1
|
Chandler LC, Gardner A, Cepko CL. RPE-specific MCT2 expression promotes cone survival in models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2025; 122:e2421978122. [PMID: 40178895 PMCID: PMC12002273 DOI: 10.1073/pnas.2421978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration worldwide. It is characterized by the sequential death of rod and cone photoreceptors, the cells responsible for night and daylight vision, respectively. Although the expression of most RP genes occurs only in rods, there is a secondary degeneration of cones. One possible mechanism of cone death is metabolic dysregulation. Photoreceptors are highly metabolically active, consuming large quantities of glucose and producing substantial amounts of lactate. The retinal pigment epithelium (RPE) mediates the transport of glucose from the blood to photoreceptors and, in turn, removes lactate, which can influence the rate of consumption of glucose by the RPE. One model for metabolic dysregulation in RP suggests that following the death of rods, lactate levels are substantially diminished causing the RPE to withhold glucose, resulting in nutrient deprivation for cones. Here, we present adeno-associated viral vector-mediated delivery of monocarboxylate transporter 2 (MCT2, Slc16a7) into the eye, with expression limited to RPE cells, with the aim of promoting lactate uptake from the blood and encouraging the passage of glucose to cones. We demonstrate prolonged survival and function of cones in rat and mouse RP models, revealing a possible gene-agnostic therapy for preserving vision in RP. We also present the use of fluorescence lifetime imaging-based biosensors for lactate and glucose within the eye. Using this technology, we show changes to lactate and glucose levels within MCT2-expressing RPE, suggesting that cone survival is impacted by changes in RPE metabolism.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - Apolonia Gardner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
- Virology Program, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
2
|
Wang Z, Zhao C, Xu S, McCracken S, Apte RS, Williams PR. Energetic diversity in retinal ganglion cells is modulated by neuronal activity and correlates with resilience to degeneration. RESEARCH SQUARE 2025:rs.3.rs-5989609. [PMID: 40162221 PMCID: PMC11952644 DOI: 10.21203/rs.3.rs-5989609/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal function requires high energy expenditure that is likely customized to meet specific signaling demands. However, little is known about diversity of metabolic homeostasis among divergently-functioning types of neurons. To this end, we examined retinal ganglion cells (RGCs), a population of closely related, yet electrophysiologically distinct excitatory projection neurons. Using in vivo 2-photon imaging to measure ATP with single cell resolution, we identified differential homeostatic energy maintenance in the RGC population that correspond to distinct RGC types. In the presence of circuit activity, the most active RGC type (Alpha RGCs), had lower homeostatic ATP levels than other types and exhibited the greatest magnitude of ATP decline when ATP synthesis was inhibited. By simultaneously manipulating circuit activity and mitochondrial function, we found that while oxidative phosphorylation was required to meet ATP demands during circuit activity, it was expendable to maintain resting ATP levels. We also examined ATP signatures associated with survival and injury response after axotomy and report a correlation between low homeostatic ATP and increased survival. In addition, we observed transient ATP increases in RGCs following axon injury. Together, these findings identify diversity of energy handling capabilities of dynamically active neurons with implications for neuronal resilience.
Collapse
Affiliation(s)
- Zelun Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelly Xu
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Philip R. Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, US
| |
Collapse
|
3
|
Boeck M, Yagi H, Chen CT, Zeng Y, Lee D, Nian S, Kasai T, Lee J, Hirst V, Wang C, Neilsen K, Rodrick TC, McCutcheon A, Yu M, Lodhi IJ, Singh SA, Aikawa M, Bazinet RP, Fu Z. Nutrient supplementation mitigates retinal dysfunction in Acox1 knockout mice with impaired peroxisomal fatty acid oxidation. J Adv Res 2025:S2090-1232(25)00145-6. [PMID: 40049514 DOI: 10.1016/j.jare.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Dyslipidemia contributes to many retinal diseases, but underlying lipid processing pathways are not fully understood. Peroxisomes oxidize very long-chain fatty acids and generate docosahexaenoic acid (DHA). Mutations in peroxisomal genes can result in severe neural retinal dysfunction. However, therapeutic approaches for peroxisomal diseases remain scarce, and dietary strategies yield inconsistent results. OBJECTIVES This study sought to elucidate retinal metabolic adaptations resulting from impaired peroxisomal fatty acid oxidation and to evaluate the therapeutic potential of nutrient supplementation in peroxisomal retinal disease. METHODS In mice with global knockout (KO) of acyl-coenzyme A oxidase 1 (Acox1), encoding the first and rate-limiting enzyme in peroxisomal fatty acid oxidation, the retina was characterized at postnatal day (P) 30 during development. Retinal thickness, photoreceptor structure, and function were examined. Proteome analysis was utilized for molecular mechanistic investigation. Metabolomics and fatty acid profiling were conducted to study metabolic alterations in the retina. Nutrient intervention was performed to test if providing deficient nutrients could attenuate the observed retinal dysfunction. RESULTS In P30 Acox1 KO mice, we observed impaired neural retinal signaling, accompanied by reduced expression of genes involved in phototransduction. Proteomics suggested diminished glucose and mitochondrial metabolism, supported by decreased mitochondrial number and mitochondrial DNA copy number. Metabolomics showed reduced abundance of retinal pyruvate, and pyruvate supplementation from P30-P60 attenuated neural retinal dysfunction in Acox1 KO mice at P60. Furthermore, Acox1 KO mice at P30 exhibited a significant decrease in omega-3 (n-3) fatty acids and a compensatory increase in n-6 fatty acids. Dietary supplementation with DHA (n-3) or DHA plus arachidonic acid (n-6) from P30-P60 mitigated the progression of retinal dysfunction in Acox1 KO mice. CONCLUSION Retinal dysfunction, decreased mitochondrial number, and metabolic imbalance were observed in mice with impaired peroxisomal fatty acid oxidation. Nutrient intervention may offer a promising therapeutic approach for peroxisomal diseases.
Collapse
Affiliation(s)
- Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106 Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Yan Zeng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Deokho Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shen Nian
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, 710021, China
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Hirst
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tori C Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Andrew McCutcheon
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Mathew Yu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Zhu S, Zhang M, Qu Z, Xu S, Peng J, Jiang F. Moscatilin alleviates oxidative stress and inflammatory response of Müller cells in diabetic retinopathy through suppressing the p38 mitogen-activated protein kinase/c-Jun N-terminal kinase and nuclear factor kappa-B signaling pathways. J Cell Commun Signal 2025; 19:e12059. [PMID: 39975983 PMCID: PMC11837732 DOI: 10.1002/ccs3.12059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/01/2024] [Accepted: 11/28/2024] [Indexed: 02/21/2025] Open
Abstract
Diabetic retinopathy (DR), as the main ophthalmic complication of diabetes mellitus, is a major eye disorder contributing to blindness. Oxidative stress and inflammation in retinal Müller cells participate in the pathogenesis of DR. This work aims to study the biological role of moscatilin in the progression of DR and the underlying mechanism. High glucose (HG)-stimulated mouse primary retinal Müller cells and high-fat diet + streptozotocin (STZ)-induced DR mouse models were constructed as in vitro and in vivo models, respectively. The effects of moscatilin treatment on oxidative stress and inflammation in HG-stimulated Müller cells and DR mice were evaluated by detecting intracellular reactive oxygen species production, malondialdehyde levels, superoxide dismutase and catalase activities, glutathione/oxidized glutathione ratio, as well as proinflammatory cytokine levels through CM-H2DCFDA staining, commercial kits, and enzyme-linked immunosorbent assay. Dual immunofluorescence staining of glial fibrillary acidic protein and vimentin was used to evaluate the development of Müller cells in mouse retinas. The activity of p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase (JNK) and nuclear factor kappa-B (NF-κB) signaling pathway was assessed through western blotting and immunofluorescence staining. Moscatilin pretreatment prevented HG-induced decrease in Müller cell viability. Moscatilin mitigated oxidative stress, inflammation, and extracellular matrix remodeling in HG-stimulated Müller cells and DR mice. Mechanically, moscatilin reduced the levels of receptor for advanced glycation end products, phosphorylated I-kappa-B-alpha, p-p65 NF-κB, p-p38 MAPK, and p-JNK in both HG-stimulated Müller cells and DR mice. Moscatilin plays an antioxidant and anti-inflammatory role in DR by inhibiting the p38 MAPK/JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Suhua Zhu
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Man Zhang
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Zhen Qu
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Shengqiu Xu
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Jie Peng
- Department of PharmacyYancheng No.1 People's HospitalYanchengJiangsuChina
| | - Fanjing Jiang
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| |
Collapse
|
5
|
Goswami MT, Weh E, Subramanya S, Weh KM, Durumutla HB, Hager H, Miller N, Chaudhury S, Andren A, Sajjakulnukit P, Zhang L, Besirli CG, Lyssiotis CA, Wubben TJ. Glutamine catabolism supports amino acid biosynthesis and suppresses the integrated stress response to promote photoreceptor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.26.582525. [PMID: 38586045 PMCID: PMC10996599 DOI: 10.1101/2024.03.26.582525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Photoreceptor loss results in vision loss in many blinding diseases, and metabolic dysfunction underlies photoreceptor degeneration. So, exploiting photoreceptor metabolism is an attractive strategy to prevent vision loss. Yet, the metabolic pathways that maintain photoreceptor health remain largely unknown. Here, we investigated the dependence of photoreceptors on glutamine (Gln) catabolism. Gln is converted to glutamate via glutaminase (GLS), so mice lacking GLS in rod photoreceptors were generated to inhibit Gln catabolism. Loss of GLS produced rapid rod photoreceptor degeneration. In vivo metabolomic methodologies and metabolic supplementation identified Gln catabolism as critical for glutamate and aspartate biosynthesis. Concordant with this amino acid deprivation, the integrated stress response (ISR) was activated with protein synthesis attenuation, and inhibiting the ISR delayed photoreceptor loss. Furthermore, supplementing asparagine, which is synthesized from aspartate, delayed photoreceptor degeneration. Hence, Gln catabolism is integral to photoreceptor health, and these data reveal a novel metabolic axis in these metabolically-demanding neurons.
Collapse
Affiliation(s)
- Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hima Bindu Durumutla
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Dmitriev AV, Linsenmeier RA. pH in the vertebrate retina and its naturally occurring and pathological changes. Prog Retin Eye Res 2025; 104:101321. [PMID: 39608565 PMCID: PMC11711014 DOI: 10.1016/j.preteyeres.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This review summarizes the existing information on the concentration of H+ (pH) in vertebrate retinae and its changes due to various reasons. Special features of H+ homeostasis that make it different from other ions will be discussed, particularly metabolic production of H+ and buffering. The transretinal distribution of extracellular H+ concentration ([H+]o) and its changes under illumination and other conditions will be described in detail, since [H+]o is more intensively investigated than intracellular pH. In vertebrate retinae, the highest [H+]o occurs in the inner part of the outer nuclear layer, and decreases toward the RPE, reaching the blood level on the apical side of the RPE. [H+]o falls toward the vitreous as well, but less, so that the inner retina is acidic to the vitreous. Light leads to complex changes with both electrogenic and metabolic origins, culminating in alkalinization. There is a rhythm of [H+]o with H+ being higher during circadian night. Extracellular pH can potentially be used as a signal in intercellular volume transmission, but evidence is against pH as a normal controller of fluid transport across the RPE or as a horizontal cell feedback signal. Pathological and experimentally created conditions (systemic metabolic acidosis, hypoxia and ischemia, vascular occlusion, excess glucose and diabetes, genetic disorders, and blockade of carbonic anhydrase) disturb H+ homeostasis, mostly producing retinal acidosis, with consequences for retinal blood flow, metabolism and function.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Neurobiology, Northwestern University, Evanston, IL, USA; Department of Ophthalmology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Valter K, Tedford SE, Eells JT, Tedford CE. Photobiomodulation use in ophthalmology - an overview of translational research from bench to bedside. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1388602. [PMID: 39211002 PMCID: PMC11358123 DOI: 10.3389/fopht.2024.1388602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation (PBM) refers to the process in which wavelengths of light are absorbed by intracellular photoacceptors, resulting in the activation of signaling pathways that culminate in biological changes within the cell. PBM is the result of low-intensity light-induced reactions in the cell in contrast to thermal photoablation produced by high-intensity lasers. PBM has been effectively used in the clinic to enhance wound healing and mitigate pain and inflammation in musculoskeletal conditions, sports injury, and dental applications for many decades. In the past 20 years, experimental evidence has shown the benefit of PBM in increasing numbers of retinal and ophthalmic conditions. More recently, preclinical findings in ocular models have been translated to the clinic with promising results. This review discusses the preclinical and clinical evidence of the effects of PBM in ophthalmology and provides recommendations of the clinical use of PBM in the management of ocular conditions.
Collapse
Affiliation(s)
- Krisztina Valter
- Clear Vision Laboratory, John Curtin School of Medical Research, Eccles Institute of Neuroscience, Canberra, ACT, Australia
- School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | | | - Janis T. Eells
- College of Health Professions and Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | |
Collapse
|
8
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Fanchon E, Stéphanou A. Is Cancer Metabolism an Atavism? Cancers (Basel) 2024; 16:2415. [PMID: 39001477 PMCID: PMC11240651 DOI: 10.3390/cancers16132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The atavistic theory of cancer posits that cancer emerges and progresses through the reversion of cellular phenotypes to more ancestral types with genomic and epigenetic changes deactivating recently evolved genetic modules and activating ancient survival mechanisms. This theory aims at explaining the known cancer hallmarks and the paradox of cancer's predictable progression despite the randomness of genetic mutations. Lineweaver and colleagues recently proposed the Serial Atavism Model (SAM), an enhanced version of the atavistic theory, which suggests that cancer progression involves multiple atavistic reversions where cells regress through evolutionary stages, losing recently evolved traits first and reactivating primitive ones later. The Warburg effect, where cancer cells upregulate glycolysis and lactate production in the presence of oxygen instead of using oxidative phosphorylation, is one of the key feature of the SAM. It is associated with the metabolism of ancient cells living on Earth before the oxygenation of the atmosphere. This review addresses the question of whether cancer metabolism can be considered as an atavistic reversion. By analyzing several known characteristics of cancer metabolism, we reach the conclusion that this version of the atavistic theory does not provide an adequate conceptual frame for cancer research. Cancer metabolism spans a whole spectrum of metabolic states which cannot be fully explained by a sequential reversion to an ancient state. Moreover, we interrogate the nature of cancer metabolism and discuss its characteristics within the framework of the SAM.
Collapse
Affiliation(s)
- Eric Fanchon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
10
|
Xu Y, Tummala SR, Chen X, Vardi N. VDAC in Retinal Health and Disease. Biomolecules 2024; 14:654. [PMID: 38927058 PMCID: PMC11201675 DOI: 10.3390/biom14060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Shanti R. Tummala
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xiongmin Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
12
|
Chen Y, Zizmare L, Calbiague V, Wang L, Yu S, Herberg FW, Schmachtenberg O, Paquet-Durand F, Trautwein C. Retinal metabolism displays evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle. eLife 2024; 12:RP91141. [PMID: 38739438 PMCID: PMC11090511 DOI: 10.7554/elife.91141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiyi Chen
- Institute for Ophthalmic Research, University of TübingenTuebingenGermany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of TübingenTuebingenGermany
- Core Facility Metabolomics, Faculty of Medicine, University of TübingenTuebingenGermany
| | - Victor Calbiague
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaísoChile
| | - Lan Wang
- Institute for Ophthalmic Research, University of TübingenTuebingenGermany
| | - Shirley Yu
- Institute for Ophthalmic Research, University of TübingenTuebingenGermany
| | - Fritz W Herberg
- Biochemistry Department, University of KasselTuebingenGermany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaísoChile
| | | | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of TübingenTuebingenGermany
- Core Facility Metabolomics, Faculty of Medicine, University of TübingenTuebingenGermany
| |
Collapse
|
13
|
Xue Y, Cepko CL. Gene Therapies for Retinitis Pigmentosa that Target Glucose Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041289. [PMID: 37460158 PMCID: PMC11065158 DOI: 10.1101/cshperspect.a041289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Retinitis pigmentosa is a blinding disease wherein rod photoreceptors are affected first, due to the expression of a disease gene, leading to the loss of dim light vision. In many cases, cones do not express the disease gene, yet they are also affected and eventually die, typically after most of the rods in their neighborhood have died. The cause of secondary cone death is unclear. Photoreceptors are one of the most energy-demanding cell types in the body and consume a high amount of glucose. At an early stage of degeneration, the cones appear to have a shortage of glucose to fuel their metabolism. This review focuses on gene therapy approaches that address this potential metabolic shortcoming.
Collapse
Affiliation(s)
- Yunlu Xue
- Lingang Laboratory, Shanghai 200031, China
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Calbiague-Garcia V, Chen Y, Cádiz B, Tapia F, Paquet-Durand F, Schmachtenberg O. Extracellular lactate as an alternative energy source for retinal bipolar cells. J Biol Chem 2024; 300:106794. [PMID: 38403245 PMCID: PMC10966802 DOI: 10.1016/j.jbc.2024.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
Retinal bipolar and amacrine cells receive visual information from photoreceptors and participate in the first steps of image processing in the retina. Several studies have suggested the operation of aerobic glycolysis and a lactate shuttle system in the retina due to the high production of this metabolite under aerobic conditions. However, whether bipolar cells form part of this metabolic circuit remains unclear. Here, we show that the monocarboxylate transporter 2 is expressed and functional in inner retinal neurons. Additionally, we used genetically encoded FRET nanosensors to demonstrate the ability of inner retinal neurons to consume extracellular lactate as an alternative to glucose. In rod bipolar cells, lactate consumption allowed cells to maintain the homeostasis of ions and electrical responses. We also found that lactate synthesis and transporter inhibition caused functional alterations and an increased rate of cell death. Overall, our data shed light on a notable but still poorly understood aspect of retinal metabolism.
Collapse
Affiliation(s)
- Victor Calbiague-Garcia
- PhD Program in Neuroscience, Universidad de Valparaíso, Valparaíso, Chile; CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile.
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Bárbara Cádiz
- CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Tapia
- CINV, Instituto de Biología, Universidad de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
15
|
Gulati K, Manukonda R, Kairamkonda M, Kaliki S, Poluri KM. Serum Metabolomics of Retinoblastoma: Assessing the Differential Serum Metabolic Signatures of Unilateral and Bilateral Patients. ACS OMEGA 2023; 8:48233-48250. [PMID: 38144138 PMCID: PMC10733957 DOI: 10.1021/acsomega.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Retinoblastoma (Rb) is the most common pediatric eye cancer. To identify the biomarkers for early diagnosis and monitoring the progression of Rb in patients, mapping of the alterations in their metabolic profiles is essential. The present study aims at exploring the metabolic disparity in serum from Rb patients and controls using NMR-based metabolomics. A total of 72 metabolites, including carbohydrates, amino acids, and organic acids, were quantified in serum samples from 24 Rb patients and 26 controls. Distinct clusters of Rb patients and controls were obtained using the partial least-squares discriminant analysis (PLS-DA) model. Further, univariate and multivariate analyses of unilateral and bilateral Rb patients with respect to their age-matched controls depicted their distinct metabolic fingerprints. Metabolites including 2-phosphoglycerate, 4-aminobutyrate, proline, O-phosphocholine, O-phosphoethanolamine, and Sn-glycero-3-phosphocholine (Sn-GPC) showed significant perturbation in both unilateral and bilateral Rb patients. However, metabolic differences among the bilateral Rb cases were more pronounced than those in unilateral Rb cases with respect to controls. In addition to major discriminatory metabolites for Rb, unilateral and bilateral Rb cases showed specific metabolic changes, which might be the result of their differential genetic/somatic mutational backgrounds. This further suggests that the aberrant metabolic perturbation in bilateral patients signifies the severity of the disease in Rb patients. The present study demonstrated that identified serum metabolites have potential to serve as a noninvasive method for detection of Rb, discriminate bilateral from unilateral Rb patients, and aid in better understanding of the RB tumor biology.
Collapse
Affiliation(s)
- Khushboo Gulati
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
- Brien
Holden Eye Research Center, L. V. Prasad
Eye Institute, Hyderabad-500034, Telangana, India
| | - Radhika Manukonda
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
- Brien
Holden Eye Research Center, L. V. Prasad
Eye Institute, Hyderabad-500034, Telangana, India
| | - Manikyaprabhu Kairamkonda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Swathi Kaliki
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
16
|
Weh E, Goswami M, Chaudhury S, Fernando R, Miller N, Hager H, Sheskey S, Sharma V, Wubben TJ, Besirli CG. Metabolic Alterations Caused by Simultaneous Loss of HK2 and PKM2 Leads to Photoreceptor Dysfunction and Degeneration. Cells 2023; 12:2043. [PMID: 37626853 PMCID: PMC10453858 DOI: 10.3390/cells12162043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HK2 and PKM2 are two main regulators of aerobic glycolysis. Photoreceptors (PRs) use aerobic glycolysis to produce the biomass necessary for the daily renewal of their outer segments. Previous work has shown that HK2 and PKM2 are important for the normal function and long-term survival of PRs but are dispensable for PR maturation, and their individual loss has opposing effects on PR survival during acute nutrient deprivation. We generated double conditional (dcKO) mice lacking HK2 and PKM2 expression in rod PRs. Western blotting, immunofluorescence, optical coherence tomography, and electroretinography were used to characterize the phenotype of dcKO animals. Targeted and stable isotope tracing metabolomics, qRT-PCR, and retinal oxygen consumption were performed. We show that dcKO animals displayed early shortening of PR inner/outer segments, followed by loss of PRs with aging, much more rapidly than either knockout alone without functional loss as measured by ERG. Significant alterations to central glucose metabolism were observed without any apparent changes to mitochondrial function, prior to PR degeneration. Finally, PR survival following experimental retinal detachment was unchanged in dcKO animals as compared to wild-type animals. These data suggest that HK2 and PKM2 have differing roles in promoting PR neuroprotection and identifying them has important implications for developing therapeutic options for combating PR loss during retinal disease.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| | | | | | | | | | | | | | | | | | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| |
Collapse
|
17
|
Feng J, Zhang X, Li R, Zhao P, Han X, Wu Q, Tian Q, Tang G, Song J, Bi H. Widespread Involvement of Acetylation in the Retinal Metabolism of Form-Deprivation Myopia in Guinea Pigs. ACS OMEGA 2023; 8:23825-23839. [PMID: 37426266 PMCID: PMC10324097 DOI: 10.1021/acsomega.3c02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Myopia has become the major cause of visual impairment worldwide. Although the pathogenesis of myopia remains controversial, proteomic studies suggest that dysregulation of retinal metabolism is potentially involved in the pathology of myopia. Lysine acetylation of proteins plays a key role in regulating cellular metabolism, but little is known about its role in the form-deprived myopic retina. Hence, a comprehensive analysis of proteomic and acetylomic changes in the retinas of guinea pigs with form-deprivation myopia was performed. In total, 85 significantly differential proteins and 314 significantly differentially acetylated proteins were identified. Notably, the differentially acetylated proteins were markedly enriched in metabolic pathways such as glycolysis/gluconeogenesis, the pentose phosphate pathway, retinol metabolism, and the HIF-1 signaling pathway. HK2, HKDC1, PKM, LDH, GAPDH, and ENO1 were the key enzymes in these metabolic pathways with decreased acetylation levels in the form-deprivation myopia group. Altered lysine acetylation of key enzymes in the form-deprived myopic retina might affect the dynamic balance of metabolism in the retinal microenvironment by altering their activity. In conclusion, as the first report on the myopic retinal acetylome, this study provides a reliable basis for further studies on myopic retinal acetylation.
Collapse
Affiliation(s)
- Jiaojiao Feng
- Shandong
University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xiuyan Zhang
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Runkuan Li
- Shandong
University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ping Zhao
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Xudong Han
- School
of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Qiuxin Wu
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Qingmei Tian
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Guodong Tang
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| | - Jike Song
- Shandong
University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
| | - Hongsheng Bi
- Affiliated
Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong, China
- Shandong
Provincial Key Laboratory of Integrated Traditional Chinese and Western
Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, Shandong, China
| |
Collapse
|
18
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Lantz C, Thorp EB. Metabolism: How removal of damaged cells impacts energy availability in the retina. Curr Biol 2023; 33:R279-R282. [PMID: 37040713 PMCID: PMC10410992 DOI: 10.1016/j.cub.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Once thought to be a quiescent process, elimination of damaged cells by professional phagocytes is now understood to modulate metabolite availability within tissues. A new study reveals that the retinal pigment epithelium serves as a local source of insulin after engulfment of damaged photoreceptors.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; The Heart Center, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Todorova V, Stauffacher MF, Ravotto L, Nötzli S, Karademir D, Ebner LJA, Imsand C, Merolla L, Hauck SM, Samardzija M, Saab AS, Barros LF, Weber B, Grimm C. Deficits in mitochondrial TCA cycle and OXPHOS precede rod photoreceptor degeneration during chronic HIF activation. Mol Neurodegener 2023; 18:15. [PMID: 36882871 PMCID: PMC9990367 DOI: 10.1186/s13024-023-00602-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Major retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and retinal detachment, are associated with a local decrease in oxygen availability causing the formation of hypoxic areas affecting the photoreceptor (PR) cells. Here, we addressed the underlying pathological mechanisms of PR degeneration by focusing on energy metabolism during chronic activation of hypoxia-inducible factors (HIFs) in rod PR. METHODS We used two-photon laser scanning microscopy (TPLSM) of genetically encoded biosensors delivered by adeno-associated viruses (AAV) to determine lactate and glucose dynamics in PR and inner retinal cells. Retinal layer-specific proteomics, in situ enzymatic assays and immunofluorescence studies were used to analyse mitochondrial metabolism in rod PRs during chronic HIF activation. RESULTS PRs exhibited remarkably higher glycolytic flux through the hexokinases than neurons of the inner retina. Chronic HIF activation in rods did not cause overt change in glucose dynamics but an increase in lactate production nonetheless. Furthermore, dysregulation of the oxidative phosphorylation pathway (OXPHOS) and tricarboxylic acid (TCA) cycle in rods with an activated hypoxic response decelerated cellular anabolism causing shortening of rod photoreceptor outer segments (OS) before onset of cell degeneration. Interestingly, rods with deficient OXPHOS but an intact TCA cycle did not exhibit these early signs of anabolic dysregulation and showed a slower course of degeneration. CONCLUSION Together, these data indicate an exceeding high glycolytic flux in rods and highlight the importance of mitochondrial metabolism and especially of the TCA cycle for PR survival in conditions of increased HIF activity.
Collapse
Affiliation(s)
- Vyara Todorova
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Mia Fee Stauffacher
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Cornelia Imsand
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Luca Merolla
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile.,Universidad San Sebastián, Valdivia, Chile
| | - Bruno Weber
- Institute of Pharmacology and Toxicology and Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland.
| |
Collapse
|
21
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
22
|
Mitochondrial Open Reading Frame of the 12S rRNA Type-c: Potential Therapeutic Candidate in Retinal Diseases. Antioxidants (Basel) 2023; 12:antiox12020518. [PMID: 36830076 PMCID: PMC9952431 DOI: 10.3390/antiox12020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is the most unearthed peptide encoded by mitochondrial DNA (mtDNA). It is an important regulator of the nuclear genome during times of stress because it promotes an adaptive stress response to maintain cellular homeostasis. Identifying MOTS-c specific binding partners may aid in deciphering the complex web of mitochondrial and nuclear-encoded signals. Mitochondrial damage and dysfunction have been linked to aging and the accelerated cell death associated with many types of retinal degenerations. Furthermore, research on MOTS-c ability to revive oxidatively stressed RPE cells has revealed a significant protective role for the molecule. Evidence suggests that senescent cells play a role in the development of age-related retinal disorders. This review examines the links between MOTS-c, mitochondria, and age-related diseases of the retina. Moreover, the untapped potential of MOTS-c as a treatment for glaucoma, diabetic retinopathy, and age-related macular degeneration is reviewed.
Collapse
|
23
|
Iker Etchegaray J, Kelley S, Penberthy K, Karvelyte L, Nagasaka Y, Gasperino S, Paul S, Seshadri V, Raymond M, Marco AR, Pinney J, Stremska M, Barron B, Lucas C, Wase N, Fan Y, Unanue E, Kundu B, Burstyn-Cohen T, Perry J, Ambati J, Ravichandran KS. Phagocytosis in the retina promotes local insulin production in the eye. Nat Metab 2023; 5:207-218. [PMID: 36732622 PMCID: PMC10457724 DOI: 10.1038/s42255-022-00728-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.
Collapse
Affiliation(s)
- J Iker Etchegaray
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen Penberthy
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Laura Karvelyte
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
| | - Sofia Gasperino
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Michael Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ana Royo Marco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Pinney
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Stremska
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brady Barron
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher Lucas
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- University of Edinburgh, Edinburgh, UK
| | - Nishikant Wase
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, USA
| | - Yong Fan
- Drexel University, Philadelphia, PA, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijoy Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Tal Burstyn-Cohen
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justin Perry
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
- Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Guo C, Deshpande M, Niu Y, Kachwala I, Flores-Bellver M, Megarity H, Nuse T, Babapoor-Farrokhran S, Ramada M, Sanchez J, Inamdar N, Johnson TV, Canto-Soler MV, Montaner S, Sodhi A. HIF-1α accumulation in response to transient hypoglycemia may worsen diabetic eye disease. Cell Rep 2023; 42:111976. [PMID: 36640318 PMCID: PMC9960808 DOI: 10.1016/j.celrep.2022.111976] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Tight glycemic control (TGC), the cornerstone of diabetic management, reduces the incidence and progression of diabetic microvascular disease. However, TGC can also lead to transient episodes of hypoglycemia, which have been associated with adverse outcomes in patients with diabetes. Here, we demonstrate that low glucose levels result in hypoxia-inducible factor (HIF)-1-dependent expression of the glucose transporter, Glut1, in retinal cells. Enhanced nuclear accumulation of HIF-1α was independent of its canonical post-translational stabilization but instead dependent on stimulation of its translation and nuclear localization. In the presence of hypoxia, this physiologic response to low glucose resulted in a marked increase in the secretion of the HIF-dependent vasoactive mediators that promote diabetic retinopathy. Our results provide a molecular explanation for how early glucose control, as well as glycemic variability (i.e., oscillating serum glucose levels), contributes to diabetic eye disease. These observations have important implications for optimizing glucose management in patients with diabetes.
Collapse
Affiliation(s)
- Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yueqi Niu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Isha Kachwala
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Haley Megarity
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Taylor Nuse
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Michael Ramada
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jaron Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Neelay Inamdar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Proinflammatory Cytokines Trigger the Onset of Retinal Abnormalities and Metabolic Dysregulation in a Hyperglycemic Mouse Model. J Ophthalmol 2023; 2023:7893104. [PMID: 36895267 PMCID: PMC9991478 DOI: 10.1155/2023/7893104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Purpose Recent evidence has shown that retinal inflammation is a key player in diabetic retinopathy (DR) pathogenesis. To further understand and validate the metabolic biomarkers of DR, we investigated the effect of intravitreal proinflammatory cytokines on the retinal structure, function, and metabolism in an in vivo hyperglycemic mouse model. Methods C57Bl/6 mice were rendered hyperglycemic within one week of administration of a single high-dose intraperitoneal injection of streptozotocin, while control mice received vehicle injection. After confirming hyperglycemia, the mice received an intravitreal injection of either proinflammatory cytokines (TNF-α and IL-1β) or vehicle. Similarly, control mice received an intravitreal injection of either proinflammatory cytokines or vehicle. The retinal structure was evaluated using fundus imaging and optical coherence tomography, and retinal function was assessed using a focal electroretinogram (ERG), two days after cytokine injection. Retinas were collected for biochemical analysis to determine key metabolite levels and enzymatic activities. Results Hyperglycemic mice intraocularly injected with cytokines developed visible retinal vascular damage and intravitreal and intraretinal hyper-reflective spots two days after the cytokines injection. These mice also developed a significant functional deficit with reduced a-wave and b-wave amplitudes of the ERG at high light intensities compared to control mice. Furthermore, metabolic disruption was evident in these mice, with significantly higher retinal glucose, lactate, ATP, and glutamine levels and a significant reduction in glutamate levels compared with control mice. Minimal or no metabolic changes were observed in hyperglycemic mice without intraocular cytokines or in control mice with intraocular cytokines at 2 days post hyperglycemia. Conclusions Proinflammatory cytokines accelerated the development of vascular damage in the eyes of hyperglycemic mice. Significant changes were observed in retinal structure, function, and metabolic homeostasis. These findings support the idea that with the onset of inflammation in DR, there is a deficit in metabolism. Therefore, early intervention to prevent inflammation-induced retinal changes in diabetic patients may improve the disease outcome.
Collapse
|
27
|
Hass DT, Bisbach CM, Sadilek M, Sweet IR, Hurley JB. Aerobic Glycolysis in Photoreceptors Supports Energy Demand in the Absence of Mitochondrial Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:435-441. [PMID: 37440069 DOI: 10.1007/978-3-031-27681-1_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Metabolism is adapted to meet energetic needs. Based on the amount of ATP required to maintain plasma membrane potential, photoreceptor energy demands must be high. The available evidence suggests that photoreceptors primarily generate metabolic energy through aerobic glycolysis, though this evidence is based primarily on protein expression and not measurement of metabolic flux. Aerobic glycolysis can be validated by measuring flux of glucose to lactate. Aerobic glycolysis is also inefficient and thus an unexpected adaptation for photoreceptors to make. We measured metabolic rates to determine the energy-generating pathways that support photoreceptor metabolism. We found that photoreceptors indeed perform aerobic glycolysis and this is associated with mitochondrial uncoupling.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Celia M Bisbach
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ian R Sweet
- UW Medicine - Diabetes Institute, University of Washington, Seattle, WA, USA
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Chidlow G, Chan WO, Wood JPM, Casson RJ. Investigations into photoreceptor energy metabolism during experimental retinal detachment. Front Cell Neurosci 2022; 16:1036834. [PMID: 36467607 PMCID: PMC9716104 DOI: 10.3389/fncel.2022.1036834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
Retinal detachment is a sight-threatening disorder, which occurs when the photoreceptors are separated from their vascular supply. The aim of the present study was to shed light on photoreceptor energy metabolism during experimental detachment in rats. Retinal detachment was induced in the eyes of rats via subretinal injection of sodium hyaluronate. Initially, we investigated whether detachment caused hypoxia within photoreceptors, as evaluated by the exogenous and endogenous biomarkers pimonidazole and HIF-1α, as well as by qPCR analysis of HIF target genes. The results showed no unequivocal staining for pimonidazole or HIF-1α within any detached retina, nor upregulation of HIF target genes, suggesting that any reduction in pO2 is of insufficient magnitude to produce hypoxia-induced covalent protein adducts or HIF-1α stabilisation. Subsequently, we analysed expression of cellular bioenergetic enzymes in photoreceptors during detachment. We documented loss of mitochondrial, and downregulation of glycolytic enzymes during detachment, indicating that photoreceptors have reduced energetic requirements and/or capacity. Given that detachment did not cause widespread hypoxia, but did result in downregulated expression of bioenergetic enzymes, we hypothesised that substrate insufficiency may be critical in terms of pathogenesis, and that boosting metabolic inputs may preserve photoreceptor bioenergetic production and, protect against their degeneration. Thus, we tested whether supplementation with the bioavailable energy substrate pyruvate mitigated rod and cone injury and degeneration. Despite protecting photoreceptors in culture from nutrient deprivation, pyruvate failed to protect against apoptotic death of rods, loss of cone opsins, and loss of inner segment mitochondria, in situ, when evaluated at 3 days after detachment. The regimen was also ineffective against cumulative photoreceptor deconstruction and degeneration when evaluated after 4 weeks. Retinal metabolism, particularly the bioenergetic profiles and pathological responses of the various cellular subtypes still presents a considerable knowledge gap that has important clinical consequences. While our data do not support the use of pyruvate supplementation as a means of protecting detached photoreceptors, they do provide a foundation and motivation for future research in this area.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
29
|
Depleted Calcium Stores and Increased Calcium Entry in Rod Photoreceptors of the Cacna2d4 Mouse Model of Cone-Rod Dystrophy RCD4. Int J Mol Sci 2022; 23:ijms232113080. [DOI: 10.3390/ijms232113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Unidentified pathogenetic mechanisms and genetic and clinical heterogeneity represent critical factors hindering the development of treatments for inherited retinal dystrophies. Frameshift mutations in Cacna2d4, which codes for an accessory subunit of voltage-gated calcium channels (VGCC), cause cone-rod dystrophy RCD4 in patients, but the underlying mechanisms remain unknown. To define its pathogenetic mechanisms, we investigated the impact of a Cacna2d4 frameshift mutation on the electrophysiological profile and calcium handling of mouse rod photoreceptors by patch-clamp recordings and calcium imaging, respectively. In mutant (MUT) rods, the dysregulation of calcium handling extends beyond the reduction in calcium entry through VGCC and surprisingly involves internal calcium stores’ depletion and upregulation of calcium entry via non-selective cationic channels (CSC). The similar dependence of CSC on basal calcium levels in WT and MUT rods suggests that the primary defect in MUT rods lies in defective calcium stores. Calcium stores’ depletion, leading to upregulated calcium and sodium influx via CSC, represents a novel and, so far, unsuspected consequence of the Cacna2d4 mutation. Blocking CSC may provide a novel strategy to counteract the well-known pathogenetic mechanisms involved in rod demise, such as the reticulum stress response and calcium and sodium overload due to store depletion.
Collapse
|
30
|
Iwai S, Hasegawa T, Ikeda HO, Tsujikawa A. Branched Chain Amino Acids Promote ATP Production Via Translocation of Glucose Transporters. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35930269 PMCID: PMC9363681 DOI: 10.1167/iovs.63.9.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We have previously shown that maintenance of ATP levels is a promising strategy for preventing neuronal cell death, and that branched chain amino acids (BCAAs) enhanced cellular ATP levels in cultured cells and antagonized cell death. BCAAs attenuated photoreceptor degeneration and retinal ganglion cell death in rodent models of retinal degeneration or glaucoma. This study aimed to elucidate the mechanisms through which BCAAs enhance ATP production. Methods Intracellular ATP concentration was measured in HeLa cells under glycolysis and citric acid cycle inhibited conditions. Next, glucose uptake was quantified in HeLa cells and in 661W retinal photoreceptor-derived cells under glycolysis inhibition, endoplasmic reticulum stress, and glucose transporters (GLUTs) inhibited conditions, by measuring the fluorescence of fluorescently labeled deoxy-glucose analog using flow cytometry. Then, the intracellular behavior of GLUT1 and GLUT3 were observed in HeLa or 661W cells transfected with enhanced green fluorescent protein-GLUTs. Results BCAAs recovered intracellular ATP levels during glycolysis inhibition and during citric acid cycle inhibition. BCAAs significantly increased glucose uptake and recovered decreased glucose uptake induced by endoplasmic reticulum stress or glycolysis inhibition. However, BCAAs were unable to increase intracellular ATP levels or glucose uptake when GLUTs were inhibited. Fluorescence microscopy revealed that supplementation of BCAAs enhanced the translocation of GLUTs proteins to the plasma membrane over time. Conclusions BCAAs increase ATP production by promoting glucose uptake through promotion of glucose transporters translocation to the plasma membrane. These results may help expand the clinical application of BCAAs in retinal neurodegenerative diseases, such as glaucoma and retinal degeneration.
Collapse
Affiliation(s)
- Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
Daniele LL, Han JY, Samuels IS, Komirisetty R, Mehta N, McCord JL, Yu M, Wang Y, Boesze-Battaglia K, Bell BA, Du J, Peachey NS, Philp NJ. Glucose uptake by GLUT1 in photoreceptors is essential for outer segment renewal and rod photoreceptor survival. FASEB J 2022; 36:e22428. [PMID: 35766190 PMCID: PMC9438481 DOI: 10.1096/fj.202200369r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or rod-specific manner to better understand how glucose is utilized in the retina. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Slc2a1 from retinal neurons and Müller glia results in reduced OS growth and progressive rod but not cone photoreceptor cell death. Rhodopsin levels were severely decreased even at postnatal day 20 when OS length was relatively normal. Arrestin levels were not changed suggesting that glucose uptake is required to synthesize membrane glycoproteins. Rod-specific deletion of Slc2a1 resulted in similar changes in OS length and rod photoreceptor cell death. These studies demonstrate that glucose is an essential carbon source for rod photoreceptor cell OS maintenance and viability.
Collapse
Affiliation(s)
- Lauren L. Daniele
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - John Y.S. Han
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Ivy S. Samuels
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland,
OH
| | - Ravikiran Komirisetty
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Nikhil Mehta
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Jessica L. McCord
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Minzhong Yu
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Cleveland Clinic Lerner
College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West
Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University,
Morgantown, WV
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, Penn Dental
Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania,
Philadelphia, PA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West
Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University,
Morgantown, WV
| | - Neal S. Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland,
OH
- Department of Ophthalmology, Cleveland Clinic Lerner
College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| |
Collapse
|
32
|
Kiyama T, Chen CK, Zhang A, Mao CA. Differential Susceptibility of Retinal Neurons to the Loss of Mitochondrial Biogenesis Factor Nrf1. Cells 2022; 11:cells11142203. [PMID: 35883647 PMCID: PMC9321222 DOI: 10.3390/cells11142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
The retina, the accessible part of the central nervous system, has served as a model system to study the relationship between energy utilization and metabolite supply. When the metabolite supply cannot match the energy demand, retinal neurons are at risk of death. As the powerhouse of eukaryotic cells, mitochondria play a pivotal role in generating ATP, produce precursors for macromolecules, maintain the redox homeostasis, and function as waste management centers for various types of metabolic intermediates. Mitochondrial dysfunction has been implicated in the pathologies of a number of degenerative retinal diseases. It is well known that photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and susceptibility to oxidative stress. However, it is unclear how defective mitochondria affect other retinal neurons. Nuclear respiratory factor 1 (Nrf1) is the major transcriptional regulator of mitochondrial biogenesis, and loss of Nrf1 leads to defective mitochondria biogenesis and eventually cell death. Here, we investigated how different retinal neurons respond to the loss of Nrf1. We provide in vivo evidence that the disruption of Nrf1-mediated mitochondrial biogenesis results in a slow, progressive degeneration of all retinal cell types examined, although they present different sensitivity to the deletion of Nrf1, which implicates differential energy demand and utilization, as well as tolerance to mitochondria defects in different neuronal cells. Furthermore, transcriptome analysis on rod-specific Nrf1 deletion uncovered a previously unknown role of Nrf1 in maintaining genome stability.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA; (T.K.); (A.Z.)
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Annie Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA; (T.K.); (A.Z.)
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA; (T.K.); (A.Z.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
33
|
Vohra R, Sanz-Morello B, Tams ALM, Mouhammad ZA, Freude KK, Hannibal J, Aldana BI, Bergersen LH, Kolko M. Prevention of Cell Death by Activation of Hydroxycarboxylic Acid Receptor 1 (GPR81) in Retinal Explants. Cells 2022; 11:cells11132098. [PMID: 35805182 PMCID: PMC9265426 DOI: 10.3390/cells11132098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Progressive retinal ganglion cell (RGC) dysfunction and death are common characteristics of retinal neurodegenerative diseases. Recently, hydroxycarboxylic acid receptor 1 (HCA1R, GPR81) was identified as a key modulator of mitochondrial function and cell survival. Thus, we aimed to test whether activation of HCA1R with 3,5-Dihydroxybenzoic acid (DHBA) also promotes RGC survival and improves energy metabolism in mouse retinas. Methods: Retinal explants were treated with 5 mM of the HCA1R agonist, 3,5-DHBA, for 2, 4, 24, and 72 h. Additionally, explants were also treated with 15 mM of L-glutamate to induce toxicity. Tissue survival was assessed through lactate dehydrogenase (LDH) viability assays. RGC survival was measured through immunohistochemical (IHC) staining. Total ATP levels were quantified through bioluminescence assays. Energy metabolism was investigated through stable isotope labeling and gas chromatography-mass spectrometry (GC-MS). Lactate and nitric oxide levels were measured through colorimetric assays. Results: HCA1R activation with 3,5-DHBAincreased retinal explant survival. During glutamate-induced death, 3,5-DHBA treatment also increased survival. IHC analysis revealed that 3,5-DHBA treatment promoted RGC survival in retinal wholemounts. 3,5-DHBA treatment also enhanced ATP levels in retinal explants, whereas lactate levels decreased. No effects on glucose metabolism were observed, but small changes in lactate metabolism were found. Nitric oxide levels remained unaltered in response to 3,5-DHBA treatment. Conclusion: The present study reveals that activation of HCA1R with 3,5-DHBA treatment has a neuroprotective effect specifically on RGCs and on glutamate-induced retinal degeneration. Hence, HCA1R agonist administration may be a potential new strategy for rescuing RGCs, ultimately preventing visual disability.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
- Correspondence: (R.V.); (M.K.)
| | - Berta Sanz-Morello
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Anna Luna Mølgaard Tams
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Zaynab Ahmad Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Kristine Karla Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
| | - Linda Hildegaard Bergersen
- Brain Energy Muscle Group, University of Oslo, NO-0318 Oslo, Norway;
- Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (A.L.M.T.); (Z.A.M.); (B.I.A.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
- Correspondence: (R.V.); (M.K.)
| |
Collapse
|
34
|
Glonek T, Snogren T, Schmidt SY, Hearn SL, Isreb MA, Greiner JV. Phosphatic metabolism in dark- and light-adapted rat retinas. Exp Eye Res 2022; 221:109141. [DOI: 10.1016/j.exer.2022.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
35
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Singh C. Metabolism and Vascular Retinopathies: Current Perspectives and Future Directions. Diagnostics (Basel) 2022; 12:diagnostics12040903. [PMID: 35453951 PMCID: PMC9031785 DOI: 10.3390/diagnostics12040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 01/03/2023] Open
Abstract
The retina is one of the most metabolically active organs in the body. Although it is an extension of the brain, the metabolic needs of the retina and metabolic exchanges between the different cell types in the retina are not the same as that of the brain. Retinal photoreceptors convert most of the glucose into lactate via aerobic glycolysis which takes place in their cytosol, yet there are immense numbers of mitochondria in photoreceptors. The present article is a focused review of the metabolic dysregulation seen in retinopathies with underlying vascular abnormalities with aberrant mitochondrial metabolism and Hypoxia-inducible factor (HIF) dependent pathogenesis. Special emphasis has been paid to metabolic exchanges between different cell types in retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). Metabolic similarities between these proliferative retinopathies have been discussed.
Collapse
Affiliation(s)
- Charandeep Singh
- Liver Center, Division of Gastroenterology, Mass General Hospital, Boston, MA 02114, USA
| |
Collapse
|
37
|
Bisbach CM, Hass DT, Thomas ED, Cherry TJ, Hurley JB. Monocarboxylate Transporter 1 (MCT1) Mediates Succinate Export in the Retina. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35363247 PMCID: PMC8976921 DOI: 10.1167/iovs.63.4.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/12/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Succinate is exported by the retina and imported by eyecup tissue. The transporters mediating this process have not yet been identified. Recent studies showed that monocarboxylate transporter 1 (MCT1) can transport succinate across plasma membranes in cardiac and skeletal muscle. Retina and retinal pigment epithelium (RPE) both express multiple MCT isoforms including MCT1. We tested the hypothesis that MCTs facilitate retinal succinate export and RPE succinate import. Methods We assessed retinal succinate export and eyecup succinate import in short-term ex vivo culture using gas chromatography-mass spectrometry. We tested the dependence of succinate export and import on pH, proton ionophores, conventional MCT substrates, and the MCT inhibitors AZD3965, AR-C155858, and diclofenac. Results Succinate exits retinal tissue through MCT1 but does not enter the RPE through MCT1 or any other MCT. Intracellular succinate levels are a contributing factor that determines if an MCT1-expressing tissue will export succinate. Conclusions MCT1 facilitates export of succinate from retinas. An unidentified, non-MCT transporter facilitates import of succinate into RPE.
Collapse
Affiliation(s)
- Celia M. Bisbach
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Daniel T. Hass
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Eric D. Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Timothy J. Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, United States
| | - James B. Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| |
Collapse
|
38
|
Damsgaard C, Country MW. The Opto-Respiratory Compromise: Balancing Oxygen Supply and Light Transmittance in the Retina. Physiology (Bethesda) 2022; 37:101-113. [PMID: 34843655 PMCID: PMC9159541 DOI: 10.1152/physiol.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The light-absorbing retina has an exceptionally high oxygen demand, which imposes two conflicting needs: high rates of blood perfusion and an unobstructed light path devoid of blood vessels. This review discusses mechanisms and physiological trade-offs underlying retinal oxygen supply in vertebrates and examines how these physiological systems supported the evolution of vision.
Collapse
Affiliation(s)
- Christian Damsgaard
- 1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,2Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Michael W. Country
- 3Retinal Neurophysiology Section, National Eye Institute,
National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Ingensiep C, Schaffrath K, Walter P, Johnen S. Effects of Hydrostatic Pressure on Electrical Retinal Activity in a Multielectrode Array-Based ex vivo Glaucoma Acute Model. Front Neurosci 2022; 16:831392. [PMID: 35177963 PMCID: PMC8845467 DOI: 10.3389/fnins.2022.831392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a heterogeneous eye disease causing atrophy of the optic nerve head (ONH). The optic nerve is formed by the axons of the retinal ganglion cells (RGCs) that transmit visual input to the brain. The progressive RGC loss during glaucoma leads to irreversible vision loss. An elevated intraocular pressure (IOP) is described as main risk factor in glaucoma. In this study, a multielectrode array (MEA)-based ex vivo glaucoma acute model was established and the effects of hydrostatic pressure (10, 30, 60, and 90 mmHg) on the functionality and survival of adult male and female wild-type mouse (C57BL/6) retinae were investigated. Spontaneous activity, response rate to electrical and light stimulation, and bursting behavior of RGCs was analyzed prior, during, and after pressure stress. No pressure related effects on spontaneous firing and on the response rate of the RGCs were observed. Even a high pressure level (90 mmHg for 2 h) did not disturb the RGC functionality. However, the cells’ bursting behavior significantly changed under 90 mmHg. The number of spikes in bursts doubled during pressure application and stayed on a high level after pressure stress. Addition of the amino sulfonic acid taurine (1 mM) showed a counteracting effect. OFF ganglion cells did not reveal an increase in bursts under pressure stress. Live/dead staining after pressure application showed no significant changes in RGC survival. The findings of our ex vivo model suggest that RGCs are tolerant toward high, short-time pressure stress.
Collapse
|
40
|
Zeviani M, Carelli V. Mitochondrial Retinopathies. Int J Mol Sci 2021; 23:210. [PMID: 35008635 PMCID: PMC8745158 DOI: 10.3390/ijms23010210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
The retina is an exquisite target for defects of oxidative phosphorylation (OXPHOS) associated with mitochondrial impairment. Retinal involvement occurs in two ways, retinal dystrophy (retinitis pigmentosa) and subacute or chronic optic atrophy, which are the most common clinical entities. Both can present as isolated or virtually exclusive conditions, or as part of more complex, frequently multisystem syndromes. In most cases, mutations of mtDNA have been found in association with mitochondrial retinopathy. The main genetic abnormalities of mtDNA include mutations associated with neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) sometimes with earlier onset and increased severity (maternally inherited Leigh syndrome, MILS), single large-scale deletions determining Kearns-Sayre syndrome (KSS, of which retinal dystrophy is a cardinal symptom), and mutations, particularly in mtDNA-encoded ND genes, associated with Leber hereditary optic neuropathy (LHON). However, mutations in nuclear genes can also cause mitochondrial retinopathy, including autosomal recessive phenocopies of LHON, and slowly progressive optic atrophy caused by dominant or, more rarely, recessive, mutations in the fusion/mitochondrial shaping protein OPA1, encoded by a nuclear gene on chromosome 3q29.
Collapse
Affiliation(s)
- Massimo Zeviani
- Department of Neurosciences, The Clinical School, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 6, 40139 Bologna, Italy
| |
Collapse
|
41
|
Greiner JV, Glonek T. Intracellular ATP Concentration and Implication for Cellular Evolution. BIOLOGY 2021; 10:1166. [PMID: 34827159 PMCID: PMC8615055 DOI: 10.3390/biology10111166] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Crystalline lens and striated muscle exist at opposite ends of the metabolic spectrum. Lens is a metabolically quiescent tissue, whereas striated muscle is a mechanically dynamic tissue with high-energy requirements, yet both tissues contain millimolar levels of ATP (>2.3 mM), far exceeding their underlying metabolic needs. We explored intracellular concentrations of ATP across multiple cells, tissues, species, and domains to provide context for interpreting lens/striated muscle data. Our database revealed that high intracellular ATP concentrations are ubiquitous across diverse life forms including species existing from the Precambrian Era, suggesting an ancient highly conserved role for ATP, independent of its widely accepted view as primarily "metabolic currency". Our findings reinforce suggestions that the primordial function of ATP was non-metabolic in nature, serving instead to prevent protein aggregation.
Collapse
Affiliation(s)
- Jack V. Greiner
- The Schepens Eye Research Institute of Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Clinical Eye Research of Boston, Boston, MA 02114, USA;
| | - Thomas Glonek
- Clinical Eye Research of Boston, Boston, MA 02114, USA;
| |
Collapse
|
42
|
Tsantilas KA, Cleghorn WM, Bisbach CM, Whitson JA, Hass DT, Robbings BM, Sadilek M, Linton JD, Rountree AM, Valencia AP, Sweetwyne MT, Campbell MD, Zhang H, Jankowski CSR, Sweet IR, Marcinek DJ, Rabinovitch PS, Hurley JB. An Analysis of Metabolic Changes in the Retina and Retinal Pigment Epithelium of Aging Mice. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34797906 PMCID: PMC8606884 DOI: 10.1167/iovs.62.14.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The purpose of this study was to present our hypothesis that aging alters metabolic function in ocular tissues. We tested the hypothesis by measuring metabolism in aged murine tissues alongside retinal responses to light. Methods Scotopic and photopic electroretinogram (ERG) responses in young (3–6 months) and aged (23–26 months) C57Bl/6J mice were recorded. Metabolic flux in retina and eyecup explants was quantified using U-13C-glucose or U-13C-glutamine with gas chromatography-mass spectrometry (GC-MS), O2 consumption rate (OCR) in a perifusion apparatus, and quantifying adenosine triphosphatase (ATP) with a bioluminescence assay. Results Scotopic and photopic ERG responses were reduced in aged mice. Glucose metabolism, glutamine metabolism, OCR, and ATP pools in retinal explants were mostly unaffected in aged mice. In eyecups, glutamine usage in the Krebs Cycle decreased while glucose metabolism, OCR, and ATP pools remained stable. Conclusions Our examination of metabolism showed negligible impact of age on retina and an impairment of glutamine anaplerosis in eyecups. The metabolic stability of these tissues ex vivo suggests age-related metabolic alterations may not be intrinsic. Future experiments should focus on determining whether external factors including nutrient supply, oxygen availability, or structural changes influence ocular metabolism in vivo.
Collapse
Affiliation(s)
- Kristine A Tsantilas
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Whitney M Cleghorn
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Celia M Bisbach
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Jeremy A Whitson
- Department of Biology, Davidson College, Davidson, North Carolina, United States
| | - Daniel T Hass
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Brian M Robbings
- Department of Biochemistry, University of Washington, Seattle, Washington, United States.,UW Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Jonathan D Linton
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Austin M Rountree
- UW Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Ana P Valencia
- Department of Radiology, University of Washington, Seattle, Washington, United States
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, Washington, United States
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Connor S R Jankowski
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States
| | - Ian R Sweet
- UW Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, United States
| | - Peter S Rabinovitch
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| |
Collapse
|
43
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
44
|
Prokai-Tatrai K, Zaman K, Nguyen V, De La Cruz DL, Prokai L. Proteomics-Based Retinal Target Engagement Analysis and Retina-Targeted Delivery of 17β-Estradiol by the DHED Prodrug for Ocular Neurotherapy in Males. Pharmaceutics 2021; 13:1392. [PMID: 34575465 PMCID: PMC8466286 DOI: 10.3390/pharmaceutics13091392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022] Open
Abstract
We examined the impact of 17β-estradiol (E2) eye drops on the modulation of the proteome profile in the male rat retina. With discovery-driven proteomics, we have identified proteins that were regulated by our treatment. These proteins were assembled to several bioinformatics-based networks implicating E2's beneficial effects on the male rat retina in a broad context of ocular neuroprotection including the maintenance of retinal homeostasis, facilitation of efficient disposal of damaged proteins, and mitochondrial respiratory chain biogenesis. We have also shown for the first time that the hormone's beneficial effects on the male retina can be constrained to this target site by treatment with the bioprecursor prodrug, DHED. A large concentration of E2 was produced after DHED eye drops not only in male rat retinae but also in those of rabbits. However, DHED treatment did not increase circulating E2 levels, thereby ensuring therapeutic safety in males. Targeted proteomics focusing on selected biomarkers of E2's target engagement further confirmed the prodrug's metabolism to E2 in the male retina and indicated that the retinal impact of DHED treatment was identical to that of the direct E2 treatment. Altogether, our study shows the potential of topical DHED therapy for an efficacious and safe protection of the male retina without the unwanted hormonal side-effects associated with current estrogen therapies.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.); (D.L.D.L.C.); (L.P.)
| | | | | | | | | |
Collapse
|
45
|
He J, Yamamoto M, Sumiyama K, Konagaya Y, Terai K, Matsuda M, Sato S. Two-photon AMPK and ATP imaging reveals the bias between rods and cones in glycolysis utility. FASEB J 2021; 35:e21880. [PMID: 34449091 DOI: 10.1096/fj.202101121r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
In vertebrates, retinal rod and cone photoreceptor cells rely significantly on glycolysis. Lactate released from photoreceptor cells fuels neighboring retinal pigment epithelium cells and Müller glial cells through oxidative phosphorylation. To understand this highly heterogeneous metabolic environment around photoreceptor cells, single-cell analysis is needed. Here, we visualized cellular AMP-activated protein kinase (AMPK) activity and ATP levels in the retina by two-photon microscopy. Transgenic mice expressing a hyBRET-AMPK biosensor were used for measuring the AMPK activity. GO-ATeam2 transgenic mice were used for measuring the ATP level. Temporal metabolic responses were successfully detected in the live retinal explants upon drug perfusion. A glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), activated AMPK and reduced ATP. These effects were clearly stronger in rods than in cones. Notably, rod AMPK and ATP started to recover at 30 min from the onset of 2-DG perfusion. Consistent with these findings, ex vivo electroretinogram recordings showed a transient slowdown in rod dim flash responses during a 60-min 2-DG perfusion, whereas cone responses were not affected. Based on these results, we propose that cones surrounded by highly glycolytic rods become less dependent on glycolysis, and rods also become less dependent on glycolysis within 60 min upon the glycolysis inhibition.
Collapse
Affiliation(s)
- Jiazhou He
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Yumi Konagaya
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Sato
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
47
|
Barravecchia I, Demontis GC. HCN1 channels: A versatile tool for signal processing by primary sensory neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:133-146. [PMID: 34197835 DOI: 10.1016/j.pbiomolbio.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Most primary sensory neurons (PSNs) generate a slowly-activating inward current in response to membrane hyperpolarization (Ih) and express HCN1 along with additional isoforms coding for hyperpolarization-activated channels (HCN). Changes in HCN expression may affect the excitability and firing patterns of PSNs, but retinal and inner ear PSNs do not fire action potentials, suggesting HCN channel roles may extend beyond excitability and cell firing control. In patients taking Ih blockers, photopsia triggered in response to abrupt changes in luminance correlates with impaired visual signal processing via parallel rod and cone pathways. Furthermore, in a mouse model of inherited retinal degeneration, HCN blockers or Hcn1 genetic ablation may worsen photoreceptors' demise. PSN's use of HCN channels to adjust either their firing rate or process signals generated by sensory transduction in non-spiking PSNs indicates HCN1 channels as a versatile tool with a novel role in sensory processing beyond firing control.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Department of Pharmacy, Università di Pisa, Italy, Via Bonanno, 6, 56126, Pisa, Italy; Istitute of Life Science, Scuola Superiore Sant' Anna, 56127, Pisa, Italy.
| | - Gian Carlo Demontis
- Department of Pharmacy, Università di Pisa, Italy, Via Bonanno, 6, 56126, Pisa, Italy.
| |
Collapse
|
48
|
Absence of retbindin blocks glycolytic flux, disrupts metabolic homeostasis, and leads to photoreceptor degeneration. Proc Natl Acad Sci U S A 2021; 118:2018956118. [PMID: 33526685 DOI: 10.1073/pnas.2018956118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously reported a model of progressive retinal degeneration resulting from the knockout of the retina-specific riboflavin binding protein, retbindin (Rtbdn -/- ). We also demonstrated a reduction in neural retinal flavins as a result of the elimination of RTBDN. Given the role of flavins in metabolism, herein we investigated the underlying mechanism of this retinal degeneration by performing metabolomic analyses on predegeneration at postnatal day (P) 45 and at the onset of functional degeneration in the P120 retinas. Metabolomics of hydrophilic metabolites revealed that individual glycolytic products accumulated in the P45 Rtbdn -/- neural retinas along with the elevation of pentose phosphate pathway, while TCA cycle intermediates remained unchanged. This was confirmed by using 13C-labeled flux measurements and immunoblotting, revealing that the key regulatory step of phosphoenolpyruvate to pyruvate was inhibited via down-regulation of the tetrameric pyruvate kinase M2 (PKM2). Separate metabolite assessments revealed that almost all intermediates of acylcarnitine fatty acid oxidation, ceramides, sphingomyelins, and multiple toxic metabolites were significantly elevated in the predegeneration Rtbdn -/- neural retina. Our data show that lack of RTBDN, and hence reduction in flavins, forced the neural retina into repurposing glucose for free-radical mitigation over ATP production. However, such sustained metabolic reprogramming resulted in an eventual metabolic collapse leading to neurodegeneration.
Collapse
|
49
|
Ingensiep C, Schaffrath K, Denecke B, Walter P, Johnen S. A multielectrode array-based hypoxia model for the analysis of electrical activity in murine retinae. J Neurosci Res 2021; 99:2172-2187. [PMID: 34110645 DOI: 10.1002/jnr.24899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Several eye diseases, for example, retinal artery occlusion, diabetic retinopathy, and glaucoma, are associated with retinal hypoxia. The lack of oxygen in the retina, especially in retinal ganglion cells (RGCs), causes cell damage up to cell degeneration and leads to blindness. Using multielectrode array recordings, an ex vivo hypoxia acute model was established to analyze the electrical activity of murine wild-type retinae under hypoxic stress conditions. Hypoxia was induced by exchanging the perfusion with oxygen-saturated medium by nitrogen-saturated medium. Hypoxic periods of 0 min (control) up to 60 min were tested on the retinae of adult female C57BL/6J mice. The electrical RGC activity vanished during hypoxia, but conditionally returned after the reestablishment of conventional test conditions. With increasing duration of hypoxia, the returning RGC activity decreased. After a hypoxic period of 30 min and a subsequent recovery time of 30 min, 59.43 ± 11.35% of the initially active channels showed a restored RGC activity. The survival rate of retinal cells after hypoxic stress was analyzed by a live/dead staining assay using two-photon laser scanning microscopy. For detailed information about molecular changes caused by hypoxia, a microarray gene expression analysis was performed. Furthermore, the effect of 2-aminoethanesulfonic acid (taurine, 1 mM) on retinae under hypoxic stress was tested. Treatment with taurine resulted in an increase in the RGC response rate after hypoxia and also increased the survival rate of retinal cells under hypoxic stress, confirming its potential as promising candidate for neuroprotective therapies of eye diseases.
Collapse
Affiliation(s)
- Claudia Ingensiep
- Department of Ophthalmology, University Hospital RWTH Aachen, Aachen, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, University Hospital RWTH Aachen, Aachen, Germany
| | - Bernd Denecke
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
50
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|