1
|
Arias ER, Sánchez-Tafolla BM, Terrón C, Martínez LA, Zetina ME, Morales MA, Cifuentes F. Long-term potentiation and its neurotrophin-dependent modulation in the superior cervical ganglion of the rat are influenced by KCNQ channel function. Can J Physiol Pharmacol 2023; 101:539-547. [PMID: 37406358 DOI: 10.1139/cjpp-2022-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation. Immunohistochemical and reverse transcriptase polymerase chain reaction analyses showed the expression of the KCNQ2 isoform. We found that 1 µmol/L XE991, a channel inhibitor, significantly reduced gLTP (∼50%), whereas 5 µmol/L flupirtine, a channel activator, significantly increased gLTP (1.3- to 1.7-fold). Both modulators counterbalanced the effects of the Nts on gLTP. Data suggest that KCNQ/M channels are likely involved in gLTP expression and in the modulation exerted by BDNF and NGF.
Collapse
Affiliation(s)
- Erwin R Arias
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Berardo M Sánchez-Tafolla
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Carlos Terrón
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Luis A Martínez
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Maria E Zetina
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Miguel A Morales
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Fredy Cifuentes
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
2
|
Haburčák M, Harrison J, Buyukozturk MM, Sona S, Bates S, Birren SJ. Heightened sympathetic neuron activity and altered cardiomyocyte properties in spontaneously hypertensive rats during the postnatal period. Front Synaptic Neurosci 2022; 14:995474. [PMID: 36247695 PMCID: PMC9561918 DOI: 10.3389/fnsyn.2022.995474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The Spontaneously Hypertensive Rat (SHR) has increased sympathetic drive to the periphery that precedes and contributes to the development of high blood pressure, making it a useful model for the study of neurogenic hypertension. Comparisons to the normotensive Wistar Kyoto (WKY) rat have demonstrated altered active and intrinsic properties of SHR sympathetic neurons shortly before the onset of hypertension. Here we examine the structural and functional plasticity of postnatal SHR and WKY sympathetic neurons cultured alone or co-cultured with cardiomyocytes under conditions of limited extrinsic signaling. SHR neurons have an increased number of structural synaptic sites compared to age-matched WKY neurons, measured by the co-localization of presynaptic vesicular acetylcholine transporter and postsynaptic shank proteins. Whole cell recordings show that SHR neurons have a higher synaptic charge than WKY neurons, demonstrating that the increase in synaptic sites is associated with increased synaptic transmission. Differences in synaptic properties are not associated with altered firing rates between postnatal WKY and SHR neurons and are not influenced by interactions with target cardiomyocytes from either strain. Both SHR and WKY neurons show tonic firing patterns in our cultures, which are depleted of non-neuronal ganglionic cells and provide limited neurotrophic signaling. This suggests that the normal mature, phasic firing of sympathetic neurons requires extrinsic signaling, with potentially differential responses in the prehypertensive SHR, which have been reported to maintain tonic firing at later developmental stages. While cardiomyocytes do not drive neuronal differences in our cultures, SHR cardiomyocytes display decreased hypertrophy compared to WKY cells and altered responses to co-cultured sympathetic neurons. These experiments suggest that altered signaling in SHR neurons and cardiomyocytes contributes to changes in the cardiac-sympathetic circuit in prehypertensive rats as early as the postnatal period.
Collapse
Affiliation(s)
- Marián Haburčák
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Joshua Harrison
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Melda M. Buyukozturk
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Surbhi Sona
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Samuel Bates
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Susan J. Birren
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States,*Correspondence: Susan J. Birren
| |
Collapse
|
3
|
Tsuboi D, Otsuka T, Shimomura T, Faruk MO, Yamahashi Y, Amano M, Funahashi Y, Kuroda K, Nishioka T, Kobayashi K, Sano H, Nagai T, Yamada K, Tzingounis AV, Nambu A, Kubo Y, Kawaguchi Y, Kaibuchi K. Dopamine drives neuronal excitability via KCNQ channel phosphorylation for reward behavior. Cell Rep 2022; 40:111309. [PMID: 36070693 DOI: 10.1016/j.celrep.2022.111309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Otsuka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Md Omar Faruk
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tomoki Nishioka
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Sano
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, Sokendai, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | | | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, Sokendai, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
4
|
Davis H, Herring N, Paterson DJ. Downregulation of M Current Is Coupled to Membrane Excitability in Sympathetic Neurons Before the Onset of Hypertension. Hypertension 2020; 76:1915-1923. [PMID: 33040619 PMCID: PMC8360673 DOI: 10.1161/hypertensionaha.120.15922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Neurohumoral activation is an early hallmark of cardiovascular disease and contributes to the etiology of the pathophysiology. Stellectomy has reemerged as a positive therapeutic intervention to modify the progression of dysautonomia, although the biophysical properties underpinning abnormal activity of this ganglia are not fully understood in the initial stages of the disease. We investigated whether stellate ganglia neurons from prehypertensive SHRs (spontaneously hypertensive rats) are hyperactive and describe their electrophysiological phenotype guided by single-cell RNA sequencing, molecular biology, and perforated patch clamp to uncover the mechanism of abnormal excitability. We demonstrate the contribution of a plethora of ion channels, in particular inhibition of M current to stellate ganglia neuronal firing, and confirm the conservation of expression of key ion channel transcripts in human stellate ganglia. We show that hyperexcitability was curbed by M-current activators, nonselective sodium current blockers, or inhibition of Nav1.1-1.3, Nav1.6, or INaP. We conclude that reduced activity of M current contributes significantly to abnormal firing of stellate neurons, which, in part, contributes to the hyperexcitability from rats that have a predisposition to hypertension. Targeting these channels could provide a therapeutic opportunity to minimize the consequences of excessive sympathetic activation.
Collapse
Affiliation(s)
- Harvey Davis
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| | - Neil Herring
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (N.H.)
| | - David J Paterson
- From the Burdon Sanderson Cardiac Science Centre (H.D., N.H., D.J.P.), University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, Wellcome Trust OXION Initiative in Ion Channels and Disease (H.D., D.J.P.), University of Oxford, United Kingdom
| |
Collapse
|
5
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Zhang D, Men H, Zhang L, Gao X, Wang J, Li L, Zhu Q, Zhang H, Jia Z. Inhibition of M/K v7 Currents Contributes to Chloroquine-Induced Itch in Mice. Front Mol Neurosci 2020; 13:105. [PMID: 32694980 PMCID: PMC7339983 DOI: 10.3389/fnmol.2020.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/20/2020] [Indexed: 01/31/2023] Open
Abstract
M/Kv7 potassium channels play a key role in regulation of neuronal excitability. Modulation of neuronal excitability of primary sensory neurons determines the itch sensation induced by a variety of itch-causing substances including chloroquine (CQ). In the present study, we demonstrate that suppression of M/Kv7 channel activity contributes to generation of itch in mice. CQ enhances excitability of the primary sensory neurons through inhibiting M/Kv7 potassium currents in a Ca2+ influx-dependent manner. Specific M/Kv7 channel opener retigabine (RTG) or tannic acid (TA) not only reverses the CQ-induced enhancement of neuronal excitability but also suppresses the CQ-induced itch behavior. Systemic application of RTG or TA also significantly inhibits the itch behavior induced by a variety of pruritogens. Taken together, our findings provide novel insight into the molecular basis of CQ-induced itch sensation in mammals that can be applied to the development of strategies to mitigate itch behavior.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China.,Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Hongchao Men
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China.,Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Ludi Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Xiangxin Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Jingjing Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Leying Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaoying Zhu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
7
|
Silva-Dos-Santos NM, Oliveira-Abreu K, Moreira-Junior L, Santos-Nascimento TD, Silva-Alves KSD, Coelho-de-Souza AN, Ferreira-da-Silva FW, Leal-Cardoso JH. Diabetes mellitus alters electrophysiological properties in neurons of superior cervical ganglion of rats. Brain Res 2020; 1729:146599. [PMID: 31843626 DOI: 10.1016/j.brainres.2019.146599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Diabetic neuropathy is the most prevalent complication associated with diabetes mellitus (DM). The superior cervical ganglion (SCG) is an important sympathetic component of the autonomic nervous system. We investigated the changes in cellular electrophysiological properties and on Na+K+-ATPase activity of SCG neurons of rats with DM induced by streptozotocin (STZ). Three types of action potentials (AP) firing pattern were observed in response to a long (1 s) depolarizing pulse. Whilst some neurons fired a single AP (single firing phasic, SFP), others fired few APs (multiple firing phasic, MFP). A third type fired APs during more than 80% of the stimulus duration (tonic-like, TL). The occurrence of SFP, MFP and TL was 84.5, 13.8, and 1.7%, respectively. SFP and MFP differed significantly in their membrane input resistance (Rin). At the end of the 4th week of its time course, DM differently affected most types of neurons: DM induced depolarization of resting membrane potential (RMP), decreased AP amplitude in SFP, and decreased Rin in MFP. DM decreased spike after-hyperpolarization amplitude in MFP and the duration in SFP. Based on the RMP depolarization, we investigated the Na+K+-ATPase action and observed that DM caused a significant decrease in Na+K+-ATPase activity of SCG. In conclusion, we have demonstrated that DM affects several parameters of SCG physiology in a manner likely to have pathophysiological relevance.
Collapse
Affiliation(s)
- Nathalia Maria Silva-Dos-Santos
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - Klausen Oliveira-Abreu
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | | | | | - Kerly Shamyra da Silva-Alves
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - Andrelina Noronha Coelho-de-Souza
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - Francisco Walber Ferreira-da-Silva
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - José Henrique Leal-Cardoso
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| |
Collapse
|
8
|
Kim KW, Kim K, Lee H, Suh BC. Ethanol Elevates Excitability of Superior Cervical Ganglion Neurons by Inhibiting Kv7 Channels in a Cell Type-Specific and PI(4,5)P 2-Dependent Manner. Int J Mol Sci 2019; 20:E4419. [PMID: 31500374 PMCID: PMC6770022 DOI: 10.3390/ijms20184419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Alcohol causes diverse acute and chronic symptoms that often lead to critical health problems. Exposure to ethanol alters the activities of sympathetic neurons that control the muscles, eyes, and blood vessels in the brain. Although recent studies have revealed the cellular targets of ethanol, such as ion channels, the molecular mechanism by which alcohol modulates the excitability of sympathetic neurons has not been determined. Here, we demonstrated that ethanol increased the discharge of membrane potentials in sympathetic neurons by inhibiting the M-type or Kv7 channel consisting of the Kv7.2/7.3 subunits, which were involved in determining the membrane potential and excitability of neurons. Three types of sympathetic neurons, classified by their threshold of activation and firing patterns, displayed distinct sensitivities to ethanol, which were negatively correlated with the size of the Kv7 current that differs depending on the type of neuron. Using a heterologous expression system, we further revealed that the inhibitory effects of ethanol on Kv7.2/7.3 currents were facilitated or diminished by adjusting the amount of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). These results suggested that ethanol and PI(4,5)P2 modulated gating of the Kv7 channel in superior cervical ganglion neurons in an antagonistic manner, leading to regulation of the membrane potential and neuronal excitability, as well as the physiological functions mediated by sympathetic neurons.
Collapse
Affiliation(s)
- Kwon-Woo Kim
- Department of Brain and cognitive sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| | - Keetae Kim
- Department of New biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| | - Hyosang Lee
- Department of Brain and cognitive sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| | - Byung-Chang Suh
- Department of Brain and cognitive sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| |
Collapse
|
9
|
Liu L, Bonventre JV, Rittenhouse AR. cPLA2α-/- sympathetic neurons exhibit increased membrane excitability and loss of N-Type Ca2+ current inhibition by M1 muscarinic receptor signaling. PLoS One 2018; 13:e0201322. [PMID: 30557348 PMCID: PMC6296557 DOI: 10.1371/journal.pone.0201322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Group IVa cytosolic phospholipase A2 (cPLA2α) mediates GPCR-stimulated arachidonic acid (AA) release from phosphatidylinositol 4,5-bisphosphate (PIP2) located in plasma membranes. We previously found in superior cervical ganglion (SCG) neurons that PLA2 activity is required for voltage-independent N-type Ca2+ (N-) current inhibition by M1 muscarinic receptors (M1Rs). These findings are at odds with an alternative model, previously observed for M-current inhibition, where PIP2 dissociation from channels and subsequent metabolism by phospholipase C suffices for current inhibition. To resolve cPLA2α’s importance, we have investigated its role in mediating voltage-independent N-current inhibition (~40%) that follows application of the muscarinic agonist oxotremorine-M (Oxo-M). Preincubation with different cPLA2α antagonists or dialyzing cPLA2α antibodies into cells minimized N-current inhibition by Oxo-M, whereas antibodies to Ca2+-independent PLA2 had no effect. Taking a genetic approach, we found that SCG neurons from cPLA2α-/- mice exhibited little N-current inhibition by Oxo-M, confirming a role for cPLA2α. In contrast, cPLA2α antibodies or the absence of cPLA2α had no effect on voltage-dependent N-current inhibition by M2/M4Rs or on M-current inhibition by M1Rs. These findings document divergent M1R signaling mediating M-current and voltage-independent N-current inhibition. Moreover, these differences suggest that cPLA2α acts locally to metabolize PIP2 intimately associated with N- but not M-channels. To determine cPLA2α’s functional importance more globally, we examined action potential firing of cPLA2α+/+ and cPLA2α-/- SCG neurons, and found decreased latency to first firing and interspike interval resulting in a doubling of firing frequency in cPLA2α-/- neurons. These unanticipated findings identify cPLA2α as a tonic regulator of neuronal membrane excitability.
Collapse
Affiliation(s)
- Liwang Liu
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseph V. Bonventre
- Harvard Institute of Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Ann R. Rittenhouse
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Manohar S, Dahar K, Adler HJ, Dalian D, Salvi R. Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling. Mol Cell Neurosci 2016; 75:101-12. [PMID: 27473923 DOI: 10.1016/j.mcn.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1β. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| | - Kimberly Dahar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Henry J Adler
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Ding Dalian
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
11
|
Zhou N, Huang S, Li L, Huang D, Yan Y, Du X, Zhang H. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells. Neuroscience 2016; 333:356-67. [PMID: 27450567 DOI: 10.1016/j.neuroscience.2016.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/28/2022]
Abstract
Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function.
Collapse
Affiliation(s)
- Najing Zhou
- Department of Pharmacology, Hebei Medical University, China; Department of Cell Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Sha Huang
- Department of Pharmacology, Hebei Medical University, China
| | - Li Li
- Department of Pharmacology, Hebei Medical University, China
| | - Dongyang Huang
- Department of Pharmacology, Hebei Medical University, China
| | - Yunli Yan
- Department of Cell Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, China.
| |
Collapse
|
12
|
Bernal L, Lopez-Garcia JA, Roza C. Spontaneous activity in C-fibres after partial damage to the saphenous nerve in mice: Effects of retigabine. Eur J Pain 2016; 20:1335-45. [PMID: 27061852 DOI: 10.1002/ejp.858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spontaneous pain is the most devastating positive symptom in neuropathic pain patients. Recent data show a direct relationship between spontaneous discharges in C-fibres and spontaneous pain in neuropathic patients. Unfortunately, to date there is a lack of experimental animal models for drug testing. METHODS We recorded afferent fibres from a new experimental model in vitro. The preparation contains a neuroma formed in a peripheral branch of the saphenous nerve together with the undamaged branches, which maintain intact terminals in a skin flap. RESULTS Fibres with stable rates of ectopic spontaneous discharges were found among axotomized (5 A- and 18 C-fibres, mean discharge 0.48 ± 0.08 Hz) and 'putative intact' fibres (12 C-fibres, mean discharge 0.28 ± 0.08 Hz). A proportion (~9%) of axotomized fibres had mechanical receptive fields in the skin far beyond the site of injury. Collision experiments demonstrated that action potentials evoked from neuroma and skin travelled by the same fibre, indicating functional cross-talk between neuromatose and putative intact fibres. Retigabine, the specific Kv7 channel opener, depressed spontaneous discharges by 70% in 15/18 units tested. In contrast, responses to mechanical stimulation of the skin were unaltered by retigabine. CONCLUSIONS Partial damage to a peripheral nerve may increase the incidence of spontaneous activity in C-fibres. Retigabine reduced spontaneous activity but not stimulus-evoked activity, suggesting an important role for ion channels in the control of spontaneous pain and demonstrating the utility of the model for the testing of compounds in clinically relevant variables. WHAT DOES THIS STUDY ADD?: Our in vitro experimental model of peripheral neuropathy allows for pharmacological characterization of spontaneously active fibres. Using this model, we show that retigabine inhibits aberrant spontaneous discharges without altering physiological responses in primary afferents.
Collapse
Affiliation(s)
- L Bernal
- Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - J A Lopez-Garcia
- Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Angel-Chavez LI, Acosta-Gómez EI, Morales-Avalos M, Castro E, Cruzblanca H. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons. PLoS One 2015; 10:e0126365. [PMID: 25962132 PMCID: PMC4427186 DOI: 10.1371/journal.pone.0126365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022] Open
Abstract
In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.
Collapse
Affiliation(s)
- Luis I. Angel-Chavez
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. 32310, México
| | - Eduardo I. Acosta-Gómez
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. 32310, México
| | - Mario Morales-Avalos
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col. 28045, México
| | - Elena Castro
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col. 28045, México
| | - Humberto Cruzblanca
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col. 28045, México
- * E-mail:
| |
Collapse
|
14
|
Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 2015; 22:486-504. [PMID: 24735331 PMCID: PMC4323017 DOI: 10.1089/ars.2014.5884] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. RECENT ADVANCES Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. CRITICAL ISSUES The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. FUTURE DIRECTIONS Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.
Collapse
Affiliation(s)
- Nikita Gamper
- 1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
15
|
Springer MG, Kullmann PHM, Horn JP. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo. J Physiol 2014; 593:803-23. [PMID: 25398531 DOI: 10.1113/jphysiol.2014.284125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/04/2014] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The synaptic organization of paravertebral sympathetic ganglia enables them to relay activity from the spinal cord to the periphery and thereby control autonomic functions, including blood pressure and body temperature. The present experiments were done to reconcile conflicting observations in tissue culture, intact isolated ganglia and living animals. By recording intracellularly from dissociated neurons and intact ganglia, we found that when electrode damage makes cells leaky it could profoundly distort cellular excitability and the integration of synaptic potentials. The experiments relied on the dynamic clamp method, which allows the creation of virtual ion channels by injecting current into a cell based upon a mathematical model and using rapid feedback between the model and cell. The results support the hypothesis that sympathetic ganglia can produce a 2.4-fold amplification of presynaptic activity. This could aid understanding of the neural hyperactivity that is believed to drive high blood pressure in some patients. ABSTRACT The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3-10 nS converted cells from classes 1 and 2 to class 3 dynamics with current-voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry.
Collapse
Affiliation(s)
- Mitchell G Springer
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
16
|
Cho YS, Ko IG, Kim SE, Hwan L, Shin MS, Kim CJ, Kim SH, Jin JJ, Chung JY, Kim KH. Caffeine enhances micturition through neuronal activation in micturition centers. Mol Med Rep 2014; 10:2931-6. [PMID: 25323389 DOI: 10.3892/mmr.2014.2646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
Caffeine may promote incontinence through its diuretic effect, particularly in individuals with underlying detrusor overactivity, in addition to increasing muscle contraction of the bladder smooth muscle. Caffeine may also affect bladder function via central micturition centers, including the medial preoptic area, ventrolateral periaqueductal gray, and pontine micturition center. However, the biochemical mechanisms of caffeine in central micturition centers affecting bladder function remain unclear. In the present study, the effects of caffeine on the central micturition reflex were investigated by measuring the degree of neuronal activation, and by quantifying nerve growth factor (NGF) expression in rats. Following caffeine administration for 14 days, a urodynamic study was performed to assess the changes to bladder function. Subsequently, immunohistochemical staining to identify the expression of c‑Fos and NGF in the central micturition areas was performed. Ingestion of caffeine increased bladder smooth muscle contraction pressure and time as determined by cystometry. Expression levels of c‑Fos and NGF in all central micturition areas were significantly increased following the administration of caffeine. The effects on contraction pressure and time were the most potent and expression levels of c‑Fos and NGF were greatest at the lowest dose of caffeine. These results suggest that caffeine facilitates bladder instability through enhancing neuronal activation in the central micturition areas.
Collapse
Affiliation(s)
- Young-Sam Cho
- Department of Urology, Kangbuk Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 110‑746, Republic of Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Sung-Eun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Lakkyong Hwan
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Mal-Soon Shin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Sang-Hoon Kim
- Department of Physical Education, Graduate School of Education, Sangmyung University, Seoul 110‑743, Republic of Korea
| | - Jun-Jang Jin
- Department of Physical Activity Design, College of Science, Hanseo University, Seosan 356‑706, Republic of Korea
| | - Jun-Young Chung
- Department of Anesthesiology and Pain Medicine, Gangdong Kyung Hee Hospital, College of Medicine, Kyung Hee University, Seoul 134‑727, Republic of Korea
| | - Khae-Hawn Kim
- Department of Urology, Gachon University Gil Medical Center, Incheon 405‑760, Republic of Korea
| |
Collapse
|
17
|
Yu YQ, Chen XF, Yang Y, Yang F, Chen J. Electrophysiological identification of tonic and phasic neurons in sensory dorsal root ganglion and their distinct implications in inflammatory pain. Physiol Res 2014; 63:793-9. [PMID: 25157654 DOI: 10.33549/physiolres.932708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the mammalian autonomic nervous system, tonic and phasic neurons can be differentiated on firing patterns in response to long depolarizing current pulse. However, the similar firing patterns in the somatic primary sensory neurons and their functional significance are not well investigated. Here, we identified two types of neurons innervating somatic sensory in rat dorsal root ganglia (DRG). Tonic neurons fire action potentials (APs) in an intensity-dependent manner, whereas phasic neurons typically generate only one AP firing at the onset of stimulation regardless of intensity. Combining retrograde labeling of somatic DRG neurons with fluorescent tracer DiI, we further find that these neurons demonstrate distinct changes under inflammatory pain states induced by complete Freund's adjuvant (CFA) or bee venom toxin melittin. In tonic neurons, CFA and melittin treatments significantly decrease rheobase and AP durations (depolarization and repolarization), enhance amplitudes of overshoot and afterhyperpolarization (AHP), and increase the number of evoked action potentials. In phasic neurons, however, the same inflammation treatments cause fewer changes in these electrophysiological parameters except for the increased overshoot and decreased AP durations. In the present study, we find that tonic neurons are more hyperexcitable than phasic neurons after peripheral noxious inflammatory stimulation. The results indicate the distinct contributions of two types of DRG neurons in inflammatory pain.
Collapse
Affiliation(s)
- Y-Q Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Fourth Military Medical University, Xi'an, PR China.
| | | | | | | | | |
Collapse
|
18
|
Petersson ME, Obreja O, Lampert A, Carr RW, Schmelz M, Fransén E. Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors--a combined experimental and modelling study. PLoS One 2014; 9:e103556. [PMID: 25136824 PMCID: PMC4138079 DOI: 10.1371/journal.pone.0103556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/02/2014] [Indexed: 02/02/2023] Open
Abstract
Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.
Collapse
Affiliation(s)
- Marcus E Petersson
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Otilia Obreja
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Richard W Carr
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Martin Schmelz
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Erik Fransén
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
19
|
Arias ER, Valle-Leija P, Morales MA, Cifuentes F. Differential contribution of BDNF and NGF to long-term potentiation in the superior cervical ganglion of the rat. Neuropharmacology 2014; 81:206-14. [DOI: 10.1016/j.neuropharm.2014.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/28/2014] [Accepted: 02/01/2014] [Indexed: 11/28/2022]
|
20
|
Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37:146-58. [PMID: 24461875 PMCID: PMC3945816 DOI: 10.1016/j.tins.2013.12.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Potassium (K+) channels are crucial determinants of neuronal excitability. Nerve injury or inflammation alters K+ channel activity in neurons of the pain pathway. These changes can render neurons hyperexcitable and cause chronic pain. Therapies targeting K+ channels may provide improved pain relief in these states.
Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states.
Collapse
|
21
|
Indo Y. Nerve growth factor, pain, itch and inflammation: lessons from congenital insensitivity to pain with anhidrosis. Expert Rev Neurother 2014; 10:1707-24. [DOI: 10.1586/ern.10.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. J Neurosci 2013; 33:6041-6. [PMID: 23554485 DOI: 10.1523/jneurosci.4275-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have identified a new signaling role for nitric oxide (NO) in neurons from the trigeminal ganglia (TG). We show that in rat sensory neurons from the TG the NO donor, S-nitroso-N-acetyl-dl-penicillamine, inhibited M-current. This inhibitory effect was blocked by NO scavenging, while inhibition of NO synthases increased M-current, suggesting that tonic NO levels inhibit M-current in TG neurons. Moreover NO increased neuronal excitability and calcitonin gene-related peptide (CGRP) release and these effects could be prevented by perturbing M-channel function. First, NO-induced depolarization was prevented by pre-application of the M-channel blocker XE991 and second, NO-induced increase in CGRP release was prevented by incubation with the M-channel opener retigabine. We investigated the mechanism of the effects of NO on M-channels and identified a site of action of NO to be the redox modulatory site at the triplet of cysteines within the cytosolic linker between transmembrane domains 2 and 3, which is also a site of oxidative modification of M-channels by reactive oxygen species (ROS). NO and oxidative modifications have opposing effects on M-current, suggesting that a tightly controlled local redox and NO environment will exert fine control over M-channel activity and thus neuronal excitability. Together our data have identified a dynamic redox sensor within neuronal M-channels, which mediates reciprocal regulation of channel activity by NO and ROS. This sensor may play an important role in mediating excitatory effects of NO in such trigeminal disorders as headache and migraine.
Collapse
|
23
|
Zheng Q, Fang D, Liu M, Cai J, Wan Y, Han JS, Xing GG. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain 2013; 154:434-448. [PMID: 23352759 DOI: 10.1016/j.pain.2012.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 11/05/2012] [Accepted: 12/06/2012] [Indexed: 01/11/2023]
Abstract
Bone cancer pain has a strong impact on the quality of life of patients, but is difficult to treat. Better understanding of the pathogenic mechanisms underlying bone cancer pain will likely lead to the development of more effective treatments. In the present study, we investigated whether inhibition of KCNQ/M channels contributed to the hyperexcitability of primary sensory neurons and to the pathogenesis of bone cancer pain. By using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumour cells, we documented a prominent decrease in expression of KCNQ2 and KCNQ3 proteins and a reduction of M-current density in small-sized dorsal root ganglia (DRG) neurons, which were associated with enhanced excitability of these DRG neurons and the hyperalgesic behaviours in bone cancer rats. Coincidently, we found that inhibition of KCNQ/M channels with XE-991 caused a robust increase in the excitability of small-sized DRG neurons and produced an obvious mechanical allodynia in normal rats. On the contrary, activation of the KCNQ/M channels with retigabine not only inhibited the hyperexcitability of these small DRG neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in bone cancer rats, and all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. These results suggest that repression of KCNQ/M channels leads to the hyperexcitability of primary sensory neurons, which in turn causes bone cancer pain. Thus, suppression of KCNQ/M channels in primary DRG neurons plays a crucial role in the development of bone cancer pain.
Collapse
Affiliation(s)
- Qin Zheng
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, PR China Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
25
|
Obreja O, Ringkamp M, Turnquist B, Hirth M, Forsch E, Rukwied R, Petersen M, Schmelz M. Nerve growth factor selectively decreases activity-dependent conduction slowing in mechano-insensitive C-nociceptors. Pain 2011; 152:2138-2146. [DOI: 10.1016/j.pain.2011.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/27/2011] [Accepted: 05/18/2011] [Indexed: 01/07/2023]
|
26
|
Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain 2011; 152:742-754. [PMID: 21345591 PMCID: PMC3071978 DOI: 10.1016/j.pain.2010.12.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022]
Abstract
Neuropathic pain is a severe health problem for which there is a lack of effective therapy. A frequent underlying condition of neuropathic pain is a sustained overexcitability of pain-sensing (nociceptive) sensory fibres. Therefore, the identification of mechanisms for such abnormal neuronal excitability is of utmost importance for understanding neuropathic pain. Despite much effort, an inclusive model explaining peripheral overexcitability is missing. We investigated transcriptional regulation of the Kcnq2 gene, which encodes the Kv7.2 subunit of membrane potential-stabilizing M channel, in peripheral sensory neurons in a model of neuropathic pain—partial sciatic nerve ligation (PSNL). We show that Kcnq2 is the major Kcnq gene transcript in dorsal root ganglion (DRG); immunostaining and patch-clamp recordings from acute ganglionic slices verified functional expression of Kv7.2 in small-diameter nociceptive DRG neurons. Neuropathic injury induced substantial downregulation of Kv7.2 expression. Levels of repressor element 1–silencing transcription factor (REST), which is known to suppress Kcnq2 expression, were upregulated in response to neuropathic injury identifying the likely mechanism of Kcnq2 regulation. Behavioural experiments demonstrated that neuropathic hyperalgesia following PSNL developed faster than the downregulation of Kcnq2 expression could be detected, suggesting that this transcriptional mechanism may contribute to the maintenance rather than the initiation of neuropathic pain. Importantly, the decrease in the peripheral M channel abundance could be functionally compensated by peripherally applied M channel opener flupirtine, which alleviated neuropathic hyperalgesia. Our work suggests a novel mechanism for neuropathic overexcitability and brings focus on M channels and REST as peripheral targets for the treatment of neuropathic pain. Neuropathic injury induces transcriptional downregulation of the Kcnq2 potassium channel gene by the transcriptional suppressor repressor element 1–silencing transcription factor; this mechanism contributes to peripheral sensitization of the afferent fibres.
Collapse
Affiliation(s)
- Kirstin Rose
- Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, Leeds, UK Pain TA, Pfizer Global Research and Development, Sandwich, UK
| | | | | | | | | | | |
Collapse
|
27
|
Functional effects of the KCNQ modulators retigabine and XE991 in the rat urinary bladder. Eur J Pharmacol 2010; 638:121-7. [PMID: 20385123 DOI: 10.1016/j.ejphar.2010.03.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/16/2010] [Accepted: 03/24/2010] [Indexed: 01/15/2023]
Abstract
The anticonvulsant retigabine has previously been reported to inhibit bladder overactivity in rats in vivo but the mechanism and site of action are not known. In the present study we investigated the effect of retigabine in isolated rat bladder tissue. Bladders from Sprague-Dawley rats were cut transversally into rings and mounted on an isometric myograph. The average tension, the amplitude and frequency of bladder muscle twitches were measured. The bladder tissue was stimulated with carbachol, KCl (5, 10 and 60mM), and by electric field stimulation. Dose-response curves were obtained with increasing concentrations of the KCNQ((2-5)) selective positive modulator, retigabine or with the KCNQ((1-5)) negative modulator XE991. Retigabine experiments were repeated in the presence of 10 microM XE991. Retigabine reduced both the contractility and the overall tonus of bladder tissue independent of the mode of stimulation with EC(50) values ranging from 3.3 microM (20mM KCl) to 8.3 microM (0.2 microM carbachol). In support of a KCNQ-specific effect, retigabine had only weak effects after 60mM KCl pre treatment and all retigabine effects could be reversed by XE991. XE991 increased both the amplitude and mean tension of the bladder but was more potent at increasing the number rather than the size of the stimulated twitches. In conclusion, this study demonstrates an efficacious KCNQ dependent effect of retigabine and XE991 on rat bladder contractility.
Collapse
|
28
|
Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H. Cholesterol inhibits M-type K+ channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem 2010; 285:10939-50. [PMID: 20123983 PMCID: PMC2856299 DOI: 10.1074/jbc.m109.048868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 01/25/2010] [Indexed: 01/10/2023] Open
Abstract
M-type (KCNQ) potassium channels play an important role in regulating the action potential firing in neurons. Here, we investigated the effect of cholesterol on M current in superior cervical ganglion (SCG) sympathetic neurons, using the patch clamp technique. M current was inhibited in a dose-dependent manner by cholesterol loading with a methyl-beta-cyclodextrin-cholesterol complex. This effect was prevented when membrane cholesterol level was restored by including empty methyl-beta-cyclodextrin in the pipette solution. Dialysis of cells with AMP-PNP instead of ATP prevented cholesterol action on M currents. Protein kinase C (PKC) inhibitor, calphostin C, abolished cholesterol-induced inhibition whereas the PKC activator, PDBu, mimicked the inhibition of M currents by cholesterol. The in vitro kinase assay showed that KCNQ2 subunits of M channel can be phosphorylated by PKC. A KCNQ2 mutant that is defective in phosphorylation by PKC failed to show current inhibition not only by PDBu but also by cholesterol. These results indicate that cholesterol-induced inhibition of M currents is mediated by PKC phosphorylation. The inhibition of M currents by PDBu and cholesterol was completely blocked by PIP(2) loading, indicating that the decrease in PIP(2)-channel interaction underlies M channel inhibition by PKC-mediated phosphorylation. We conclude that cholesterol specifically regulates M currents in SCG neurons via PKC activation.
Collapse
Affiliation(s)
| | - Hyun-Kyung Choi
- Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea and
| | - Seong-Tae Kim
- Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea and
| | | | | | - Jung-Hwa Cho
- the WCU Neurocytomics Program Project, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul 110-799, Korea
| | - Won-Kyung Ho
- the WCU Neurocytomics Program Project, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul 110-799, Korea
| | - Hana Cho
- From the Departments of Physiology and
| |
Collapse
|
29
|
Zhang X, Chen X, Jia C, Geng X, Du X, Zhang H. Depolarization increases phosphatidylinositol (PI) 4,5-bisphosphate level and KCNQ currents through PI 4-kinase mechanisms. J Biol Chem 2010; 285:9402-9409. [PMID: 20106968 DOI: 10.1074/jbc.m109.068205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence shows that membrane phosphatidylinositol 4,5-bisphosphates (PtdIns(4,5)P(2), PIP(2)) play an important role in cell signaling. The presence of PIP(2) is fundamentally important for maintaining the functions of a large number of ion channels and transporters, and for other cell processes such as vesicle trafficking, mobility, and endo- and exocytosis. PIP(2) levels in the membrane are dynamically modulated, which is an important signaling mechanism for modulation of PIP(2)-dependent cellular processes. In this study, we describe a novel mechanism of membrane PIP(2) modulation. Membrane depolarization induces an elevation in membrane PIP(2), and subsequently increases functions of PIP(2)-sensitive KCNQ potassium channels expressed in Xenopus oocytes. Further evidence suggests that the depolarization-induced elevation of membrane PIP(2) occurs through increased activity of PI4 kinase. With increased recognition of the importance of PIP(2) in cell function, the effect of membrane depolarization in PIP(2) metabolism is destined to have important physiological implications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xingjuan Chen
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Caixia Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xian Geng
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
30
|
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46-60. [PMID: 19748836 DOI: 10.1016/j.autneu.2009.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrical and synaptic properties of neurons are essential for determining the function of the nervous system. Thus, understanding the mechanisms that control the appropriate developmental acquisition and maintenance of these properties is a critical problem in neuroscience. A great deal of our understanding of these developmental mechanisms comes from studies of soluble growth factor signaling between cells in the peripheral nervous system. The sympathetic nervous system has provided a model for studying the role of these factors both in early development and in the establishment of mature properties. In particular, neurotrophins produced by the targets of sympathetic innervation regulate the synaptic and electrophysiological properties of postnatal sympathetic neurons. In this review we examine the role of neurotrophin signaling in the regulation of synaptic strength, neurotransmitter phenotype, voltage-gated currents and repetitive firing properties of sympathetic neurons. Together, these properties determine the level of sympathetic drive to target organs such as the heart. Changes in this sympathetic drive, which may be linked to dysfunctions in neurotrophin signaling, are associated with devastating diseases such as high blood pressure, arrhythmias and heart attack. Neurotrophins appear to play similar roles in modulating the synaptic and electrical properties of other peripheral and central neuronal systems, suggesting that information provided from studies in the sympathetic nervous system will be widely applicable for understanding the neurotrophic regulation of neuronal function in other systems.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
31
|
Rivera-Arconada I, Roza C, Lopez-Garcia JA. Enhancing m currents: a way out for neuropathic pain? Front Mol Neurosci 2009; 2:10. [PMID: 19680469 PMCID: PMC2726036 DOI: 10.3389/neuro.02.010.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/23/2009] [Indexed: 12/19/2022] Open
Abstract
Almost three decades ago, the M current was identified and characterized in frog sympathetic neurons (Brown and Adams, 1980). The years following this discovery have seen a huge progress in the understanding of the function and the pharmacology of this current as well as on the structure of the underlying ion channels. Therapies for a number of syndromes involving abnormal levels of excitability in neurons are benefiting from research on M currents. At present, the potential of M current openers as analgesics for neuropathic pain is under discussion. Here we offer a critical view of existing data on the involvement of M currents in pain processing. We believe that enhancement of M currents at the site of injury may become a powerful strategy to alleviate pain in some peripheral neuropathies.
Collapse
Affiliation(s)
- Ivan Rivera-Arconada
- Departamento de Fisiología, Edificio de Medicina, Universidad de Alcala Madrid, Spain
| | | | | |
Collapse
|
32
|
p75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents. J Neurosci 2009; 29:5411-24. [PMID: 19403809 DOI: 10.1523/jneurosci.3503-08.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) act through the tropomyosin-related receptor tyrosine kinases (Trk) and the pan-neurotrophin receptor (p75) to regulate complex developmental and functional properties of neurons. While NGF activates both receptor types in sympathetic neurons, differential signaling through TrkA and p75 can result in widely divergent functional outputs for neuronal survival, growth, and synaptic function. Here we show that TrkA and p75 signaling pathways have opposing effects on the firing properties of sympathetic neurons, and define a mechanism whereby the relative level of signaling through these two receptors sets firing patterns via coordinate regulation of a set of ionic currents. We show that signaling through the p75 pathway causes sympathetic neurons to fire in a phasic pattern showing marked accommodation. Signaling through the NGF-specific TrkA, on the other hand, causes cells to fire tonically. Neurons switch rapidly between firing patterns, on the order of minutes to hours. We show that changes in firing patterns are caused by neurotrophin-dependent regulation of at least four voltage-gated currents: the sodium current and the M-type, delayed rectifier, and calcium-dependent potassium currents. Neurotrophin release, and thus receptor activation, varies among somatic tissues and physiological state. Thus, these data suggest that target-derived neurotrophins may be an important determinant of the characteristic electrical properties of sympathetic neurons and therefore regulate the functional output of the sympathetic nervous system.
Collapse
|
33
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Jia Z, Bei J, Rodat-Despoix L, Liu B, Jia Q, Delmas P, Zhang H. NGF Inhibits M/KCNQ Currents and Selectively Alters Neuronal Excitability in Subsets of Sympathetic Neurons Depending on their M/KCNQ Current Background. J Biophys Biochem Cytol 2008. [DOI: 10.1083/jcb1816oia21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|