R.W. Aldrich, and D.A. Baylor. 2000. J. Gen. Physiol. 116:227-252) showed that ultraviolet light decreases the current through cloned cyclic nucleotide-gated channels from bovine retina activated by high concentrations of cGMP. Here we probe the mechanism of the current reduction. The channels' open probability before irradiation, P(o)(0), determined the sign of the change in current amplitude that occurred upon irradiation. UV always decreased the current through channels with high initial open probabilities [P(o)(0) > 0.3]. Manipulations that promoted channel opening antagonized the current reduction by UV. In contrast, UV always increased the current through channels with low initial open probabilities [P(o)(0) < or = 0.02], and the magnitude of the current increase varied inversely with P(o)(0). The dual effects of UV on channel currents and the correlation of both effects with P(o)(0) suggest that the channels contain two distinct classes of UV target residues whose photochemical modification exerts opposing effects on channel gating. We present a simple model based on this idea that accounts quantitatively for the UV effects on the currents and provides estimates for the photochemical quantum yields and free energy costs of modifying the UV targets. Simulations indicate that UV modification may be used to produce and quantify large changes in channel gating energetics in regimes where the associated changes in open probability are not measurable by existing techniques.
Collapse
Affiliation(s)
- Thomas R. Middendorf
- Neurobiology Department, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| | - Richard W. Aldrich
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
19
|
Gordon SE. "Light" reading: targeting tryptophans in cyclic nucleotide-gated channels. J Gen Physiol 2000; 116:223-5. [PMID: 10919868 PMCID: PMC2229497 DOI: 10.1085/jgp.116.2.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Accepted: 07/11/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- S E Gordon
- University of Washington School of Medicine, Department of Ophthalmology and Department of Physiology and Biophysics, Seattle, Washington 98195-6485, USA
| |
Collapse
|