1
|
Du L, Rodgers J, Gharraee N, Gary O, Shazly T, Eberth JF, Lessner SM. Endothelial dysfunction promotes age-related reorganization of collagen fibers and alters aortic biomechanics in mice. Am J Physiol Heart Circ Physiol 2025; 328:H900-H914. [PMID: 40062975 DOI: 10.1152/ajpheart.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 01/29/2025] [Indexed: 03/29/2025]
Abstract
Endothelial dysfunction, defined as a reduction in the bioavailability of nitric oxide (NO), is a risk factor for the occurrence and progression of various vascular diseases. This study investigates the effect of endothelial dysfunction on age-related changes in aortic extracellular matrix (ECM) microstructure and the relationship between microstructural adaptation and the mechanical response. Here, we used groups of NOS3 knockout (KO), NOS3 heterozygotes (Het), and wild-type (WT) B6 mice (controls) to study changes in hemodynamic parameters, collagen fiber organization, and both active and passive aortic mechanics using biaxial pressure myography over a time course from 1.5 to 12 mo. Our results show that homeostatic levels of passive circumferential stress and stretch were preserved in KO mice by remodeling adventitial collagen fibers toward a more predominantly circumferential direction with age, rather than by increased fibrosis, in response to hypertension induced by endothelial dysfunction. However, passive aortic stiffness in KO mice was significantly increased owing to geometrical changes, including significant increases in wall thickness and decreases in inner diameter, and by ECM microstructural reorganization, during this maladaptive vascular remodeling. Furthermore, long-term NO deficiency significantly increased smooth muscle cell (SMC) contractility initially, but this effect was attenuated with age. These findings improve our understanding of microstructural and mechanical changes during the maladaptive vascular remodeling process, demonstrating a role for adventitial collagen fiber reorientation in the response to hypertension.NEW & NOTEWORTHY Endothelial dysfunction facilitates the reorganization of collagen fibers toward a more predominantly circumferential orientation with age, consequently promoting homeostatic normalization of passive circumferential stress and stretch in the vessel subjected to hypertension.
Collapse
Affiliation(s)
- Liya Du
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - Jeffrey Rodgers
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - Nazli Gharraee
- Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States
| | - Olivia Gary
- College of Arts and Sciences, University of South Carolina, Columbia, South Carolina, United States
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - John F Eberth
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
- Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States
| | - Susan M Lessner
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
2
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
3
|
Conde D, Garcia MA, Gomez M, Gurovich AN. Exercise-Induced Shear Stress Drives mRNA Translation In Vitro. Curr Issues Mol Biol 2024; 46:9895-9905. [PMID: 39329941 PMCID: PMC11430095 DOI: 10.3390/cimb46090589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The vascular endothelium is the first line of defense to prevent cardiovascular disease. Its optimal functioning and health are maintained by the interaction of the proteins-endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), and endothelin 1 (ET1)-and the genes that encode them-NOS3, SIRT1, and EDN1, respectively. Aerobic exercise improves endothelial function by allegedly increasing endothelial shear stress (ESS). However, there are no current data exploring the acute effects of specific exercise-induced ESS intensities on these regulatory proteins and genes that are associated with endothelial function. The purpose of this study was to assess the acute changes in endothelial proteins and gene expression after exposure to low-, moderate-, and high-intensity exercise-induced ESS. Human umbilical vein endothelial cells (HUVECs) were exposed to resting ESS (18 dynes/cm2, 60 pulses per minute (PPM)), low ESS (35 dynes/cm2, 100 PPM), moderate ESS (50 dynes/cm2, 120 PPM), and high ESS (70 dynes/cm2, 150 PPM). Protein and gene expression were quantified by fluorescent Western blot and RTqPCR, respectively. All exercise conditions showed an increase in eNOS and SIRT1 expression and a decrease in NOS3 and SIRT1 gene expression when compared to resting conditions. In addition, there was no expression of ET1 and an increase in EDN1 gene expression when compared to resting conditions. These results show that (1) exercise-induced ESS increases the expressions of vascular protective proteins and (2) there is an inverse relationship between the proteins and their encoding genes immediately after exercise-induced ESS, suggesting that exercise has a previously unexplored translational role catalyzing mRNA to proteins.
Collapse
Affiliation(s)
- Daniel Conde
- Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Physical Therapy and Movement Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario A Garcia
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60208, USA
| | - Manuel Gomez
- Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA
- Interdisciplinary Health Sciences Ph.D. Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alvaro N Gurovich
- Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Physical Therapy and Movement Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Interdisciplinary Health Sciences Ph.D. Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
4
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Sangartit W, Suwannachot P, Thawornchinsombut S, Jan-On G, Boonla O, Senaphan K. House cricket protein hydrolysates alleviate hypertension, vascular dysfunction, and oxidative stress in nitric oxide-deficient hypertensive rats. Vet World 2024; 17:2104-2114. [PMID: 39507793 PMCID: PMC11536747 DOI: 10.14202/vetworld.2024.2104-2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/08/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Edible insects with high protein content and bioactive peptides with health promotion against chronic disease. Deficiency of nitric oxide (NO) contributes to hypertension, a leading cause of cardiovascular diseases and death worldwide. This study assessed the antihypertensive effects of house cricket protein hydrolysates (HCPH) in NO-deficient hypertensive rats. Materials and Methods Male Sprague-Dawley rats (n = 12/group) were hypertensive after the administration of Nω-nitro-L-arginine methyl ester (L-NAME) at a dose of 50 mg/kg body weight (BW)/day in drinking water for 7 weeks. The animals were then treated with HCPH (250 or 500 mg/kg BW/day) or lisinopril (Lis) (1 mg/kg BW/day) for the last 4 weeks of L-NAME administration. Blood pressure (BP), vascular function, and structural changes, endothelial NO synthase (eNOS), and p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase protein expression in aortic tissues, plasma nitrate/nitrite, plasma angiotensin-converting enzyme (ACE) activity, and oxidative stress markers in blood and tissues were evaluated. Results Induction of hypertension resulted in significantly elevated BP, decreased plasma nitrate/nitrite concentration, abolished vascular function, and increased vascular wall thickness. Overproduction of carotid and mesenteric superoxide, increased plasma, heart, and kidney malondialdehyde, and protein carbonyl levels, and increased plasma ACE activity were observed. Down-expression of eNOS with overexpression of p47phox NADPH oxidase subunit was also found in L-NAME hypertensive rats. Oral treatment with HCPH, particularly at a dose of 500 mg/kg BW/day, significantly alleviated these alterations in a manner comparable to that of Lis. Conclusion HCPH improved vascular function and exerted antihypertensive effects, mainly due to the improvement of NO bioavailability, reduction of oxidative stress, and inhibition of ACE.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pisit Suwannachot
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gulladawan Jan-On
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Physiology and Integrated Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Orachorn Boonla
- Department of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Ketmanee Senaphan
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
6
|
de Lima Sanches B, Souza-Neto F, de Alcântara-Leonídeo TC, Silva MM, Guatimosim S, Vieira MAR, Santos RAS, da Silva RF. Alamandine attenuates oxidative stress in the right carotid following transverse aortic constriction in mice. Peptides 2024; 171:171094. [PMID: 37696437 DOI: 10.1016/j.peptides.2023.171094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Pressure overload can result in significant changes to the structure of blood vessels, a process known as vascular remodeling. High levels of tension can cause vascular inflammation, fibrosis, and structural alterations to the vascular wall. Prior research from our team has demonstrated that the oral administration of alamandine can promote vasculoprotective effects in mice aorta that have undergone transverse aortic constriction (TAC). Furthermore, changes in local hemodynamics can affect the right and left carotid arteries differently after TAC. Thus, in this study, we aimed to assess the effects of alamandine treatment on right carotid remodeling and the expression of oxidative stress-related substances induced by TAC. METHODS AND RESULTS Male C57BL/6 mice were categorized into three groups: Sham, TAC, and TAC treated with alamandine (TAC+ALA). Alamandine treatment was administered orally by gavage (30 µg/kg/day), starting three days before the surgery, and continuing for a period of fourteen days. Morphometric analysis of hematoxylin and eosin-stained sections revealed that TAC induced hypertrophic and positive remodeling in the right carotid artery. Picrosirius Red staining also demonstrated an increase in total collagen deposition in the right carotid artery due to TAC-induced vascular changes. Alamandine treatment effectively prevented the increase in reactive oxygen species production and depletion of nitric oxide levels, which were induced by TAC. Finally, alamandine treatment was also shown to prevent the increased expression of nuclear factor erythroid 2-related factor 2 and 3-nitrotyrosine that were induced by TAC. CONCLUSION Our results suggest that alamandine can effectively attenuate pathophysiological stress in the right carotid artery of animals subjected to TAC.
Collapse
Affiliation(s)
- Bruno de Lima Sanches
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Souza-Neto
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Cancer & Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA
| | | | - Mário Morais Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | | | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
7
|
Yang W, Sam K, Qiao Y, Huang Z, Steinman DA, Wasserman BA. A Novel Window Into Human Vascular Remodeling and Diagnosing Carotid Flow Impairment: The Petro-Occipital Venous Plexus. J Am Heart Assoc 2023; 12:e031832. [PMID: 37830353 PMCID: PMC10757507 DOI: 10.1161/jaha.123.031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Background Adaptive arterial remodeling caused by flow reduction from downstream stenosis has been demonstrated in animal studies. The authors sought to determine whether inward remodeling from downstream stenosis also occurs in humans and is detectable by ex vacuo expansion of the Rektorzik venous plexus (RVP) surrounding the petrous internal carotid artery. Methods and Results The authors analyzed 214 intracranial magnetic resonance imaging examinations that included contrast-enhanced vessel wall imaging. RVP symmetry was qualitatively assessed on vessel wall imaging. RVP thickness (RVPT) was measured on the thicker side if asymmetric or randomly assigned side if symmetric. Maximum stenosis (M1 or intracranial internal carotid artery) was measured. Posterior communicating artery and A1 diameters (>1.0 mm and 1.5 mm, respectively) defined adequate collateral outflow when proximal to the stenosis. Seventy-two patients had stenosis downstream from RVPT measurements. For those without adequate outflow (38 of 72), 95.0% with RVPT ≥1.0 mm had ≥50% stenosis compared with only 5.6% with RVPT <1.0 mm. For these 72 patients, higher RVPT (RVPT ≥1.0 mm versus <1.0 mm) and absent adequate outflow were associated with greater downstream stenosis (P<0.001) using multivariate regression. For patients with downstream stenosis without adequate outflow, asymmetric RVP thickening was associated with greater ipsilateral stenosis (P<0.001, all had ≥46% stenosis) when stenosis was unilateral and greater differences in stenosis between sides (P=0.005) when stenosis was bilateral. Conclusions Inward internal carotid artery remodeling measured by RVPT or RVP asymmetry occurs as downstream stenosis approaches 50%, unless flow is preserved through a sufficiently sized posterior communicating artery or A1, and may serve as a functional measure of substantial flow reduction from downstream stenosis.
Collapse
Affiliation(s)
- Wenjie Yang
- Department of Diagnostic Radiology & Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMD
| | - Kevin Sam
- Department of Diagnostic Radiology & Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMD
| | - Ye Qiao
- Russell H. Morgan Department of Radiology and Radiological SciencesJohns Hopkins School of MedicineBaltimoreMD
| | - Zhongqing Huang
- Department of Diagnostic Radiology & Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMD
| | - David A. Steinman
- Department of Mechanical & Industrial EngineeringUniversity of TorontoCanada
| | - Bruce A. Wasserman
- Department of Diagnostic Radiology & Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMD
- Russell H. Morgan Department of Radiology and Radiological SciencesJohns Hopkins School of MedicineBaltimoreMD
| |
Collapse
|
8
|
Mangoni AA, Sotgia S, Zinellu A, Carru C, Pintus G, Damiani G, Erre GL, Tommasi S. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther Adv Cardiovasc Dis 2023; 17:17539447231215213. [PMID: 38115784 PMCID: PMC10732001 DOI: 10.1177/17539447231215213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
New evidence continues to accumulate regarding a significant association between excessive inflammation and dysregulated immunity (local and systemic) and the risk of cardiovascular events in different patient cohorts. Whilst research has sought to identify novel atheroprotective therapies targeting inflammation and immunity, several marketed drugs for rheumatological conditions may serve a similar purpose. One such drug, methotrexate, has been used since 1948 for treating cancer and, more recently, for a wide range of dysimmune conditions. Over the last 30 years, epidemiological and experimental studies have shown that methotrexate is independently associated with a reduced risk of cardiovascular disease, particularly in rheumatological patients, and exerts several beneficial effects on vascular homeostasis and blood pressure control. This review article discusses the current challenges with managing cardiovascular risk and the new frontiers offered by drug discovery and drug repurposing targeting inflammation and immunity with a focus on methotrexate. Specifically, the article critically appraises the results of observational, cross-sectional and intervention studies investigating the effects of methotrexate on overall cardiovascular risk and individual risk factors. It also discusses the putative molecular mechanisms underpinning the atheroprotective effects of methotrexate and the practical advantages of using methotrexate in cardiovascular prevention, and highlights future research directions in this area.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Centre of Precision Medicine and Chronic Inflammation, Milan, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
9
|
Tantawy AAG, Tadros MAR, Adly AAM, Ismail EAR, Ibrahim FA, Salah Eldin NM, Hussein MM, Alfeky MA, Ibrahim SM, Hashem MA, Ebeid FSE. Endothelin-1 gene polymorphism (G8002A) and endothelial monocyte-activating polypeptide II: Role in vascular dysfunction in pediatric patients with β-thalassemia major. Cytokine 2023; 161:156048. [PMID: 36279697 DOI: 10.1016/j.cyto.2022.156048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1), a potent endogenous vasoconstrictor, stimulates production of reactive oxygen species. Endothelial monocyte-activating polypeptide-II (EMAP-II) is a multifunctional polypeptide. AIM To assess ET-1 gene polymorphism (G8002A) in pediatric patients with β-thalassemia major (β-TM) as a potential genetic marker for vascular dysfunction and its possible relation to EMAP II, oxidative stress and vascular complications. METHODS β-TM patients (n = 95) without symptomatic cardiac or renal disease were compared with 95 healthy controls. Markers of hemolysis, serum ferritin, urinary albumin-to-creatinine ratio, serum EMAP II, malondialdehyde (MDA) and antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), glutathione reductase and catalase were measured. ET-1 gene polymorphism (G8002A) was determined using polymerase chain reaction‑restriction fragment length polymorphism. RESULTS β-TM patients had significantly higher EMAP II than healthy controls. EMAP II was significantly higher among patients with cardiac disease, pulmonary hypertension (PH) risk, nephropathy, poor compliance to therapy and ferritin ≥ 2500 μg/L. There were significant correlations between EMAP II and transfusion index, LDH, ferritin and oxidative stress markers. The AA genotype of ET-1 gene polymorphism (G8002A) was significantly higher among β-TM patients than controls. The number of patients with cardiac disease, PH risk or nephropathy was significantly higher among AA genotype compared with GG and GA genotypes. Lactate dehydrogenase (LDH), serum ferritin, EMAP II, MDA, SOD and GPx were significantly higher in AA genotype. CONCLUSION ET-1 gene polymorphism (G8002A) could be a possible genetic marker for prediction of increased susceptibility to cardiopulmonary and renal complications among pediatric patients with β-TM.
Collapse
Affiliation(s)
| | | | | | | | - Fatma A Ibrahim
- Biochemistry Department, National Research Center, Cairo, Egypt
| | | | | | | | - Sarah Mohammed Ibrahim
- Pediatric Department, Military Medical Services and Military Medical Academy, Cairo, Egypt
| | - Marwa Adel Hashem
- Pediatric Department, Military Medical Services and Military Medical Academy, Cairo, Egypt
| | | |
Collapse
|
10
|
da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TGD, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol 2022; 13:978378. [PMID: 36467706 PMCID: PMC9714775 DOI: 10.3389/fphys.2022.978378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
The vascular endothelium plays a pivotal role in the maintenance of vascular homeostasis, mediated by vasoactive molecules produced by endothelial cells. The balance between vasoconstrictor and vasodilator biomolecules is what guarantees this equilibrium. Therefore, an increase in the bioavailability of vasoconstrictors along with a reduction in vasodilators may indicate a condition known as endothelial dysfunction. Endothelial dysfunction is marked by an inflammatory process and reduced activity of vasoprotective enzymes, being characterized by some factors like the reduction of the bioavailability of nitric oxide (NO) and increase in the production of reactive oxygen species (ROS), pro-inflammatory and vasoconstrictor molecules. This condition is a predictive marker of several cardiovascular diseases (e.g., atherosclerosis, hypertension, and diabetes). Research is affected by the scarcity of suitable in vitro models that simulate endothelial dysfunction. The goal of this study was to induce an in vitro condition to mimic endothelial dysfunction by inhibiting NO synthesis in cells. Thymus-derived endothelial cells (tEnd.1) were treated with different concentrations of L-NAME (from 1 to 1,000 μM) for different times (12, 24, 48, 72, 96, and 120 h without and with retreatment every 24 h). Cell viability, nitrite concentration, p22phox, NOX2, NOX4, IL-6, and ACE genes expression and lipid peroxidation were evaluated. The results indicate that the treatment with 100 μM L-NAME for 72 h without retreatment reduced NO concentration and NOX4 gene expression while increasing ACE expression, thus mimicking reduced vascular protection and possibly increased vasoconstriction. On the other hand, treatment with 100 μM L-NAME for 96 h with retreatment reduced the concentration of NO and the expression of the p22phox gene while increasing the expression of the IL-6 and ACE genes, mimicking the increase in inflammation and vasoconstriction parameters. Based on these results, we thus propose that both 100 μM L-NAME for 72 h without retreatment and 100 μM L-NAME for 96 h with retreatment may be used as models for in vitro endothelial dysfunction according to the purpose of the study to be conducted.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruna Juber de Araújo
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Carina Santos Cordeiro
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Vinícius Marques Arruda
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Bruno Quintanilha Faria
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Joyce Ferreira Da Costa Guerra
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Thaise Gonçalves De Araújo
- Animal Cell Culture Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Cristina Ribas Fürstenau
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
11
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
12
|
Whyte E, Thomas S, Marzolini S. Muscle Oxygenation of the Paretic and Nonparetic Legs During and After Arterial Occlusion in Chronic Stroke. J Stroke Cerebrovasc Dis 2021; 31:106265. [PMID: 34954600 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oxygen delivery and demand are reduced in the paretic leg post-stroke, reflecting decreased vascular function and reduced muscle quantity and quality. However, it is unknown how muscle oxygenation, the balance between muscle oxygen delivery and utilization, is altered in chronic stroke during and after occlusion-induced ischemia. OBJECTIVES The objective was to determine muscle oxygen consumption rate, microvascular responsiveness and reactive hyperemia in the paretic and nonparetic legs during and after arterial occlusion post-stroke. MATERIALS AND METHODS Muscle oxygen saturation was measured with near-infrared spectroscopy on the vastus lateralis of each leg during 3-minute arterial occlusion and recovery (3 min). Muscle oxygen consumption was derived from the desaturation slope during ischemia, microvascular responsiveness was derived from the resaturation slope after ischemia and reactive hyperemia was derived from the area under the curve above baseline after ischemia. RESULTS Eleven subjects (91% male; 32.2±6.1 months post-stroke; age 62.9±13.6 years) with a hemiparetic gait pattern participated. There was no significant between-leg muscle oxygenation difference at rest (paretic: 64.9±16.6%; nonparetic: 70.6±15.6%, p = 0.13). Muscle oxygen consumption in the paretic leg (-0.53±0.24%/s) was significantly reduced compared to the nonparetic leg (-0.70±0.36%/s; p = 0.03). Microvascular responsiveness was significantly reduced in the paretic leg compared to the nonparetic leg (paretic: 4.6±1.8%/s; nonparetic: 5.7±1.6%/s, p = 0.04). Reactive hyperemia was not significantly different between legs (paretic:4384±2341%·s; nonparetic: 3040±2216%·s, p = 0.07). CONCLUSION Muscle oxygen consumption and microvascular responsiveness are impaired in the paretic compared to the nonparetic leg, suggesting both reduced skeletal muscle aerobic function and reduced ability to maximally perfuse muscle tissue.
Collapse
Affiliation(s)
- Elizabeth Whyte
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Scott Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Susan Marzolini
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute-Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, ON, Canada.
| |
Collapse
|
13
|
Barral M, El-Sanharawi I, Dohan A, Sebuhyan M, Guedon A, Delarue A, Boutigny A, Mohamedi N, Magnan B, Kemel S, Ketfi C, Kubis N, Bisdorff-Bresson A, Pocard M, Bonnin P. Blood Flow and Shear Stress Allow Monitoring of Progression and Prognosis of Tumor Diseases. Front Physiol 2021; 12:693052. [PMID: 34413786 PMCID: PMC8369886 DOI: 10.3389/fphys.2021.693052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
In the presence of tumor angiogenesis, blood flow must increase, leading to an elevation of blood flow velocities (BFVels) and wall shear stress (WSS) in upstream native arteries. An adaptive arterial remodeling is stimulated, whose purpose lies in the enlargement of the arterial inner diameter, aiming for normalization of BFVels and WSS. Remodeling engages delayed processes that are efficient only several weeks/months after initiation, independent from those governing expansion of the neovascular network. Therefore, during tumor expansion, there is a time interval during which elevation of BFVels and WSS could reflect disease progression. Conversely, during the period of stability, BFVels and WSS drop back to normal values due to the achievement of remodeling processes. Ovarian peritoneal carcinomatosis (OPC), pseudomyxoma peritonei (PMP), and superficial arteriovenous malformations (AVMs) are diseases characterized by the development of abnormal vascular networks developed on native ones. In OPC and PMP, preoperative blood flow in the superior mesenteric artery (SMA) correlated with the per-operative peritoneal carcinomatosis index (OPC: n = 21, R = 0.79, p < 0.0001, PMP: n = 66, R = 0.63, p < 0.0001). Moreover, 1 year after surgery, WSS in the SMA helped in distinguishing patients with PMP from those without disease progression [ROC-curve analysis, AUC = 0.978 (0.902-0.999), p < 0.0001, sensitivity: 100.0%, specificity: 93.5%, cutoff: 12.1 dynes/cm2]. Similarly, WSS in the ipsilateral afferent arteries close to the lesion distinguished stable from progressive AVM [ROC-curve analysis, AUC: 0.988, (0.919-1.000), p < 0.0001, sensitivity: 93.5%, specificity: 95.7%; cutoff: 26.5 dynes/cm2]. Blood flow volume is indicative of the tumor burden in OPC and PMP, and WSS represents an early sensitive and specific vascular marker of disease progression in PMP and AVM.
Collapse
Affiliation(s)
- Matthias Barral
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Imane El-Sanharawi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Anthony Dohan
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Maxime Sebuhyan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexis Guedon
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Audrey Delarue
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexandre Boutigny
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Nassim Mohamedi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Benjamin Magnan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Salim Kemel
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Chahinez Ketfi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Nathalie Kubis
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Annouk Bisdorff-Bresson
- AP-HP, Université de Paris, Hôpital Lariboisière, Neuroradiologie, Centre Constitutif des Malformations Artério Veineuses Superficielles de l'Enfant et de l'Adulte, Paris, France
| | - Marc Pocard
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France.,AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Chirurgie Digestive et Cancérologique, Paris, France
| | - Philippe Bonnin
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| |
Collapse
|
14
|
Pan Y, Sun S, Wang X, Chen A, Fei X, Wang W, Han Y. Improvement of Vascular Function by Knockdown of Salusin-β in Hypertensive Rats via Nitric Oxide and Reactive Oxygen Species Signaling Pathway. Front Physiol 2021; 12:622954. [PMID: 33897447 PMCID: PMC8063058 DOI: 10.3389/fphys.2021.622954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Salusin-β, a multifunctional vasoactive peptide, has a potentially important function in the pathological development of hypertension. However, the exact functional role of salusin-β and the underlying mechanism in this process are still not fully understood. The current study aimed to investigate the effects of silencing salusin-β on vascular function and vascular remodeling, as well as its signaling pathways in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). Methods Silencing salusin-β was performed by caudal vein injection of adenovirus expressing salusin-β short hairpin RNA (shRNA). Acetylcholine (ACh)-induced endothelium-dependent relaxation was used to evaluate vasodilator function, and high K+ solution-induced constriction was used to evaluate vasoconstriction function. Results Salusin-β levels in plasma and its protein expression in mesenteric artery (MA), coronary artery (CA), and pulmonary artery (PA) of SHR were higher than those in WKY. The salusin-β level and expression were decreased effectively by salusin-β shRNA. Knockdown of salusin-β decreased arterial blood pressure (ABP) and high K+ solution-induced vascular constrictions, and improved the endothelium-dependent relaxation and vascular remodeling in SHR. The improved effect of silencing salusin-β on ACh-induced relaxation in SHR was almost blocked by the nitric oxide synthase (NOS) inhibitor L-NAME. Compared to WKY, the endothelial NOS (eNOS) activity and level, and nitric oxide (NO) level were decreased, while NAD(P)H oxidase activity and reactive oxygen species (ROS) levels in MA, CA, and PA of SHR were increased, which were all redressed by salusin-β knockdown. Conclusion These results indicate that knockdown of salusin-β improves endothelium-dependent vascular relaxation and vascular remodeling and decreases ABP and vasoconstriction in SHR, which might be accomplished by increasing eNOS activation and NO release while inhibiting NAD(P)H oxidase derived-ROS generation. Scavenging salusin-β improves vascular function and then prevents the development and progression of vasculopathy of hypertension.
Collapse
Affiliation(s)
- Yan Pan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shuo Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xingxing Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xuejie Fei
- Department of Emergency, Shanghai Putuo District People's Hospital, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Emergency, Shanghai Putuo District People's Hospital, Tongji University, Shanghai, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1496462. [PMID: 33062134 PMCID: PMC7533760 DOI: 10.1155/2020/1496462] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Healthy lifestyle and diet are associated with significant reduction in risk of obesity, type 2 diabetes, and cardiovascular diseases. Oxidative stress and the imbalance between prooxidants and antioxidants are linked to cardiovascular and metabolic diseases. Changes in antioxidant capacity of the body may lead to oxidative stress and vascular dysfunction. Diet is an important source of antioxidants, while exercise offers many health benefits as well. Recent findings have evidenced that diet and physical factors are correlated to oxidative stress. Diet and physical factors have debatable roles in modulating oxidative stress and effects on the endothelium. Since endothelium and oxidative stress play critical roles in cardiovascular and metabolic diseases, dietary and physical factors could have significant implications on prevention of the diseases. This review is aimed at summarizing the current knowledge on the impact of diet manipulation and physical factors on endothelium and oxidative stress, focusing on cardiovascular and metabolic diseases. We discuss the friend-and-foe role of dietary modification (including different diet styles, calorie restriction, and nutrient supplementation) on endothelium and oxidative stress, as well as the potential benefits and concerns of physical activity and exercise on endothelium and oxidative stress. A fine balance between oxidative stress and antioxidants is important for normal functions in the cells and interfering with this balance may lead to unfavorable effects. Further studies are needed to identify the best diet composition and exercise intensity.
Collapse
|
16
|
Guimaraes DA, Batista RIM, Tanus-Santos JE. Nitrate and nitrite-based therapy to attenuate cardiovascular remodelling in arterial hypertension. Basic Clin Pharmacol Toxicol 2020; 128:9-17. [PMID: 32772466 DOI: 10.1111/bcpt.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/29/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a highly prevalent disease marked by vascular and cardiac maladaptive remodelling induced mainly by renin-angiotensin system activation followed by oxidative stress. Here, we briefly describe these damages and review the current evidence supporting a potential role for nitrate and nitrite as antihypertensive molecules that act via nitric oxide (NO) formation-dependent and NO formation-independent mechanisms and how nitrate/nitrite inhibits cardiovascular remodelling in hypertension. The renin-angiotensin system activation and oxidative stress converge to activate proteases involved in cardiovascular remodelling in hypertension. Besides these proteases, several investigations have demonstrated that reduced endogenous NO bioavailability is a central pathological event in hypertension. In this regard, nitrate/nitrite, long considered inert products of NO, is now known as physiological molecules able to reduce blood pressure in hypertensive patients and in different experimental models of hypertension. These effects are associated with the formation of NO and other NO-related molecules, which could induce S-nitrosylation of target proteins. However, it remains unclear whether S-nitrosylation is an essential mechanism for the anti-remodelling effects of nitrate/nitrite in hypertension. Moreover, nitrate/nitrite produces antioxidant effects associated with the inhibition of signalling pathways involved in cardiovascular remodelling. Together, these findings may help to establish nitrate and nitrite as effective therapies in hypertension-induced cardiovascular remodelling.
Collapse
Affiliation(s)
- Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
17
|
Man AWC, Li H, Xia N. The Role of Sirtuin1 in Regulating Endothelial Function, Arterial Remodeling and Vascular Aging. Front Physiol 2019; 10:1173. [PMID: 31572218 PMCID: PMC6751260 DOI: 10.3389/fphys.2019.01173] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Sirtuin1 (SIRT1), which belongs to a highly conserved family of protein deacetylase, is one of the best-studied sirtuins. SIRT1 is involved in a variety of biological processes, including energy metabolism, cell proliferation and survival, chromatin dynamics, and DNA repair. In the vasculature, SIRT1 is ubiquitously expressed in endothelial cells, smooth muscle cells, and perivascular adipose tissues (PVAT). Endothelial SIRT1 plays a unique role in vasoprotection by regulating a large variety of proteins, including endothelial nitric oxide synthase (eNOS). In endothelial cells, SIRT1 and eNOS regulate each other synergistically through positive feedback mechanisms for the maintenance of endothelial function. Recent studies have shown that SIRT1 plays a vital role in modulating PVAT function, arterial remodeling, and vascular aging. In the present article, we summarize recent findings, review the molecular mechanisms and the potential of SIRT1 as a therapeutic target for the treatment of vascular diseases, and discuss future research directions.
Collapse
|
18
|
Rippe C, Albinsson S, Guron G, Nilsson H, Swärd K. Targeting transcriptional control of soluble guanylyl cyclase via NOTCH for prevention of cardiovascular disease. Acta Physiol (Oxf) 2019; 225:e13094. [PMID: 29754438 DOI: 10.1111/apha.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is an effector enzyme of nitric oxide (NO). Recent work has unravelled how levels of this enzyme are controlled, and highlighted a role in vascular disease. We provide a timely summary of available knowledge on transcriptional regulation of sGC, including influences from the NOTCH signalling pathway and genetic variants. It is speculated that hypertension-induced repression of sGC starts a vicious circle that can be initiated by periods of stress, diet or genetic factors, and a key tenet is that reduction in sGC further raises blood pressure. The idea that dysregulation of sGC contributes to syndromes caused by defective NOTCH signalling is advanced, and we discuss drug repositioning for vascular disease prevention. The advantage of targeting sGC expression rather than activity is also considered. It is argued that transcriptional inputs on sGC arise from interactions with other cells, the extracellular matrix and microRNAs (miRNAs), and concluded that the promise of sGC as a target for prevention of cardiovascular disease has increased in recent time.
Collapse
Affiliation(s)
- C. Rippe
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | - S. Albinsson
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | - G. Guron
- Department of Physiology; University of Gothenburg; Gothenburg Sweden
| | - H. Nilsson
- Department of Physiology; University of Gothenburg; Gothenburg Sweden
| | - K. Swärd
- Department of Experimental Medical Science; Lund University; Lund Sweden
| |
Collapse
|
19
|
Trejo-Moreno C, Castro-Martínez G, Méndez-Martínez M, Jiménez-Ferrer JE, Pedraza-Chaverri J, Arrellín G, Zamilpa A, Medina-Campos ON, Lombardo-Earl G, Barrita-Cruz GJ, Hernández B, Ramírez CC, Santana MA, Fragoso G, Rosas G. Acetone fraction from Sechium edule (Jacq.) S.w. edible roots exhibits anti-endothelial dysfunction activity. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:75-86. [PMID: 29501845 DOI: 10.1016/j.jep.2018.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A recent ethnomedical survey on medicinal plants grown in Mexico revealed that Sechium edule (Jacq.) Sw. (Cucurbitaceae) is one of the most valued plant species to treat cardiovascular diseases, including hypertension. Fruits, young leaves, buds, stems, and tuberous roots of the plant are edible. Considering that endothelial dysfunction induced by Angiotensin II plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage, and that S. edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity, its capability to control endothelial dysfunction was also assessed. AIM OF THE STUDY To assess in vivo the anti-endothelial dysfunction activity of the acetone fraction (rSe-ACE) of the hydroalcoholic extract from S. edule roots. MATERIALS AND METHODS Endothelial dysfunction was induced in female C57BL/6 J mice by a daily intraperitoneal injection of angiotensin II for 10 weeks. Either rSe-ACE or losartan (as a control) were co-administered with angiotensin II for the same period. Blood pressure was measured at weeks 0, 5, and 10. Kidney extracts were prepared to determine IL1β, IL4, IL6, IL10, IL17, IFNγ, TNFα, and TGFβ levels by ELISA, along with the prooxidative status as assessed by the activity of antioxidant enzymes. The expression of ICAM-1 was evaluated by immunohistochemistry in kidney histological sections. Kidney and hepatic damage, as well as vascular tissue remodeling, were studied. RESULTS The rSe-ACE fraction administered at a dose of 10 mg/kg was able to control hypertension, as well as the prooxidative and proinflammatory status in kidney as efficiently as losartan, returning mice to normotensive levels. Additionally, the fraction was more efficient than losartan to prevent liver and kidney damage. Phytochemical characterization identified cinnamic acid as a major compound, and linoleic, palmitic, and myristic acids as the most abundant non-polar components in the mixture, previously reported to aid in the control of hypertension, inflammation, and oxidative stress, three important components of endothelial dysfunction. IN CONCLUSION this study demonstrated that rSe-ACE has anti-endothelial dysfunction activity in an experimental model and highlights the role of cinnamic acid and fatty acids in the observed effects.
Collapse
Affiliation(s)
- Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Gabriela Castro-Martínez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Marisol Méndez-Martínez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Jesús Enrique Jiménez-Ferrer
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Gerardo Arrellín
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico; Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México CP 03920, Mexico
| | - Alejandro Zamilpa
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Galia Lombardo-Earl
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - Gerardo Joel Barrita-Cruz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Beatriz Hernández
- Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Christian Carlos Ramírez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos CP 62209, Mexico
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Gabriela Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico.
| |
Collapse
|
20
|
Protective Effects of Methotrexate against Proatherosclerotic Cytokines: A Review of the Evidence. Mediators Inflamm 2017; 2017:9632846. [PMID: 29430085 PMCID: PMC5753000 DOI: 10.1155/2017/9632846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 12/16/2022] Open
Abstract
There is good epidemiological evidence that patients with autoimmune rheumatic disease states, particularly rheumatoid arthritis, have an increased risk of cardiovascular morbidity and mortality when compared to the general population. The presence of a chronic systemic proinflammatory state in this patient group disrupts the structural and functional integrity of the endothelium and the arterial wall, favouring the onset and progression of atherosclerosis. A significant role in the detrimental effects of inflammation on endothelial function and vascular homeostasis is played by specific proatherosclerotic cytokines such as tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). Recent systematic reviews and meta-analyses have shown that treatment with methotrexate, a first-line disease-modifying antirheumatic drug (DMARD), is associated with a significant reduction in atherosclerosis-mediated cardiovascular events, such as myocardial infarction and stroke, and mortality, when compared to other DMARDs. This suggests that methotrexate might exert specific protective effects against vascular inflammation and atherosclerosis in the context of autoimmune rheumatic disease. This review discusses the available evidence regarding the potential antiatherosclerotic effects of methotrexate through the inhibition of TNF-α, IL-1, and IL-6 and provides suggestions for future experimental and human studies addressing this issue.
Collapse
|
21
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32:1357-1382. [PMID: 28762173 DOI: 10.1007/s11011-017-0081-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer's disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer's and Parkinson's disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Collapse
Affiliation(s)
- Anzelle Delport
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
22
|
Plasma l-citrulline concentrations in l-arginine-supplemented healthy dogs. J Vet Cardiol 2017; 19:376-383. [PMID: 28684243 DOI: 10.1016/j.jvc.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
Abstract
INTRODUCTION To determine whether oral l-arginine increases plasma [l-citrulline] in dogs. ANIMALS Eleven healthy staff-owned dogs were used in this study. MATERIALS AND METHODS Dogs (n = 3) were given l-arginine (50mg/kg PO q8h) for 7 days, and plasma [l-arginine] and [l-citrulline] were analyzed by high performance liquid chromatography at baseline (BL), steady state trough, and 0.5, 1, 1.5, 2, 4, 6, and 8 h after final dosing on day 7. Eleven dogs were then treated with 100mg/kg l-arginine PO q8h for 7 days, and [l-arginine] and [l-citrulline] were measured at BL, steady state trough, and at peak 4 hrs after dosing (T4 hrs). RESULTS - Plasma [l-arginine] and [l-citrulline] peaked at T4 hrs on the 50mg/kg dosage. Target outcome, modeled after human study results, of a doubling of [l-arginine] and a 25-30% increase in [l-citrulline] from BL were not reached. After the 100mg/kg dosage, plasma [l-arginine] increased from a BL median of 160.1 μM (range, 100.2-231.4 μM) to a peak of 417.4 μM (206.5-807.3 μM) at T4 hrs, and plasma [l-citrulline] increased from a BL median of 87.8 μM (59.1-117.1 μM) to peak of 102.2 μM (47.4-192.6 μM) at T4 hrs. Ten of eleven dogs showed a doubling of plasma [l-arginine] and 4/11 dogs achieved 25-30% or greater increases in plasma [l-citrulline]. No adverse effects on heart rate or blood pressure were noted. CONCLUSIONS - Oral l-arginine dosage of 100mg/kg q8h doubles plasma [l-arginine] in healthy dogs, but conversion to l-citrulline is quite variable. Further evaluation of this dosage regimen in dogs with pulmonary hypertension is warranted.
Collapse
|
23
|
Ustyugov AA, Aliev GM. Cardiovascular drugs and triazole based kinase inhibitors as a new strategies for the treatment of Alzheimer disease. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1429-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Liang Y, Wang J, Gao H, Wang Q, Zhang J, Qiu J. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress. Mol Med Rep 2016; 14:3711-8. [PMID: 27601315 DOI: 10.3892/mmr.2016.5699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
Abstract
Arterial remodeling is a pathogenic occurrence during hypertension and, in turn, is closely associated with the development and complications of hypertension. Grape seed proanthocyanidin extract (GSPE) has been reported to exhibit a protective effect on cardiovascular disease, however its effect on arterial remodeling remains to be fully elucidated. In the present study, the effects of GSPE on arterial remodeling were analyzed by treating spontaneously hypertensive rats (SHRs) with GSPE (250 mg/kg·day). Arterial remodeling was quantified through morphological methods; thoracic aortas were stained with hematoxylin-eosin or sirius red‑victoria blue. The arterial ultrastructure was imaged using transmission electron microscopy. The content of nitric oxide (NO) and endothelin‑1 (ET‑1) were examined to determine endothelial function. Oxidative stress was assessed by malondialdehyde (MDA) levels and the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Administration of GSPE markedly alleviated hypertension‑induced arterial remodeling, which was not associated with blood pressure control. ET‑1 production was reduced, while NO production was increased in the GSPE group, which exhibited improved endothelial function. In addition, treatment with GSPE significantly ameliorated oxidative stress by improving SOD and CAT activities and reducing MDA formation. In conclusion, GSPE may attenuate hypertension‑induced arterial remodeling by repressing oxidative stress and is recommended as a potential anti‑arterial remodeling agent for patients with hypertensive vascular diseases.
Collapse
Affiliation(s)
- Ying Liang
- Department of Geriatric Cardiology, Qianfoshan Hospital of Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jian Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiqing Gao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Quanzhen Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jun Zhang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Qiu
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Wang M, Chen M, Ding Y, Zhu Z, Zhang Y, Wei P, Wang J, Qiao Y, Li L, Li Y, Wen A. Pretreatment with β-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation. Sci Rep 2015; 5:15357. [PMID: 26482008 PMCID: PMC4611516 DOI: 10.1038/srep15357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3’, 5’-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway.
Collapse
Affiliation(s)
- Mingming Wang
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China.,Shaanxi University of Chinese Medicine, Shaanxi, Xian-yang 712046, China
| | - Minchun Chen
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yi Ding
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Zhihui Zhu
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yikai Zhang
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Shaanxi, Xian-yang 712046, China
| | - Jingwen Wang
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yi Qiao
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Liang Li
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Yuwen Li
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| | - Aidong Wen
- Department of pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an 710032, China
| |
Collapse
|
26
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
27
|
Rennie MY, Rahman A, Whiteley KJ, Sled JG, Adamson SL. Site-specific increases in utero- and fetoplacental arterial vascular resistance in eNOS-deficient mice due to impaired arterial enlargement. Biol Reprod 2014; 92:48. [PMID: 25519187 DOI: 10.1095/biolreprod.114.123968] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sites of elevated vascular resistance that impede placental perfusion in pathological pregnancies are unknown. In the current study, we identified these sites in a knockout mouse model (eNOS(-/-)) with reduced uterine (-55%) and umbilical (-29%) artery blood flows caused by endothelial nitric oxide synthase deficiency. Uteroplacental and fetoplacental arterial vascular trees of pregnant mice near term were imaged using x-ray microcomputed tomography (n = 5-10 placentas from 3-5 dams/group). The resulting three-dimensional images were analyzed to assess vessel geometry and vascular resistance. In control and eNOS(-/-) trees, ∼90% of total uteroplacental vascular resistance was located in the radial arteries. Changes in eNOS(-/-) vessel geometry, including 30% reductions in uterine, radial, and spiral artery diameters, were calculated to increase arterial resistance downstream of the uterine artery by 2.3-fold, predicting a 57% decrease in uterine blood flow. Despite large reductions in eNOS(-/-) spiral arteries (-55% by volume) and maternal canals (-67% by volume), these vessels were relatively minor contributors to resistance. In the eNOS(-/-) fetoplacental tree, the number of arterioles (50-75 μm diameter) increased by 26%. Nevertheless, calculated resistance rose by 19%, predominantly because arteries near the periphery of the tree selectively exhibited a 7%-9% diameter reduction. We conclude that previously observed decreases in uterine and umbilical blood flows in eNOS(-/-) pregnancies are associated with markedly divergent structural changes in the uteroplacental versus fetoplacental circulations. Results showed the radial arteries were critical determinants of uteroplacental resistance in mice and therefore warrant greater attention in future studies in pathological human pregnancies.
Collapse
Affiliation(s)
- Monique Y Rennie
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anum Rahman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kathie J Whiteley
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S Lee Adamson
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada Department of Physiology, University of Toronto, Toronto, Ontario, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Wang X, Zachman AL, Chun YW, Shen FW, Hwang YS, Sung HJ. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent. Int J Cardiol 2014; 174:688-95. [PMID: 24820736 DOI: 10.1016/j.ijcard.2014.04.228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/12/2014] [Accepted: 04/19/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. METHODS Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. RESULTS We demonstrated that poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule (VCAM)-1 along with decreased nitric oxide production, indicating that ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced the release of elastase or elastase-like protease, which further accelerated polymer degradation. CONCLUSIONS This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate that polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Angela L Zachman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Young Wook Chun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Fang-Wen Shen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, Kyung Hee University, Seoul, South Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, United States; Department of Maxillofacial Biomedical Engineering, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
29
|
Sen A, Most P, Peppel K. Induction of microRNA-138 by pro-inflammatory cytokines causes endothelial cell dysfunction. FEBS Lett 2014; 588:906-14. [PMID: 24486907 DOI: 10.1016/j.febslet.2014.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/17/2014] [Indexed: 01/25/2023]
Abstract
Exposure to pro-inflammatory cytokines, such as Angiotensin II, endothelin-1 or TNF leads to endothelial dysfunction, characterized by the reduced production of nitric oxide via endothelial nitric oxide synthase (eNOS). We recently identified the Ca(2+) binding protein S100A1 as an essential factor required for eNOS activity. Here we report that pro-inflammatory cytokines down-regulate expression of S100A1 in primary human microvascular endothelial cells (HMVECs) via induction of microRNA-138 (miR-138), in a manner that depends on the stabilization of HIF1-α. We show that loss of S100A1 in ECs reduces stimulus-induced NO production, which can be prevented by inhibition of miR-138. Our study suggests that targeting miR-138 might be beneficial for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anagha Sen
- Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA, USA
| | - Patrick Most
- Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA, USA; Laboratory for Molecular and Translational Cardiology, Department of Internal Medicine III, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Karsten Peppel
- Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Abstract
General use and popularity of over-the-counter supplemental antioxidants have rapidly spread all over the world and are believed to promote cardiovascular health and wellbeing. However, there is a paucity of information and lack of proof that physiological and above-physiological levels of oxidants do harm at the cellular and organismal levels. Instead, several reports demonstrated that reduction in Reactive Oxygen Species (ROS) did not improve vascular function. Interestingly, recent studies show that increased ROS levels play protective role in vascular endothelium and may improve coronary endothelial function. In the current review, we introduce the concept that increased ROS levels, often seen in association with cardiovascular disease, probably is an endothelial-way or ‘oxidative response’ to cope with vascular pathology.
Collapse
Affiliation(s)
- M Ruhul Abid
- Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Frank W Sellke
- Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA
| |
Collapse
|
31
|
Serum Containing Tao-Hong-Si-Wu Decoction Induces Human Endothelial Cell VEGF Production via PI3K/Akt-eNOS Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:195158. [PMID: 23762109 PMCID: PMC3673321 DOI: 10.1155/2013/195158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/11/2013] [Accepted: 04/21/2013] [Indexed: 01/05/2023]
Abstract
Tao-Hong-Si-Wu decoction (TSD) is a famous traditional Chinese medicine (TCM) and widely used for ischemic disease in China. TSD medicated serum was prepared after oral administration of TSD (1.6 g/kg) twice a day for 3 days in rats. TSD medicated serum induced human umbilical vein endothelial cells (HUVECs) proliferation, VEGF secretion, and nitric oxide (NO) production. These promoted effects of TSD were partly inhibited by treatment with PI3K inhibitor (LY294002) or eNOS inhibitor (L-NAME), respectively, and completely inhibited by treatment with LY294002 and L-NAME simultaneously. Western blot analysis findings further indicated that TSD medicated serum upregulated p-Akt and p-eNOS expressions, which were significantly inhibited by LY294002 or L-NAME and completely inhibited by both LY294002 and L-NAME; these results indicated that TSD medicated serum induced HUVECs VEGF expression via PI3K/Akt-eNOS signaling. TSD medicated serum contains hydroxysafflor yellow A, ferulic acid, and ligustilide detected by UPLC with standards, so these effect of TSD medicated serum may be associated with these three active compounds absorbed in serum.
Collapse
|
32
|
Chen XM, Chen HS, Xu MJ, Shen JG. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin 2013; 34:67-77. [PMID: 22842734 DOI: 10.1038/aps.2012.82] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.
Collapse
|
33
|
Effect of a free radical scavenger on nitric oxide release in microvessels. Vascul Pharmacol 2013; 58:134-9. [DOI: 10.1016/j.vph.2012.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 11/20/2022]
|
34
|
Zhang N, Gong L, Zhang H, Cao C. High Glucose–Induced Dysfunction of Endothelial Cells can be Restored by HoxA9EC. Ann Vasc Surg 2012; 26:1002-10. [DOI: 10.1016/j.avsg.2012.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/26/2022]
|
35
|
Liu X, Qiu J, Zhao S, You B, Ji X, Wang Y, Cui X, Wang Q, Gao H. Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function. Mol Med Rep 2012; 6:949-54. [PMID: 22895622 PMCID: PMC3493090 DOI: 10.3892/mmr.2012.1026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022] Open
Abstract
Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.
Collapse
Affiliation(s)
- Xiangju Liu
- Department of Geriatrics, Shandong University Qilu Hospital, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gheissari A, Javanmard SH, Shirzadi R, Amini M, Khalili N. The effects of blocking Angiotensin receptors on early stages of diabetic nephropathy. Int J Prev Med 2012; 3:477-82. [PMID: 22891149 PMCID: PMC3415188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the beneficial effects of angiotensin receptor blockers (ARBs) on markers of endothelial function in patients with early stage of diabetic nephropathy (DN). METHODS This cross-sectional study was conducted on 32 participants with IDDM from January 2010 until May 2011 in Isfahan, Iran. The participants were candidate for receiving ARBs or angiotensin-converting enzyme inhibitors (ACEIs) to decrease microalbuminuria. The inclusion criteria were as follows: the age of onset of insulin-dependent diabetes mellitus (IDDM)less than 15 years; normal glomerular filtration rate (GFR); normal blood pressure; normal cardiovascular examination; negative urine culture, receiving no medications except insulin. Microalbuminuria was measured in two fasting urine samples with a sampling interval of at least 1-2 months by ELISA method. Patients with two abnormal results were included. Microalbumin to creatinin ratio equal to or more than 30 mg/gm was considered abnormal. The fasting blood samples to determine serum nitric oxide (NO) and vascular cell adhesion molecule (VCAM) were obtained at the time 0 (before starting the study), and after 2 months of receiving ARBmedication. Valsartan tablet (Diovan, Novartis Company) with a dose of 1 mg/kg/day up to 80 mg/day in a single dose was administered. RESULTS Urine microalbumin to creatinin ratio after valsartan consumption was lower than microalbumin level before the medication, P < 0.05. After valsartan consumption, serum VCAM-1 level reduced and NO level increased significantly, P < 0.05. CONCLUSION Angiotensin receptor blockers may reduce VCAM-1 and microalbuminuria and may increase NO levels in early stages of DN. Thus administration of ARBs might be considered even in early stages of DN.
Collapse
Affiliation(s)
- Alaleh Gheissari
- Department of Paediatric Nephrology, Isfahan Kidney Diseases Research Centre, Isfahan Child Growth and Development Research Center, Isfahan University of medical Sciences (IUMS), Iran
| | - Shaghayegh H Javanmard
- Department of Physiology, Physiology Research Centre IUMS, Iran,Correspondence to: Dr Shaghayegh Haghjooy Javanmard, Department of Physiology, Applied Physiology Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | | | - Masood Amini
- Endocrine and Diabetes Research Centre, IUMS, Iran
| | | |
Collapse
|
37
|
Saito M, Ohmasa F, Dimitriadis F, Tsounapi P, Sejima T, Shimizu S, Kinoshita Y, Satoh K. Hydroxyfasudil ameliorates penile dysfunction in the male spontaneously hypertensive rat. Pharmacol Res 2012; 66:325-31. [PMID: 22750666 DOI: 10.1016/j.phrs.2012.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 11/29/2022]
Abstract
Hypertension represents a major risk factor for erectile dysfunction. Although the etiology of hypertension-induced erectile dysfunction is multifactorial and still unknown, Rho-Rho kinase pathway is one of the key factors. To investigate whether administration of hydroxyfasudil, a Rho kinase inhibitor could prevent dysfunction of NO-induced relaxation in corpus cavernosum smooth muscle in the SHR (spontaneously hypertensive rat), twelve-week-old male SHRs were treated with hydroxyfasudil (3 or 10 mg/kg, i.p.) once a day for 6 weeks. Wistar rats and SHRs treatment with vehicle were used as age-matched controls. Penile cGMP concentrations and Rho kinase activities were determined, and penile function was estimated by organ bath studies with norepinephrine-induced contractions and acetylcholine-induced relaxations. The participation mRNA levels of eNOS and participation protein levels of eNOS and phosphorylated eNOS were investigated by quantitative real-time PCR methods and immunoblot analysis, respectively. The SHR showed significantly decreased cGMP concentrations, increased Rho kinase activities, norepinephrine-induced hyper-contractions, and acetylcholine-induced hypo-relaxations in the penile tissue. Treatment with hydroxyfasudil significantly improved the decreased penile cGMP concentrations, the increased Rho kinase activities, the increased norepinephrine-induced contractions, and the decreased acetylcholine-induced relaxation in a dose-dependent manner. Although there were no significant differences in expression protein levels of eNOS among any of the groups, down-regulation of eNOS mRNAs as well as phosphorylated eNOS were significantly ameliorated after treatment with hydroxyfasudil. Our data suggest that hydroxyfasudil ameliorates hypertension-associated dysfunction of NO-induced relaxation in corpus cavernosum smooth muscle possibly via inhibition of the Rho-Rho kinase pathway and activation of NO-eNOS pathway in the SHR.
Collapse
Affiliation(s)
- Motoaki Saito
- Division of Molecular Pharmacology, Tottori University School of Medicine, 86 Nishi-machi, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bir SC, Xiong Y, Kevil CG, Luo J. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovasc Res 2012; 95:7-18. [PMID: 22492672 DOI: 10.1093/cvr/cvs143] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although an abundant amount of research has been devoted to the study of angiogenesis, its precise mechanisms are incompletely understood. Numerous clinical trials focused on therapeutic angiogenesis for the treatment of tissue ischaemia have not been as successful as those of preclinical studies. Thus, additional studies are needed to better understand critical molecular mechanisms regulating ischaemic neovascularization to identify novel therapeutic agents. Nitric oxide (NO) plays a central role in ischaemic neovascularization through the generation of cyclic guanosine monophosphate (cGMP) and the activation of several other signalling responses. Accumulated evidence suggests that endothelial protein kinase A/endothelial NO synthase (PKA/eNOS) signalling may play an important role in ischaemic disorders by promoting neovascularization. This review highlights recent advances in the role of the PKA/eNOS and NO-cGMP-kinase cascade pathway in ischaemic neovascularization. We also discuss molecular relationships of PKA/eNOS with other angiogenic pathways and explore the possibility of activation of the NO/nitrite endocrine system as potential therapeutic targets for ischaemic angiogenesis.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, LA, USA
| | | | | | | |
Collapse
|
39
|
Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling. PLoS One 2012; 7:e31495. [PMID: 22355372 PMCID: PMC3280303 DOI: 10.1371/journal.pone.0031495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/09/2012] [Indexed: 01/22/2023] Open
Abstract
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (−/−)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (−/−) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.
Collapse
|
40
|
Herranz B, Marquez S, Guijarro B, Aracil E, Aicart-Ramos C, Rodriguez-Crespo I, Serrano I, Rodríguez-Puyol M, Zaragoza C, Saura M. Integrin-linked kinase regulates vasomotor function by preventing endothelial nitric oxide synthase uncoupling: role in atherosclerosis. Circ Res 2011; 110:439-49. [PMID: 22194624 DOI: 10.1161/circresaha.111.253948] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Atherosclerotic lesions develop in regions of disturbed flow, whereas laminar flow protects from atherogenesis; however, the mechanisms involved are not completely elucidated. Integrins are mechanosensors of shear stress in endothelial cells, and integrin-linked kinase (ILK) is important for blood vessel integrity and cardiovascular development. OBJECTIVES To explore the role of ILK in vascular function by studying conditionally ILK-deficient (cKO) mice and human atherosclerotic arteries. RESULTS ILK expression was detected in the endothelial cell layer of nonatherosclerotic vessels but was absent from the endothelium of atherosclerotic arteries. Live ultrasound imaging revealed that acetylcholine-mediated vasodilatation was impaired in cKO mice. These mice exhibited lowered agonist-induced nitric oxide synthase (NOS) activity and decreased cyclic guanosine monophosphate and nitrite production. ILK deletion caused endothelial NOS (eNOS) uncoupling, reflected in reduced tetrahydrobiopterin (BH4) levels, increased BH2 levels, decreased dihydrofolate reductase expression, and increased eNOS-dependent generation of superoxide accompanied by extensive vascular protein nitration. ILK reexpression prevented eNOS uncoupling in cKO cells, whereas superoxide formation was unaffected by ILK depletion in eNOS-KO cells, indicating eNOS as a primary source of superoxide anion. eNOS and ILK coimmunoprecipitated in aortic lysates from control animals, and eNOS-ILK-shock protein 90 interaction was detected in human normal mammary arteries but was absent from human atherosclerotic carotid arteries. eNOS-ILK interaction in endothelial cells was prevented by geldanamycin, suggesting heat shock protein 90 as a binding partner. CONCLUSIONS Our results identify ILK as a regulatory partner of eNOS in vivo that prevents eNOS uncoupling, and suggest ILK as a therapeutic target for prevention of endothelial dysfunction related to shear stress-induced vascular diseases.
Collapse
|
41
|
Panaich SS, Veeranna V, Zalawadiya SK, Niraj A, Afonso L. Red cell distribution width and mortality. J Cardiovasc Med (Hagerstown) 2011; 12:747-9. [DOI: 10.2459/jcm.0b013e32834b0ea2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
The promise of EPC-based therapies on vascular dysfunction in diabetes. Eur J Pharmacol 2011; 669:1-6. [PMID: 21839073 DOI: 10.1016/j.ejphar.2011.07.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/29/2011] [Accepted: 07/21/2011] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is one of the most common metabolic diseases in the world and the vascular dysfunction represents a challenging clinical problem. In diabetes, endothelial cells (ECs), lining the inner wall of blood vessels, do not function properly and contribute to impaired vascular function. Circulating endothelial progenitor cells (EPCs), the precursor of mature EC, actively participate in endothelial repair, by moving to the vascular injury site to form mature EC and new blood vessels. Knowing that the therapeutic interventions can improve only a part of EC dysfunction in diabetes, this review addresses recent findings on the use of EPCs for cell therapy. The strategies proposed in review are based on in vivo and in vitro studies and, thus, their physiological relevance is confirmed. EPC therapy shows great promise for the prevention and cure of diabetes-induced vascular dysfunction.
Collapse
|
43
|
Shah A, Passacquale G, Gkaliagkousi E, Ritter J, Ferro A. Platelet nitric oxide signalling in heart failure: role of oxidative stress. Cardiovasc Res 2011; 91:625-31. [PMID: 21502370 DOI: 10.1093/cvr/cvr115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Heart failure is associated with deficient endothelial nitric oxide (NO) production as well as increased oxidative stress and accelerated NO degradation. The aim of this study was to evaluate platelet NO biosynthesis and superoxide anion (O(2)(-)) production in patients with heart failure. METHODS AND RESULTS In platelets from patients with heart failure due to idiopathic dilated cardiomyopathy (n= 16) and healthy control subjects (n= 23), NO synthase (NOS) activity was evaluated by L-[(3)H]-arginine to l-[(3)H]-citrulline conversion, cGMP was determined by radioimmunoassay, vasodilator-stimulated phosphoprotein (VASP: total and serine-239-phosphorylated) was assessed by western blotting, and O(2)(-) production and O(2)(-) scavenging capacity were measured by pholasin-enhanced chemiluminescence. In platelets from patients with heart failure, basal NOS activity was higher than in those from controls; furthermore, whereas platelet NOS activity increased as expected in response to albuterol or collagen in controls, no increase occurred in platelets from heart failure subjects. Despite this, basal intraplatelet NO-attributable cGMP was lower in heart failure than in control subjects, as was serine-239 phosphorylation of VASP, suggesting a decrease in bioactive NO. Platelets from heart failure subjects exhibited higher basal and collagen-stimulated O(2)(-) production and impaired O(2)(-) scavenging capacity, resulting in higher oxidative stress, consistent with the observed decrease in bioactive NO. CONCLUSION In heart failure, despite activation of NOS, platelets produce less bioactive NO, probably as a result of NO scavenging due to increased O(2)(-) production. This functional defect in the platelet l-arginine/NO/guanylyl cyclase pathway could contribute to the platelet activation observed in heart failure.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine, King's College London, UK
| | | | | | | | | |
Collapse
|
44
|
Tousoulis D, Papageorgiou N, Androulakis E, Paroutoglou K, Stefanadis C. Novel therapeutic strategies targeting vascular endothelium in essential hypertension. Expert Opin Investig Drugs 2010; 19:1395-1412. [PMID: 20923260 DOI: 10.1517/13543784.2010.522989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD Several studies have demonstrated the high prevalence of hypertension and the crucial role of the association between endothelial function and hypertension. Thus, in depth investigation of the pathophysiological mechanisms linking endothelial dysfunction and hypertension, as well as evaluation of the efficacy of therapeutic approaches targeting vascular endothelium in states of essential hypertension seems to be of great interest. AREAS COVERED IN THIS REVIEW The association of essential hypertension and endothelial function are discussed in depth. In addition to the classical anti-hypertensive agents, agents such as statins, tetrahydrobiopterin, l-arginine, antioxidants, sildenafil, third generation beta blockers and NO-release related agents have been found to be beneficial by improving endothelial dysfunction in essential hypertension. WHAT THE READER WILL GAIN Important aspects regarding the association of hypertension and endothelial dysfunction will be highlighted. In addition, classical and novel agents especially, will be reported thoroughly according to their effects on endothelial function in hypertension. TAKE HOME MESSAGE There is a strong bidirectional association between essential hypertension and endothelial dysfunction. Moreover, novel agents appear to be beneficial and promising in improving endothelial function in states of hypertension. However, more studies are required to evaluate their role, as the literature lacks large scale studies.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- Athens University Medical School, Hippokration Hospital, First Cardiology Unit, Athens, Greece.
| | | | | | | | | |
Collapse
|
45
|
Son HY, Jung HW, Kim WK, Park YK. The vasoprotective effect of JP05 through the activation of PI3K/Akt-dependent eNOS and MEK/ERK pathways in brain endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:607-613. [PMID: 20561929 DOI: 10.1016/j.jep.2010.05.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/14/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Endothelial dysfunction is involved in stroke. Recent therapeutic options for stroke have focused on the combination therapy with a polyherbal mixture. This study was designed to provide insight into the effects of JP05, a water extract of 12 herbs, on the levels of regulators in bEnd.3 mouse brain endothelial cells. MATERIALS AND METHODS Production of endothelial nitric oxide synthase (eNOS)-mediated nitric oxide (NO), the expression of vascular endothelial growth factor (VEGF) and the phosphorylations of eNOS, phosphatidylinositol 3-kinase (PI3K)/Akt, extracellular signal-regulated protein kinase (ERK) and cAMP response element binding protein (CREB) in JP05 were assayed in bEnd.3 cells, a mouse brain endothelial line. RESULTS JP05 led to increase the levels of eNOS-mediated NO generation and VEGF expression in bEnd.3 cells. JP05 induced the phosphorylation of eNOS, Akt and ERK in bEnd.3 cells. As well, JP05 blocked the inhibition of PI3K/Akt and ERK activities by LY294002 (PI3K/Akt inhibitor) and PD98059 (mitogen-activated protein kinase inhibitor), respectively. JP05 also induced the phosphorylation of CREB, which plays an important role in endothelial cell function and blood vessel development. CONCLUSION Taken together, these results indicate that JP05 can upregulate eNOS-mediated NO generation and VEGF expression through the ERK and/or PI3K/Akt activation, an upstream event of angiogenesis. JP05 with vasoprotective properties has a potential therapy for human brain diseases including stroke.
Collapse
Affiliation(s)
- Hye Young Son
- Oriental Medicine R&D Center, College of Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Singh DK, Winocour P, Farrington K. Review: Endothelial cell dysfunction, medial arterial calcification and osteoprotegerin in diabetes. ACTA ACUST UNITED AC 2010. [DOI: 10.1177/1474651409355453] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macrovascular complications such as cardiovascular disease and peripheral vascular disease are the leading cause of increased mortality and morbidity, respectively, in patients with diabetes mellitus. The aetiopathogenesis of macrovasculopathy in diabetes is multifactorial and differs in types 1 and 2 diabetes. Endothelial cell dysfunction is an early feature of diabetic vasculopathy and is associated with poor glycaemic control. Chronic hyperglycaemia may promote an adverse vascular milieu leading to early endothelial cell apoptosis, in the long run. The presence of apoptotic cells in the vascular lumen may trigger a cascade of reactions between the promoters and inhibitors of arterial calcification. Medial arterial calcification, a characteristic feature of diabetes, is an important predictor of cardiovascular disease and occurs independently of atherosclerosis. Medial arterial calcification may occur in the presence of normal serum calcium and phosphate levels. Osteoprotegerin is an important modulator of mineral metabolism and manifests its effects in the bone and arteries. It is hypothesised that osteoprotegerin is a key inhibitor of arterial calcification which is released by endothelial cells as a protective measure for survival in adverse conditions. It is a potential risk marker for early identification and monitoring of disturbed mineral metabolism and vasculopathy in diabetes.
Collapse
Affiliation(s)
- Dhruv K Singh
- Department of Diabetes and Endocrinology, QE Hospital, Welwyn Garden City, UK, , Renal Unit, Lister Hospital, Stevenage, UK
| | - Peter Winocour
- Department of Diabetes and Endocrinology, QE Hospital, Welwyn Garden City, UK
| | | |
Collapse
|
47
|
Simpkins AN, Rudic RD, Roy S, Tsai HJ, Hammock BD, Imig JD. Soluble epoxide hydrolase inhibition modulates vascular remodeling. Am J Physiol Heart Circ Physiol 2010; 298:H795-806. [PMID: 20035028 PMCID: PMC2838550 DOI: 10.1152/ajpheart.00543.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/19/2010] [Indexed: 11/22/2022]
Abstract
The soluble epoxide hydrolase enzyme (SEH) and vascular remodeling are associated with cardiovascular disease. Although inhibition of SEH prevents smooth muscle cell proliferation in vitro, the effects of SEH inhibition on vascular remodeling in vivo and mechanisms of these effects remain unclear. Herein we determined the effects of SEH antagonism in an endothelium intact model of vascular remodeling induced by flow reduction and an endothelium denuded model of vascular injury. We demonstrated that chronic treatment of spontaneously hypertensive stroke-prone rats with 12-(3-adamantan-1-yl-ureido) dodecanoic acid, an inhibitor of SEH, improved the increment of inward remodeling induced by common carotid ligation to a level that was comparable with normotensive Wistar Kyoto rats. Similarly, mice with deletion of the gene responsible for the production of the SEH enzyme (Ephx2(-/-)) demonstrated enhanced inward vascular remodeling induced by carotid ligation. However, the hyperplastic response induced by vascular injury that denudes the endothelium was unabated by SEH inhibition or Ephx2 gene deletion. These results suggest that SEH inhibition or Ephx2 gene deletion antagonizes neointimal formation in vivo by mechanisms that are endothelium dependent. Thus SEH inhibition may have therapeutic potential for flow-induced remodeling and neointimal formation.
Collapse
Affiliation(s)
| | | | - S. Roy
- Department of Vascular Biology Center and
| | - H. J. Tsai
- Department of Entomology and University of California Davis Cancer Research Center, University of California, Davis, California
| | - B. D. Hammock
- Department of Entomology and University of California Davis Cancer Research Center, University of California, Davis, California
| | - J. D. Imig
- Department of Vascular Biology Center and
- Physiology, Medical College of Georgia, Augusta, Georgia
- Pharmacology and Toxicology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
48
|
Han JH, Wong KS, Wang YY, Fu JH, Ding D, Hong Z. Plasma level of sICAM-1 is associated with the extent of white matter lesion among asymptomatic elderly subjects. Clin Neurol Neurosurg 2009; 111:847-51. [PMID: 19825506 DOI: 10.1016/j.clineuro.2009.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inflammatory endothelial activation mediated by intercellular adhesion molecule-1 (ICAM-1) plays a role in the pathogenesis of large- and small-vessel disease. We explored the association between soluble ICAM-1 (sICAM-1) and white matter lesion (WML) as a manifestation of cerebral small-vessel disease. METHODS One hundred and seventy-five elderly individuals aged >or= 60 without neurological deficits were studied. Subcortical deep white matter hyperintensity (SDWMH) and periventricular hyperintensity (PVH) were rated separately. Lesions in each category were then divided into three groups (grade 0-I, grade II, grade III) according to the Fazekas scale. RESULTS Plasma sICAM-1 levels were positively associated with grades of WML (for SDWMH: 297.4+/-135.6ng/mL in grade 0-I, 391.3+/-145.5ng/mL in grade II, and 450.2+/-232.9ng/mL in grade III, p<0.001; for PVH: 282.5+/-116.5ng/mL in grade 0-I, 402.3+/-160.4ng/mL in grade II, and 428.1+/-227.7ng/mL in grade III, p<0.001). Multivariate analysis showed higher sICAM-1 levels, age and hypertension were the independent risk factors associated with the presence and severity of WML. More than 4-fold increased risk of WML was observed in patients with the highest quartile of sICAM-1 (all WML OR=4.694, 95% CI: 1.805-12.204; moderate WML OR=4.618, 95% CI: 1.543-13.825; severe WML OR=4.893, 95% CI: 1.236-19.368). CONCLUSION Increased plasma sICAM-1 suggests inflammatory process may be involved in the pathogenesis of WML.
Collapse
Affiliation(s)
- Jing Hao Han
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
49
|
Sawada N, Liao JK. Targeting eNOS and beyond: emerging heterogeneity of the role of endothelial Rho proteins in stroke protection. Expert Rev Neurother 2009; 9:1171-86. [PMID: 19673606 PMCID: PMC2929364 DOI: 10.1586/ern.09.70] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently available modalities for the treatment of acute ischemic stroke are aimed at preserving or augmenting cerebral blood flow. Experimental evidence suggests that statins, which show 25-30% reduction of stroke incidence in clinical trials, confer stroke protection by upregulation of eNOS and increasing cerebral blood flow. The upregulation of eNOS by statins is mediated by inhibition of small GTP-binding protein RhoA. Our recent study uncovered a unique role for a Rho-family member Rac1 in stroke protection. Rac1 in endothelium does not affect cerebral blood flow. Instead, inhibition of endothelial Rac1 leads to broad upregulation of the genes relevant to neurovascular protection. Intriguingly, inhibition of endothelial Rac1 enhances neuronal cell survival through endothelium-derived neurotrophic factors, including artemin. This review discusses the emerging therapeutic opportunities to target neurovascular signaling beyond the BBB, with special emphasis on the novel role of endothelial Rac1 in stroke protection.
Collapse
Affiliation(s)
- Naoki Sawada
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Center for Life Sciences, Boston, MA 02115, USA.
| | | |
Collapse
|
50
|
Marchandise E, Willemet M, Lacroix V. A numerical hemodynamic tool for predictive vascular surgery. Med Eng Phys 2009; 31:131-44. [DOI: 10.1016/j.medengphy.2008.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 04/14/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
|