1
|
Colleoni A, Galli G, Dallanoce C, De Amici M, Gorostiza P, Matera C. Light-Activated Pharmacological Tools for Exploring the Cholinergic System. Med Res Rev 2025. [PMID: 40123150 DOI: 10.1002/med.22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Cholinergic transmission plays a critical role in both the central and peripheral nervous systems, affecting processes such as learning, memory, and inflammation. Conventional cholinergic drugs generally suffer from poor selectivity and temporal precision, leading to undesired effects and limited therapeutic efficacy. Photopharmacology aims to overcome the limitations of traditional drugs using photocleavable or photoswitchable ligands and spatiotemporal patterns of illumination. Spanning from muscarinic and nicotinic modulators to cholinesterase inhibitors, this review explores the development and application of light-activated compounds as tools for unraveling the role of cholinergic signaling in both physiological and pathological contexts, while also paving the way for innovative phototherapeutic approaches.
Collapse
Grants
- This research was supported by the European Union-Next Generation EU, Mission 4, Component 1 (CUP J53C24002040004), EU Horizon 2020 Framework Programme for Research and Innovation, European Innovation Council Pathfinder (PHOTOTHERAPORT, 101130883), Human Brain Project (WaveScalES, SGA3, 945539), Information and Communication Technologies (Deeper, ICT-36-2020-101016787), and Piano di Sostegno alla Ricerca 2023 (Azione A, Linea 2, PSR2023_DIP_021_CMATE). It was also supported by the Government of Catalonia (CERCA Programme; AGAUR 2021-SGR-01410), Spanish Ministry of Science and Innovation (DEEP RED, grant PID2019-111493RB-I00; EPILLUM, grant AEI/10.13039/501100011033; and Research Network in Biomedicine eBrains-Spain, RED2022-134823-E).
Collapse
Affiliation(s)
- Alessio Colleoni
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Giulia Galli
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Clelia Dallanoce
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco De Amici
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Pau Gorostiza
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carlo Matera
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Gao L, Kraus Y, Stegner A, Wein T, Heise C, von Brunn L, Fajardo-Ruiz E, Thorn-Seshold J, Thorn-Seshold O. Self-reporting styrylthiazolium photopharmaceuticals: mitochondrial localisation as well as SAR drive biological activity. Org Biomol Chem 2022; 20:7787-7794. [PMID: 36172848 DOI: 10.1039/d2ob00347c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested E/Z-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including ca. 60 nm red-shifted π → π* absorption, self-reporting fluorescence, Z → E relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics. They light-specifically disrupt microtubule network architecture and block cell proliferation: yet, testing lead compound StyBtz2 for its molecular mechanism of action showed that it did not inhibit microtubule dynamics. Using its self-reporting fluorescence, we tracked its localisation in live cells and observed accumulation of E-StyBtz2 into mitochondria; during prolonged illumination, it was released into the cytosol, and blebbing and cell death were observed. We interpret this as light-dependent rupturing of mitochondria on acute timescales. We conclude that StyTz/StyBtz can be interesting photopharmaceutical scaffolds for addressing mitochondrial, rather than cytosolic, targets.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Yvonne Kraus
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Andrea Stegner
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Constanze Heise
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Leonie von Brunn
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Elena Fajardo-Ruiz
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-Universität, München, 5-13 Butenandtstrasse, München 81377, Germany.
| |
Collapse
|
5
|
Kramer RH, Rajappa R. Interrogating the function of GABA A receptors in the brain with optogenetic pharmacology. Curr Opin Pharmacol 2022; 63:102198. [PMID: 35276498 DOI: 10.1016/j.coph.2022.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
To better understand neural circuits and behavior, microbial opsins have been developed as optogenetic tools for stimulating or inhibiting action potentials with high temporal and spatial precision. However, if we seek a more reductionist understanding of how neuronal circuits operate, we also need high-resolution tools for perturbing the function of synapses. By combining photochemical tools and molecular biology, a wide variety of light-regulated neurotransmitter receptors have been developed, enabling photo-control of excitatory, inhibitory, and modulatory synaptic transmission. Here we focus on photo-control of GABAA receptors, ligand-gated Cl- channels that underlie almost all synaptic inhibition in the mammalian brain. By conjugating a photoswitchable tethered ligand onto a genetically-modified subunit of the GABAA receptor, light-sensitivity can be conferred onto specific isoforms of the receptor. Through gene editing, this attachment site can be knocked into the genome, enabling photocontrol of endogenous GABAA receptors. This strategy can be employed to explore the cell biology and neurophysiology of GABAA receptors. This includes investigating how specific isoforms contribute to synaptic and tonic inhibition and understanding the roles they play in brain development, long-term synaptic plasticity, and learning and memory.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Rajit Rajappa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
6
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
7
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
8
|
Bregestovski PD, Ponomareva DN. Photochromic Modulation of Cys-loop
Ligand-gated Ion Channels. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Thapaliya ER, Mony L, Sanchez R, Serraz B, Paoletti P, Ellis-Davies GCR. Photochemical control of drug efficacy - a comparison of uncaging and photoswitching ifenprodil on NMDA receptors. CHEMPHOTOCHEM 2021; 5:445-454. [PMID: 36540756 PMCID: PMC9762817 DOI: 10.1002/cptc.202000240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 09/29/2023]
Abstract
Ifenprodil is an important negative allosteric modulator of the N-methyl-D-aspartate (NMDA) receptors. We have synthesized caged and photoswitchable derivatives of this small molecule drug. Caged ifenprodil was biologically inert before photolysis, UV irradiation efficiently released the drug allowing selective inhibition of GluN2B-containing NMDA receptors. Azobenzene-modified ifenprodil, on the other hand, is inert in both its trans and cis configurations, although in silico modeling predicted the trans form to be able to bind to the receptor. The disparity in effectiveness between the two compounds reflects, in part, the inherent ability of each method in manipulating the binding properties of drugs. With appropriate structure-activity relationship uncaging enables binary control of effector binding, whereas photoswitching using feely diffusable chromophores shifts the dose-response curve of drug-receptor interaction. Our data suggest that the efficacy of pharmacophores having a confined binding site such as ifenprodil can be controlled more easily by uncaging in comparison to photoswitching.
Collapse
Affiliation(s)
- Ek Raj Thapaliya
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
- Equal contribution
| | - Laetitia Mony
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
- Equal contribution
| | - Roberto Sanchez
- Department of Pharmacological Sciences and Drug Discovery Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Benjamin Serraz
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | |
Collapse
|
10
|
Gutzeit VA, Acosta-Ruiz A, Munguba H, Häfner S, Landra-Willm A, Mathes B, Mony J, Yarotski D, Börjesson K, Liston C, Sandoz G, Levitz J, Broichhagen J. A fine-tuned azobenzene for enhanced photopharmacology in vivo. Cell Chem Biol 2021; 28:1648-1663.e16. [PMID: 33735619 DOI: 10.1016/j.chembiol.2021.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Despite the power of photopharmacology for interrogating signaling proteins, many photopharmacological systems are limited by their efficiency, speed, or spectral properties. Here, we screen a library of azobenzene photoswitches and identify a urea-substituted "azobenzene-400" core that offers bistable switching between cis and trans with improved kinetics, light sensitivity, and a red-shift. We then focus on the metabotropic glutamate receptors (mGluRs), neuromodulatory receptors that are major pharmacological targets. Synthesis of "BGAG12,400," a photoswitchable orthogonal, remotely tethered ligand (PORTL), enables highly efficient, rapid optical agonism following conjugation to SNAP-tagged mGluR2 and permits robust optical control of mGluR1 and mGluR5 signaling. We then produce fluorophore-conjugated branched PORTLs to enable dual imaging and manipulation of mGluRs and highlight their power in ex vivo slice and in vivo behavioral experiments in the mouse prefrontal cortex. Finally, we demonstrate the generalizability of our strategy by developing an improved soluble, photoswitchable pore blocker for potassium channels.
Collapse
Affiliation(s)
- Vanessa A Gutzeit
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Häfner
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Arnaud Landra-Willm
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Bettina Mathes
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jürgen Mony
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Dzianis Yarotski
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Guillaume Sandoz
- Université Cote d'Azur, CNRS, INSERM, iBV, Nice, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Joshua Levitz
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany; Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
| |
Collapse
|
11
|
Gao L, Meiring JCM, Kraus Y, Wranik M, Weinert T, Pritzl SD, Bingham R, Ntouliou E, Jansen KI, Olieric N, Standfuss J, Kapitein LC, Lohmüller T, Ahlfeld J, Akhmanova A, Steinmetz MO, Thorn-Seshold O. A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chem Biol 2021; 28:228-241.e6. [PMID: 33275880 DOI: 10.1016/j.chembiol.2020.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP/YFP imaging and are metabolically labile, posing severe limitations for biological use. We rationally designed a photoswitchable "SBT" scaffold to overcome these problems, then derivatized it to create exceptionally metabolically robust and fully GFP/YFP-orthogonal "SBTub" photopharmaceutical tubulin inhibitors. Lead compound SBTub3 allows temporally reversible, cell-precise, and even subcellularly precise photomodulation of microtubule dynamics, organization, and microtubule-dependent processes. By overcoming the previous limitations of microtubule photopharmaceuticals, SBTubs offer powerful applications in cell biology, and their robustness and druglikeness are favorable for intracellular biological control in in vivo applications. We furthermore expect that the robustness and imaging orthogonality of the SBT scaffold will inspire other derivatizations directed at extending the photocontrol of a range of other biological targets.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Yvonne Kraus
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians University of Munich, Munich 80539, Germany
| | - Rebekkah Bingham
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Evangelia Ntouliou
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Klara I Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Theobald Lohmüller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians University of Munich, Munich 80539, Germany
| | - Julia Ahlfeld
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland; Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany.
| |
Collapse
|
12
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|
13
|
Frank JA, Antonini MJ, Chiang PH, Canales A, Konrad DB, Garwood IC, Rajic G, Koehler F, Fink Y, Anikeeva P. In Vivo Photopharmacology Enabled by Multifunctional Fibers. ACS Chem Neurosci 2020; 11:3802-3813. [PMID: 33108719 DOI: 10.1021/acschemneuro.0c00577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoswitchable ligands can add an optical switch to a target receptor or signaling cascade and enable reversible control of neural circuits. The application of this approach, termed photopharmacology, to behavioral experiments has been impeded by a lack of integrated hardware capable of delivering both light and compounds to deep brain regions in moving subjects. Here, we devise a hybrid photochemical genetic approach to target neurons using a photoswitchable agonist of the capsaicin receptor TRPV1, red-AzCA-4. Using multifunctional fibers with optical and microfluidic capabilities, we delivered a transgene coding for TRPV1 into the ventral tegmental area (VTA). This sensitized excitatory VTA neurons to red-AzCA-4, allowing us to optically control conditioned place preference in mice, thus extending applications of photopharmacology to behavioral experiments. Applied to endogenous receptors, our approach may accelerate future studies of molecular mechanisms underlying animal behavior.
Collapse
Affiliation(s)
- James A. Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Po-Han Chiang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
| | - Andres Canales
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David B. Konrad
- Department of Pharmacy, Ludwig Maximilian University, D-81377 Munich, Germany
| | - Indie C. Garwood
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Gabriela Rajic
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Zhao J, Ellis-Davies GCR. Intracellular photoswitchable neuropharmacology driven by luminescence from upconverting nanoparticles. Chem Commun (Camb) 2020; 56:9445-9448. [PMID: 32761019 PMCID: PMC7812838 DOI: 10.1039/d0cc03956j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoswitchable drugs are small-molecule optical probes that undergo chromatically selective control of drug efficacy using, most often, UV-visible light. Here we report that luminescence produced by near-infrared stimulation of NaYF4:TmYb nanoparticles can be used for "remote control" of an azobenzene-based photochromic ion channel blocker of neurons in living brain slices.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
15
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
16
|
Branched Photoswitchable Tethered Ligands Enable Ultra-efficient Optical Control and Detection of G Protein-Coupled Receptors In Vivo. Neuron 2019; 105:446-463.e13. [PMID: 31784287 DOI: 10.1016/j.neuron.2019.10.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/26/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
The limitations of classical drugs have spurred the development of covalently tethered photoswitchable ligands to control neuromodulatory receptors. However, a major shortcoming of tethered photopharmacology is the inability to obtain optical control with an efficacy comparable with that of the native ligand. To overcome this, we developed a family of branched photoswitchable compounds to target metabotropic glutamate receptors (mGluRs). These compounds permit photo-agonism of Gi/o-coupled group II mGluRs with near-complete efficiency relative to glutamate when attached to receptors via a range of orthogonal, multiplexable modalities. Through a chimeric approach, branched ligands also allow efficient optical control of Gq-coupled mGluR5, which we use to probe the spatiotemporal properties of receptor-induced calcium oscillations. In addition, we report branched, photoswitch-fluorophore compounds for simultaneous receptor imaging and manipulation. Finally, we demonstrate this approach in vivo in mice, where photoactivation of SNAP-mGluR2 in the medial prefrontal cortex reversibly modulates working memory in normal and disease-associated states.
Collapse
|
17
|
Sansalone L, Zhao J, Richers MT, Ellis-Davies GCR. Chemical tuning of photoswitchable azobenzenes: a photopharmacological case study using nicotinic transmission. Beilstein J Org Chem 2019; 15:2812-2821. [PMID: 31807216 PMCID: PMC6880823 DOI: 10.3762/bjoc.15.274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
We have developed photochromic probes for the nicotinic acetylcholine receptor that exploit the unique chemical properties of the tetrafluoroazobenzene (4FAB) scaffold. Ultraviolet light switching and rapid thermal relaxation of the metastable cis configuration are the main drawbacks associated with standard AB-based switches. We designed our photoprobes to take advantage of the excellent thermodynamic stability of the cis-4FAB configuration (thermal half-life > 12 days at 37 °C in physiological buffer) and cis–trans photostationary states above 84%. Furthermore, the well-separated n–π* absorption bands of trans- and cis-4FAB allow facile photoswitching with visible light in two optical channels. A convergent 11-step synthetic approach allowed the installation of a trimethylammonium (TA) head onto the 4FAB scaffold, by means of an alkyl spacer, to afford a free diffusible 4FABTA probe. TAs are known to agonize nicotinic receptors, so 4FABTA was tested on mouse brain slices and enabled reversible receptor activation with cycles of violet and green light. Due to the very long-lived metastable cis configuration, 4FAB in vivo use could be of great promise for long term biological studies. Further chemical functionalization of this 4FAB probe with a maleimide functionality allowed clean cross-linking with glutathione. However, attempts to conjugate with a cysteine on a genetically modified nicotinic acetylcholine receptor did not afford the expected light-responsive channel. Our data indicate that the 4FAB photoswitch can be derivatized bifunctionally for genetically-targeted photopharmacology whilst preserving all the favorable photophysical properties of the parent 4FAB scaffold, however, the tetrafluoro motif can significantly perturb pharmacophore–protein interactions. In contrast, we found that the freely diffusible 4FABTA probe could be pre-set with green light into an OFF state that was biologically inert, irradiation with violet light effectively "uncaged" agonist activity, but in a photoreversible manner. Since the neurotransmitter acetylcholine has fully saturated heteroatom valences, our photoswitchable 4FABTA probe could be useful for physiological studies of this neurotransmitter.
Collapse
Affiliation(s)
- Lorenzo Sansalone
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Matthew T Richers
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
18
|
Mutter NL, Volarić J, Szymanski W, Feringa BL, Maglia G. Reversible Photocontrolled Nanopore Assembly. J Am Chem Soc 2019; 141:14356-14363. [PMID: 31469268 PMCID: PMC6743218 DOI: 10.1021/jacs.9b06998] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Self-assembly
is a fundamental feature of biological systems, and
control of such processes offers fascinating opportunities to regulate
function. Fragaceatoxin C (FraC) is a toxin that upon binding to the
surface of sphingomyelin-rich cells undergoes a structural metamorphosis,
leading to the assembly of nanopores at the cell membrane and causing
cell death. In this study we attached photoswitchable azobenzene pendants
to various locations near the sphingomyelin binding pocket of FraC
with the aim of remote controlling the nanopore assembly using light.
We found several constructs in which the affinity of the toxin for
biological membranes could be activated or deactivated by irradiation,
thus enabling reversible photocontrol of pore formation. Notably,
one construct was completely inactive in the thermally adapted state;
it however induced full lysis of cultured cancer cells upon light
irradiation. Selective irradiation also allowed isolation of individual
nanopores in artificial lipid membranes. Photocontrolled FraC might
find applications in photopharmacology for cancer therapeutics and
has potential to be used for the fabrication of nanopore arrays in
nanopore sensing devices, where the reconstitution, with high spatiotemporal
precision, of single nanopores must be controlled.
Collapse
Affiliation(s)
| | | | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology , University of Groningen , Hanzeplein 1 , 9713 GZ , Groningen , The Netherlands
| | | | | |
Collapse
|
19
|
Ricart-Ortega M, Font J, Llebaria A. GPCR photopharmacology. Mol Cell Endocrinol 2019; 488:36-51. [PMID: 30862498 DOI: 10.1016/j.mce.2019.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
New technologies for spatial and temporal remote control of G protein-coupled receptors (GPCRs) are necessary to unravel the complexity of GPCR signalling in cells, tissues and living organisms. An effective approach, recently developed, consists on the design of light-operated ligands whereby light-dependent GPCR activity regulation can be achieved. In this context, the use of light provides an advantage as it combines safety, easy delivery, high resolution and it does not interfere with most cellular processes. In this review we summarize the most relevant successful achievements in GPCR photopharmacology. These recent findings constitute a significant advance in research studies on the molecular dynamics of receptor activation and their physiological roles in vivo. Moreover, these molecules hold potential toward clinical uses as light-operated drugs, which can overcome some of the problems of conventional pharmacology.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Joan Font
- IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
20
|
Leippe P, Frank JA. Designing azobenzene-based tools for controlling neurotransmission. Curr Opin Struct Biol 2019; 57:23-30. [PMID: 30825844 DOI: 10.1016/j.sbi.2019.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Chemical and electrical signaling at the synapse is a dynamic process that is crucial to neurotransmission and pathology. Traditional pharmacotherapy has found countless applications in both academic labs and the clinic; however, diffusible drugs lack spatial and temporal precision when employed in heterogeneous tissues such as the brain. In the field of photopharmacology, chemical attachment of a synthetic photoswitch to a bioactive ligand allows cellular signaling to be controlled with light. Azobenzenes have remained the go-to photoswitch for biological applications due to their tunable photophysical properties, and can be leveraged to achieve reversible optical control of numerous receptors and ion channels. Here, we discuss the most recent advances in photopharmacology which will improve the use of azobenzene-based probes for neuroscience applications.
Collapse
Affiliation(s)
- Philipp Leippe
- Max Planck Institute for Medical Research, Department of Chemical Biology, Jahnstr. 29, 69120 Heidelberg, Germany
| | - James Allen Frank
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
21
|
Passlick S, Richers MT, Ellis-Davies GCR. Thermodynamically Stable, Photoreversible Pharmacology in Neurons with One- and Two-Photon Excitation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Stefan Passlick
- Department of Neuroscience; Mount Sinai School of Medicine; New York NY 10029 USA
| | - Matthew T. Richers
- Department of Neuroscience; Mount Sinai School of Medicine; New York NY 10029 USA
| | | |
Collapse
|
22
|
Passlick S, Richers MT, Ellis-Davies GCR. Thermodynamically Stable, Photoreversible Pharmacology in Neurons with One- and Two-Photon Excitation. Angew Chem Int Ed Engl 2018; 57:12554-12557. [PMID: 30075062 PMCID: PMC6133756 DOI: 10.1002/anie.201807880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/26/2022]
Abstract
Photoswitchable bioprobes enable bidirectional control of cell physiology with different wavelengths of light. Many current photoswitches use cytotoxic UV light and are limited by the need for constant illumination owing to thermal relaxation in the dark. Now a photoswitchable tetrafluoroazobenzene(4FAB)-based ion channel antagonist has been developed that can be efficiently isomerized in two separate optical channels with visible light. Importantly, the metastable cis configuration showed very high stability in the dark over the course of days at room temperature. In neurons, the 4FAB antagonist reversibly blocks voltage-gated ion channels with violet and green light. Furthermore, photoswitching could also be achieved with two-photon excitation yielding high spatial resolution. 4FAB probes have the potential to enable long-term biological studies where both ON and OFF states can be maintained in the absence of irradiation.
Collapse
Affiliation(s)
- S. Passlick
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - M. T. Richers
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
23
|
Affiliation(s)
- Katharina Hüll
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
24
|
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring Vision to the Blind with Chemical Photoswitches. Chem Rev 2018; 118:10748-10773. [PMID: 29874052 DOI: 10.1021/acs.chemrev.7b00723] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect millions of people around the world and lead to irreversible vision loss if left untreated. A number of therapeutic strategies have been developed over the years to treat these diseases or restore vision to already blind patients. In this Review, we describe the development and translational application of light-sensitive chemical photoswitches to restore visual function to the blind retina and compare the translational potential of photoswitches with other vision-restoring therapies. This therapeutic strategy is enabled by an efficient fusion of chemical synthesis, chemical biology, and molecular biology and is broadly applicable to other biological systems. We hope this Review will be of interest to chemists as well as neuroscientists and clinicians.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Center , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Department of Neurobiology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael A Kienzler
- Department of Chemistry , University of Maine , Orono , Maine 04469 , United States
| | - Ehud Isacoff
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States.,Bioscience Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
25
|
Bregestovski P, Maleeva G, Gorostiza P. Light-induced regulation of ligand-gated channel activity. Br J Pharmacol 2018; 175:1892-1902. [PMID: 28859250 PMCID: PMC5979632 DOI: 10.1111/bph.14022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
The control of ligand-gated receptors with light using photochromic compounds has evolved from the first handcrafted examples to accurate, engineered receptors, whose development is supported by rational design, high-resolution protein structures, comparative pharmacology and molecular biology manipulations. Photoswitchable regulators have been designed and characterized for a large number of ligand-gated receptors in the mammalian nervous system, including nicotinic acetylcholine, glutamate and GABA receptors. They provide a well-equipped toolbox to investigate synaptic and neuronal circuits in all-optical experiments. This focused review discusses the design and properties of these photoswitches, their applications and shortcomings and future perspectives in the field. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Piotr Bregestovski
- Aix Marseille Université, INSERM 1106 Institut de Neurosciences des SystèmesMarseilleFrance
- Department of PhysiologyKazan Medical State UniversityKazanRussia
| | - Galyna Maleeva
- Aix Marseille Université, INSERM 1106 Institut de Neurosciences des SystèmesMarseilleFrance
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
- CIBER‐BBNMadridSpain
| |
Collapse
|
26
|
Abstract
The last few years have witnessed significant advances in the use of light as a stimulus to control biomolecular interactions. Great efforts have been devoted to the development of genetically encoded optobiological and small photochromic switches. Newly discovered small molecules now allow researchers to build molecular systems that are sensitive to a wider range of wavelengths of light than ever before with improved switching fidelities and increased lifetimes of the photoactivated states. Because these molecules are relatively small and adopt predictable conformations they are well suited as tools to interrogate cellular function in a spatially and temporally contolled fashion and for applications in photopharmacology.
Collapse
Affiliation(s)
- Robert J Mart
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
27
|
Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophys J 2017; 114:283-288. [PMID: 29273263 PMCID: PMC5984948 DOI: 10.1016/j.bpj.2017.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 11/20/2022] Open
Abstract
Millisecond pulses of laser light delivered to gold nanoparticles residing in close proximity to the surface membrane of neurons can induce membrane depolarization and initiate an action potential. An optocapacitance mechanism proposed as the basis of this effect posits that the membrane-interfaced particle photothermally induces a cell-depolarizing capacitive current, and predicts that delivering a given laser pulse energy within a shorter period should increase the pulse's action-potential-generating effectiveness by increasing the magnitude of this capacitive current. Experiments on dorsal root ganglion cells show that, for each of a group of interfaced gold nanoparticles and microscale carbon particles, reducing pulse duration from milliseconds to microseconds markedly decreases the minimal pulse energy required for AP generation, providing strong support for the optocapacitance mechanism hypothesis.
Collapse
|
28
|
Leippe P, Koehler Leman J, Trauner D. Specificity and Speed: Tethered Photopharmacology. Biochemistry 2017; 56:5214-5220. [DOI: 10.1021/acs.biochem.7b00687] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Philipp Leippe
- Department
of Chemistry and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Julia Koehler Leman
- Center
for Computational Biology, Flatiron Institute, Simons Foundation, 162 Fifth Avenue, New York, New York 10010, United States
- Department
of Biology and Center for Genomics and Systems Biology, New York University, New York, New York 10003, United States
| | - Dirk Trauner
- Department
of Chemistry and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
- Department
of Chemistry, New York University, Silver Center, 100 Washington Square
East, Room 712, New York, New York 10003, United States
| |
Collapse
|
29
|
Berlin S, Isacoff EY. Synapses in the spotlight with synthetic optogenetics. EMBO Rep 2017; 18:677-692. [PMID: 28396573 DOI: 10.15252/embr.201744010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Membrane receptors and ion channels respond to various stimuli and relay that information across the plasma membrane by triggering specific and timed processes. These include activation of second messengers, allowing ion permeation, and changing cellular excitability, to name a few. Gaining control over equivalent processes is essential to understand neuronal physiology and pathophysiology. Recently, new optical techniques have emerged proffering new remote means to control various functions of defined neuronal populations by light, dubbed optogenetics. Still, optogenetic tools do not typically address the activity of receptors and channels native to neurons (or of neuronal origin), nor gain access to their signaling mechanisms. A related method-synthetic optogenetics-bridges this gap by endowing light sensitivity to endogenous neuronal receptors and channels by the appending of synthetic, light-receptive molecules, or photoswitches. This provides the means to photoregulate neuronal receptors and channels and tap into their native signaling mechanisms in select regions of the neurons, such as the synapse. This review discusses the development of synthetic optogenetics as a means to study neuronal receptors and channels remotely, in their natural environment, with unprecedented spatial and temporal precision, and provides an overview of tool design, mode of action, potential clinical applications and insights and achievements gained.
Collapse
Affiliation(s)
- Shai Berlin
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
30
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
31
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|
32
|
Shafaat OS, Winkler JR, Gray HB, Dougherty DA. Photoactivation of an Acid-Sensitive Ion Channel Associated with Vision and Pain. Chembiochem 2016; 17:1323-7. [PMID: 27123791 DOI: 10.1002/cbic.201600230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/04/2023]
Abstract
We describe the reversible photoactivation of the acid sensitive ligand-gated ion channel ASIC2a, a mammalian channel found throughout the central and peripheral nervous systems that is associated with vision and pain. We also show the activation of GLIC, an acid-sensitive prokaryotic homologue of the nicotinic acetylcholine receptor. Photoactivation was achieved by using visible light irradiation of a newly synthesized water-soluble merocyanine photoacid, 1, which was designed to remove adverse channel blocking effects of a related system. Activation of ASIC2a and GLIC occurs reversibly, in a benign manner, and only upon irradiation. Further studies using transient absorption spectroscopy showed that protonation of a colorimetric base occurred rapidly (ca. 100 μs) after excitation of 1. These results demonstrate that irradiation of 1 can induce rapid, local pH changes that can be used to investigate both biological and chemical proton transfer reactions.
Collapse
Affiliation(s)
- Oliver S Shafaat
- Beckman Institute and Division of Chemistry and Chemical Engineering, The California Institute of Technology, 1200 E. California Avenue, Pasadena, CA, 91125, USA
| | - Jay R Winkler
- Beckman Institute and Division of Chemistry and Chemical Engineering, The California Institute of Technology, 1200 E. California Avenue, Pasadena, CA, 91125, USA
| | - Harry B Gray
- Beckman Institute and Division of Chemistry and Chemical Engineering, The California Institute of Technology, 1200 E. California Avenue, Pasadena, CA, 91125, USA.
| | - Dennis A Dougherty
- Beckman Institute and Division of Chemistry and Chemical Engineering, The California Institute of Technology, 1200 E. California Avenue, Pasadena, CA, 91125, USA.
| |
Collapse
|
33
|
Damijonaitis A, Broichhagen J, Urushima T, Hüll K, Nagpal J, Laprell L, Schönberger M, Woodmansee DH, Rafiq A, Sumser MP, Kummer W, Gottschalk A, Trauner D. AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks. ACS Chem Neurosci 2015; 6:701-7. [PMID: 25741856 DOI: 10.1021/acschemneuro.5b00030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are essential for cellular communication in higher organisms. Even though a vast pharmacological toolset to study cholinergic systems has been developed, control of endogenous neuronal nAChRs with high spatiotemporal precision has been lacking. To address this issue, we have generated photoswitchable nAChR agonists and re-evaluated the known photochromic ligand, BisQ. Using electrophysiology, we found that one of our new compounds, AzoCholine, is an excellent photoswitchable agonist for neuronal α7 nAChRs, whereas BisQ was confirmed to be an agonist for the muscle-type nAChR. AzoCholine could be used to modulate cholinergic activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate light-dependent perturbation of behavior in the nematode, Caenorhabditis elegans.
Collapse
Affiliation(s)
- Arunas Damijonaitis
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Johannes Broichhagen
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Tatsuya Urushima
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Katharina Hüll
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Jatin Nagpal
- Buchmann
Institute for Molecular Life Sciences, Institute of Biochemistry, Johann Wolfgang Goethe-Universität, Frankfurt D-60438, Germany
| | - Laura Laprell
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Matthias Schönberger
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - David H. Woodmansee
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Amir Rafiq
- Institute
for Anatomy and Cell Biology, Justus-Liebig-Universität, German Center for Lung Research, Giessen D-35385, Germany
| | - Martin P. Sumser
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| | - Wolfgang Kummer
- Institute
for Anatomy and Cell Biology, Justus-Liebig-Universität, German Center for Lung Research, Giessen D-35385, Germany
| | - Alexander Gottschalk
- Buchmann
Institute for Molecular Life Sciences, Institute of Biochemistry, Johann Wolfgang Goethe-Universität, Frankfurt D-60438, Germany
| | - Dirk Trauner
- Department
of Chemistry and Pharmacology, Ludwig-Maximilians-Universität München, Center of Integrated Protein Science Munich, Munich D-81377, Germany
| |
Collapse
|
34
|
Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 2015; 86:207-17. [PMID: 25772189 DOI: 10.1016/j.neuron.2015.02.033] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/18/2015] [Accepted: 02/14/2015] [Indexed: 01/05/2023]
Abstract
Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation.
Collapse
|
35
|
Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 2015; 20:135-43. [PMID: 25573450 DOI: 10.1016/j.coph.2014.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 01/24/2023]
Abstract
Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits.
Collapse
|
36
|
Mruk K, Kobertz WR. Bioreactive Tethers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:77-100. [DOI: 10.1007/978-1-4939-2845-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Flipping the Photoswitch: Ion Channels Under Light Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:101-17. [DOI: 10.1007/978-1-4939-2845-3_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Broichhagen J, Trauner D. The in vivo chemistry of photoswitched tethered ligands. Curr Opin Chem Biol 2014; 21:121-7. [PMID: 25108802 DOI: 10.1016/j.cbpa.2014.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
Nature's photoreceptors are typically composed of a chromophore that is covalently bound to a receptor protein at the top of a signaling cascade. The protein can function as a G-protein coupled receptor (GPCR), an ion channel, or as an enzyme. This logic can be mimicked with synthetic photoswitches, such as azobenzenes, that are linked to naturally 'blind' transmembrane proteins using in vivo-chemistry. The resulting semisynthetic receptors can be employed to optically control cellular functions, especially in neurons, and influence the behavior of animals with the exquisite temporal and spatial precision of light.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Department of Chemistry, Ludwig-Maximilian-University Munich, and Munich Center for Integrated Protein Science, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilian-University Munich, and Munich Center for Integrated Protein Science, Butenandtstrasse 5-13, Munich 81377, Germany.
| |
Collapse
|
39
|
Reiner A, Isacoff EY. Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nat Chem Biol 2014; 10:273-80. [PMID: 24561661 PMCID: PMC4041372 DOI: 10.1038/nchembio.1458] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Cell signaling is often mediated by the binding of multiple ligands to multisubunit receptors. The probabilistic nature and sometimes slow rate of binding encountered with diffusible ligands can impede attempts to determine how the ligand occupancy controls signaling in such protein complexes. We describe a solution to this problem that uses a photoswitched tethered ligand as a 'ligand clamp' to induce rapid and stable binding and unbinding at defined subsets of subunits. We applied the approach to study gating in ionotropic glutamate receptors (iGluRs), ligand-gated ion channels that mediate excitatory neurotransmission and plasticity at glutamatergic synapses in the brain. We probed gating in two kainate-type iGluRs, GluK2 homotetramers and GluK2-GluK5 heterotetramers. Ultrafast (submillisecond) photoswitching of an azobenzene-based ligand on specific subunits provided a real-time measure of gating and revealed that partially occupied receptors can activate without desensitizing. The findings have implications for signaling by locally released and spillover glutamate.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
40
|
Abstract
Optical probing and manipulation of cellular signaling has revolutionized biological studies ranging from isolated cells to intact tissues in the live animal. A promising avenue of optical manipulation is Chemical Optogenetics (or Optogenetic Pharmacology), an approach for engineering specific proteins to be rapidly and reversibly switched on and off with light. The approach employs synthetic photoswitched ligands, which can be reversibly photo-isomerized to toggle back and forth between two conformations in response to two wavelengths of light. We focus here on the photoswitched tethered ligand (PTL) approach in which the PTL is covalently attached in a site-directed manner to a signaling protein. For this a ligand anchoring site is introduced at a location which allows the ligand to dock only in one of the light-controlled conformations, thus enabling liganding to be rapidly switched. The ligand can be an agonist, antagonist or an active site (or pore) blocker. In principle, orthogonal chemistries of attachment would make PTL anchoring completely unique. However, extremely high specificity of remote control is also obtained by cysteine attachment because of the ligand specificity and precise geometric requirements for liganding. We describe here the design of light-gated ionotropic and metabotropic glutamate receptors, the selection of a site for cysteine placement, the method for PTL attachment, and a detailed protocol of photoswitching experiments in cultured cells. These descriptions can guide applications of Chemical Optogenetics to other receptors and serve as a starting point for use in more complex preparations.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | | |
Collapse
|
41
|
SzymaŃski W, Yilmaz D, Koçer A, Feringa BL. Bright ion channels and lipid bilayers. Acc Chem Res 2013; 46:2910-23. [PMID: 23597020 DOI: 10.1021/ar4000357] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
If we look at a simple organism such as a zebrafish under a microscope, we would see many cells working in harmony. If we zoomed in, we would observe each unit performing its own tasks in a special aqueous environment isolated from the other units by a lipid bilayer approximately 5 nm thick. These confined units are social: they communicate with one another by sensing and responding to the chemical changes in their environment through receptors and ion channels. These channels control the highly specific and selective passage of ions from one side of the cell to the other and are embedded in lipid bilayers. The movement of ions through ion channels supports excitation and electrical signaling in the nervous system. Ion channels have fascinated scientists not only because of their specificity and selectivity, but also for their functions, the serious consequences when they malfunction, and the other potential applications of these molecules. Light is a useful trigger to control and manipulate ion channels externally. With the many state-of-the-art optical technologies available, light offers a high degree of spatial and temporal control, millisecond precision, and noninvasive intervention and does not change the chemical environment of the system of interest. In this Account, we discuss research toward the dynamic control of lipid bilayer assembly and channel function, particularly the transport across the lipid bilayer-ion channel barrier of cells using light. We first summarize the manipulation of ion channel activity with light to modulate the channel's natural activity. Based on the type of photoswitch employed, we can achieve novel functionalities with these channels, and control neural activity. Then we discuss the recent developments in light-induced transport through lipid bilayers. We focus on three different approaches: the incorporation of photoswitchable copolymers into the lipids, the doping of the lipid bilayer with photosensitive amphiphiles and the preparation of the lipid bilayers solely from photoswitchable lipids. These examples reflect the versatility of what we can achieve by manipulating biological systems with light, from triggering the permeability of a specific area of a lipid bilayer to controlling the behavior of a whole organism.
Collapse
Affiliation(s)
- Wiktor SzymaŃski
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Duygu Yilmaz
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - ArmaĞan Koçer
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L. Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
42
|
Reiter A, Skerra A, Trauner D, Schiefner A. A Photoswitchable Neurotransmitter Analogue Bound to Its Receptor. Biochemistry 2013; 52:8972-4. [DOI: 10.1021/bi4014402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alwin Reiter
- Munich Center for Integrated Protein Science (CIPS-M)
- Department
of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse
5-13, 81377 München, Germany
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M)
- Lehrstuhl
für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - Dirk Trauner
- Munich Center for Integrated Protein Science (CIPS-M)
- Department
of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse
5-13, 81377 München, Germany
| | - André Schiefner
- Munich Center for Integrated Protein Science (CIPS-M)
- Lehrstuhl
für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
43
|
Kramer RH, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013; 16:816-23. [PMID: 23799474 DOI: 10.1038/nn.3424] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022]
Abstract
The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions.
Collapse
|
44
|
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev 2013; 113:6114-78. [DOI: 10.1021/cr300179f] [Citation(s) in RCA: 847] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wiktor Szymański
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - John M. Beierle
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Hans A. V. Kistemaker
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Willem A. Velema
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| |
Collapse
|
45
|
Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue. Nat Commun 2013; 3:1095. [PMID: 23033071 PMCID: PMC4023869 DOI: 10.1038/ncomms2094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/29/2012] [Indexed: 01/09/2023] Open
Abstract
Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photo-regulation of GABAA receptors (GABAARs) by a derivative of propofol (2,6-diisopropylphenol), a GABAAR allosteric modulator, that we have modified to contain photo-isomerizable azobenzene. Using α1β2γ2 GABAARs expressed in Xenopus laevis oocytes and native GABAARs of isolated retinal ganglion cells, we show that the trans-azobenzene isomer of the new compound (trans-MPC088), generated by visible light (wavelengths ~440 nm), potentiates the GABA-elicited response and at higher concentrations directly activates the receptors. cis-MPC088, generated from trans-MPC088 by UV light (~365 nm), produces little if any receptor potentiation/activation. In cerebellar slices, MPC088 co-applied with GABA affords bidirectional photo-modulation of Purkinje cell membrane current and spike-firing rate. The findings demonstrate photo-control of GABAARs by an allosteric ligand and open new avenues for fundamental and clinically oriented research on GABAARs, a major class of neurotransmitter receptors in the central nervous system.
Collapse
|
46
|
Jerome J, Heck DH. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity. Front Syst Neurosci 2012; 5:95. [PMID: 22275886 PMCID: PMC3257845 DOI: 10.3389/fnsys.2011.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/01/2011] [Indexed: 11/13/2022] Open
Abstract
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.
Collapse
Affiliation(s)
- Jason Jerome
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | |
Collapse
|
47
|
|
48
|
Tochitsky I, Banghart MR, Mourot A, Yao JZ, Gaub B, Kramer RH, Trauner D. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat Chem 2012; 4:105-11. [PMID: 22270644 DOI: 10.1038/nchem.1234] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/21/2011] [Indexed: 12/21/2022]
Abstract
Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately 'blind' neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Ivan Tochitsky
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Fehrentz T, Schönberger M, Trauner D. Optochemical Genetics. Angew Chem Int Ed Engl 2011; 50:12156-82. [DOI: 10.1002/anie.201103236] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 11/09/2022]
|
50
|
|