1
|
Rock R, Rock O, Daas S, Biton-Regev V, Sagiv N, Salah NA, Anikster Y, Barel O, Cohen RH, Dumin E, Fattal-Valevski A, Falik-Zaccai T, Herskovitz E, Josefsberg S, Khammash H, Kneller K, Korman SH, Landau YE, Lerman-Sagie T, Mandel H, Pras E, Reznik-Wolf H, Shaag A, Lotan NS, Spiegel R, Tal G, Staretz-Chacham O, Wilnai Y, Almashanu S. Newborn screening algorithm distinguishing potential symptomatic isovaleric acidemia from asymptomatic newborns. J Inherit Metab Dis 2025; 48:e12800. [PMID: 39318119 DOI: 10.1002/jimd.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Newborn screening (NBS) for isovaleric acidemia (IVA) reduces mortality and morbidity; however, it has also resulted in the detection of individuals with an asymptomatic or mild presentation for which early detection via newborn screening has not been proven to alter neurological outcome. We reevaluated biochemical and molecular data for newborns flagged positive for IVA in aim of developing a new screening algorithm to exclude the latter from positive screening. Among 2 794 365 newborns underwent routine newborn screening in Israel, 412 flagged positive for IVA, of which, 371 were false positives on recall sample testing and 41 positive newborns were referred to the clinic. 38/41 have biochemical and molecular confirmation in keeping with IVA. Among the 38 patients, 32% (12/38) were classified as symptomatic while, 68% (26/38) were classified as asymptomatic. 69% of the latter group harbor the known variant associated with mild potentially asymptomatic phenotype, c.932C>T; p. Ala311Val. Among asymptomatic patients, only 46% (12/26) are currently treated. Two novel variants have been detected in the IVD gene: c.487G>A; p. Ala163Thr and c.985A>G; p. Met329Val. Cut-off recalculation, of referred newborns' initial biochemical results, after classifying the referred patients to two binary groups of symptomatic and asymptomatic, resulted in an improved NBS algorithm comprising of C5 >5 μM and C5/C2>0.2 and C5/C3>4 flagging only those likely to have the classic symptomatic phenotype.
Collapse
Affiliation(s)
- Rachel Rock
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat-Gan, Israel
- Metabolic Diseases Clinic, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-HaShomer, Israel
| | - Oded Rock
- Department of Ophthalmology, Sheba Medical Center, Tel-HaShomer, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Suha Daas
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat-Gan, Israel
| | - Vered Biton-Regev
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat-Gan, Israel
| | - Nadav Sagiv
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat-Gan, Israel
| | - Nasser Abu Salah
- Department of Neonatology, Shaare Zedek Medical Center, Jerusalem, Israel
- Department of Neonatology, Red Crescent Society Hospital, Jerusalem, Israel
| | - Yair Anikster
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel-Aviv, Israel
- Edmond and Lily Safra Children's Hospital Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel
| | - Ortal Barel
- Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel
| | - Ronen Hady Cohen
- Pediatric Neurology Unit and Magen Rare Disease Center, Wolfson Medical Center, Holon, Israel
| | - Elena Dumin
- Clinical Metabolic Laboratory, Sheba Medical Center, Tel-HaShomer, Ramat Gan, Israel
- Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviva Fattal-Valevski
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Dana Children Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tzipora Falik-Zaccai
- Institute of Human Genetics, The Galilee Medical Center, Naharia, Israel
- The Azrieli Faculty of Medicine, Bar Ilan, Israel
| | - Eli Herskovitz
- Pediatric D Department, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | | | - Hatem Khammash
- Department of Neonatology, Makassed Islamic Hospital, Jerusalem, Israel
| | - Katya Kneller
- Metabolic Diseases Clinic, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-HaShomer, Israel
| | - Stanley H Korman
- Wilf Children's Hospital, Shaare Zedek Medical Center, Jerusalem, Israel
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Yuval E Landau
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel-Aviv, Israel
- Metabolic Disease Unit, Schneider Children's Medical Center of Israel, Tel Aviv University, Israel
| | - Tally Lerman-Sagie
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit and Magen Rare Disease Center, Wolfson Medical Center, Holon, Israel
| | - Hanna Mandel
- Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Elon Pras
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel-Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Haike Reznik-Wolf
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Avraham Shaag
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nava Shaul Lotan
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Spiegel
- Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatrics B, Metabolic Service, Emek Medical Center, Afula, Israel
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Orna Staretz-Chacham
- Metabolic Clinic, Pediatric Division, Soroka University Medical Center, Ben Gurion University, Beer-Sheva, Israel
| | - Yael Wilnai
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shlomo Almashanu
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat-Gan, Israel
| |
Collapse
|
2
|
D'Annibale OM, Koppes EA, Alodaib AN, Kochersperger C, Karunanidhi A, Mohsen AW, Vockley J. Characterization of variants of uncertain significance in isovaleryl-CoA dehydrogenase identified through newborn screening: An approach for faster analysis. Mol Genet Metab 2021; 134:29-36. [PMID: 34535384 PMCID: PMC8578405 DOI: 10.1016/j.ymgme.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Clinical standard of care for newborn screening (NBS) is acylcarnitine metabolites quantitation by tandem mass spectrometry (MS/MS) from dried blood spots. Follow up sequencing often results in identification of one or more variants of uncertain significance (VUS). Isovaleric acidemia (IVA) is an autosomal recessive inborn error of metabolism caused by deficiency of isovaleryl-CoA dehydrogenase (IVDH) in the Leu catabolism pathway. Many IVD mutations are characterized as VUS complicating IVA clinical diagnoses and treatment. We present a testing platform approach to confirm the functional implication of VUS identified in newborns with IVA applicable to multiple inborn errors of metabolism identified by NBS. METHODS An IVD null HEK293T cell culture model was generated by using a dual sgRNA CRISPR/Cas9 genome-editing strategy targeting IVD exons 2-3. Clonal cell lines were confirmed by a combination of genomic breakpoint sequencing and droplet digital PCR. The IVD null model had no IVDH antigen signal and 96% reduction in IVDH enzyme activity. The IVD null model was transfected with vectors containing control or variant IVD and functional assays were performed to determine variant pathogenicity. RESULTS c.149G > C (p.Arg50Pro; precursor numbering), c.986T > C (p.Met329Thr), and c.1010G > A (p.Arg337Gln), c.1179del394 f. mutant proteins had reduced IVDH protein and activity. c.932C > T (p.Ala311Val), c.707C > T (p.Thr236Ile), and c.1232G > A (p.Arg411Gln) had stable IVDH protein, but no enzyme activity. c.521T > G (p.Val174Gly) had normal IVDH protein and activity. IVD variant transfection results confirmed results from IVA fibroblasts containing the same variants. CONCLUSIONS We have developed an IVD null HEK293T cell line to rapidly allow determination of VUS pathogenicity following identification of novel alleles by clinical sequencing following positive NBS results for suspected IVA. We suggest similar models can be generated via genome-editing for high throughput assessment of VUS function for a multitude of inborn errors of metabolism and can ideally supplement NBS programs.
Collapse
Affiliation(s)
- Olivia M D'Annibale
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Erik A Koppes
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ahmad N Alodaib
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Catherine Kochersperger
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Anuradha Karunanidhi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Al-Walid Mohsen
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. Transposon clusters as substrates for aberrant splice-site activation. RNA Biol 2020; 18:354-367. [PMID: 32965162 PMCID: PMC7951965 DOI: 10.1080/15476286.2020.1805909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5ʹ splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5ʹ splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.
Collapse
Affiliation(s)
| | - Martin Chivers
- School of Medicine, University of Southampton, Southampton, UK
| | - Ivana Borovska
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | - Steven Monger
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Kralovicova
- School of Medicine, University of Southampton, Southampton, UK.,Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | | |
Collapse
|
4
|
Mucaki EJ, Shirley BC, Rogan PK. Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing. Front Genet 2020; 11:109. [PMID: 32211018 PMCID: PMC7066660 DOI: 10.3389/fgene.2020.00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Splice isoform structure and abundance can be affected by either noncoding or masquerading coding variants that alter the structure or abundance of transcripts. When these variants are common in the population, these nonconstitutive transcripts are sufficiently frequent so as to resemble naturally occurring, alternative mRNA splicing. Prediction of the effects of such variants has been shown to be accurate using information theory-based methods. Single nucleotide polymorphisms (SNPs) predicted to significantly alter natural and/or cryptic splice site strength were shown to affect gene expression. Splicing changes for known SNP genotypes were confirmed in HapMap lymphoblastoid cell lines with gene expression microarrays and custom designed q-RT-PCR or TaqMan assays. The majority of these SNPs (15 of 22) as well as an independent set of 24 variants were then subjected to RNAseq analysis using the ValidSpliceMut web beacon (http://validsplicemut.cytognomix.com), which is based on data from the Cancer Genome Atlas and International Cancer Genome Consortium. SNPs from different genes analyzed with gene expression microarray and q-RT-PCR exhibited significant changes in affected splice site use. Thirteen SNPs directly affected exon inclusion and 10 altered cryptic site use. Homozygous SNP genotypes resulting in stronger splice sites exhibited higher levels of processed mRNA than alleles associated with weaker sites. Four SNPs exhibited variable expression among individuals with the same genotypes, masking statistically significant expression differences between alleles. Genome-wide information theory and expression analyses (RNAseq) in tumor exomes and genomes confirmed splicing effects for 7 of the HapMap SNP and 14 SNPs identified from tumor genomes. q-RT-PCR resolved rare splice isoforms with read abundance too low for statistical significance in ValidSpliceMut. Nevertheless, the web-beacon provides evidence of unanticipated splicing outcomes, for example, intron retention due to compromised recognition of constitutive splice sites. Thus, ValidSpliceMut and q-RT-PCR represent complementary resources for identification of allele-specific, alternative splicing.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | | | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,CytoGnomix, London, ON, Canada.,Department of Oncology University of Western Ontario, London, ON, Canada.,Department of Computer Science, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Ibarra-González I, Fernández-Lainez C, Guillén-López S, López-Mejía L, Belmont-Matínez L, Sokolsky TD, Amin VR, Kitchener RL, Vela-Amieva M, Naylor EW, Bhattacharjee A. Molecular analysis using targeted next generation DNA sequencing and clinical spectrum of Mexican patients with isovaleric acidemia. Clin Chim Acta 2020; 501:216-221. [DOI: 10.1016/j.cca.2019.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
6
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2019; 7:1908. [PMID: 31275557 DOI: 10.12688/f1000research.17204.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
7
|
Lin JH, Tang XY, Boulling A, Zou WB, Masson E, Fichou Y, Raud L, Le Tertre M, Deng SJ, Berlivet I, Ka C, Mort M, Hayden M, Leman R, Houdayer C, Le Gac G, Cooper DN, Li ZS, Férec C, Liao Z, Chen JM. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Hum Mutat 2019; 40:1856-1873. [PMID: 31131953 DOI: 10.1002/humu.23821] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs capable of generating wild-type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta-analysis of 45 human disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of canonical GT 5'SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5'SSs in which substitution of GT by GC-generated normal transcripts exhibit stronger complementarity to the 5' end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in human disease genes may not invariably be pathogenic.
Collapse
Affiliation(s)
- Jin-Huan Lin
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xin-Ying Tang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Arnaud Boulling
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Yann Fichou
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Loann Raud
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | | | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - Chandran Ka
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthew Hayden
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raphaël Leman
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, France.,Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Gerald Le Gac
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| |
Collapse
|
8
|
Sarker SK, Islam MT, Hasib SH, Sultana N, Hossain SR, Biswas A, Sultana R, Bhuyan GS, Begum MN, Konica FA, Qadri SK, Qadri SS, Saha N, Qadri F, Mannoor K. A novel missense mutation of Isovaleryl-CoA dehydrogenase gene associated with chronic intermittent Isovaleric acidemia in a Bangladeshi patient. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
9
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2018; 7:1908. [PMID: 31275557 PMCID: PMC6544075 DOI: 10.12688/f1000research.17204.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
10
|
Schlune A, Riederer A, Mayatepek E, Ensenauer R. Aspects of Newborn Screening in Isovaleric Acidemia. Int J Neonatal Screen 2018; 4:7. [PMID: 33072933 PMCID: PMC7548899 DOI: 10.3390/ijns4010007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Isovaleric acidemia (IVA), an inborn error of leucine catabolism, is caused by mutations in the isovaleryl-CoA dehydrogenase (IVD) gene, resulting in the accumulation of derivatives of isovaleryl-CoA including isovaleryl (C5)-carnitine, the marker metabolite used for newborn screening (NBS). The inclusion of IVA in NBS programs in many countries has broadened knowledge of the variability of the condition, whereas prior to NBS, two distinct clinical phenotypes were known, an "acute neonatal" and a "chronic intermittent" form. An additional biochemically mild and potentially asymptomatic form of IVA and its association with a common missense mutation, c.932C>T (p.A282V), was discovered in subjects identified through NBS. Deficiency of short/branched chain specific acyl-CoA dehydrogenase (2-methylbutyryl-CoA dehydrogenase), a defect of isoleucine degradation whose clinical significance remains unclear, also results in elevated C5-carnitine, and may therefore be detected by NBS for IVA. Treatment strategies for the long-term management of symptomatic IVA comprise the prevention of catabolism, dietary restriction of natural protein or leucine intake, and supplementation with l-carnitine and/or l-glycine. Recommendations on how to counsel and manage individuals with the mild phenotype detected by NBS are required.
Collapse
Affiliation(s)
- Andrea Schlune
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Anselma Riederer
- Department of Obstetrics and Gynecology, Hospital Altötting-Burghausen, Teaching Hospital of the Ludwig-Maximilians-Universität München, Vinzenz-von-Paul-Strasse 10, 84503 Altötting, Germany
| | - Ertan Mayatepek
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Regina Ensenauer
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-17687
| |
Collapse
|
11
|
Zaki OK, Priya Doss C G, Ali SA, Murad GG, Elashi SA, Ebnou MSA, Kumar D T, Khalifa O, Gamal R, El Abd HSA, Nasr BN, Zayed H. Genotype-phenotype correlation in patients with isovaleric acidaemia: comparative structural modelling and computational analysis of novel variants. Hum Mol Genet 2018; 26:3105-3115. [PMID: 28535199 DOI: 10.1093/hmg/ddx195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023] Open
Abstract
Isovaleric acidaemia (IVA) is an autosomal recessive inborn error of leucine metabolism. It is caused by a deficiency in the mitochondrial isovaleryl-CoA dehydrogenase (IVD) enzyme. In this study, we investigated eight patients with IVA. The patients' diagnoses were confirmed by urinary organic acid analysis and the blood C5-Carnitine value. A molecular genetic analysis of the IVD gene revealed nine different variants: five were missense variants (c.1193G > A; p. R398Q, c.1207T > A; p. Y403N, c.872C > T; p. A291V, c.749G > C; p. G250A, c.1136T > C; p.I379T), one was a frameshift variant (c.ins386 T; p. Y129fs), one was a splicing variant (c.465 + 2T > C), one was a polymorphism (c.732C > T; p. D244D), and one was an intronic benign variant (c.287 + 14T > C). Interestingly, all variants were in homozygous form, and four variants were novel (p. Y403N, p. Y129fs, p. A291V, p. G250A) and absent from 200 normal chromosomes. We performed protein modelling and dynamics analyses, pathogenicity and stability analyses, and a physiochemical properties analysis of the five missense variants (p.Y403N, R398Q, p.A291V, p.G250A, and p.I379T). Variants p.I379T and p.R398Q were found to be the most deleterious and destabilizing compared to variants p.A291V and p.Y403N. However, the four variants were predicted to be severe by the protein dynamic and in silico analysis, which was consistent with the patients' clinical phenotypes. The p.G250A variant was computationally predicted as mild, which was consistent with the severity of the clinical phenotype. This study reveals a potentially meaningful genotype-phenotype correlation for our patient cohort and highlights the development and use of this computational analysis for future assessments of genetic variants in the clinic.
Collapse
Affiliation(s)
- Osama K Zaki
- Department of Medical Genetics, Ain Shams Paediatrics Hospital, Cairo, Egypt
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Salsabil A Ali
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ghadeer G Murad
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Shaima A Elashi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Maryam S A Ebnou
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Thirumal Kumar D
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Ola Khalifa
- Department of Medical Genetics, Ain Shams Paediatrics Hospital, Cairo, Egypt
| | - Radwa Gamal
- Department of Medical Genetics, Ain Shams Paediatrics Hospital, Cairo, Egypt
| | - Heba S A El Abd
- Department of Medical Genetics, Ain Shams Paediatrics Hospital, Cairo, Egypt
| | - Bilal N Nasr
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Genotype and phenotype characterization in a Spanish cohort with isovaleric acidemia. J Hum Genet 2016; 62:355-360. [DOI: 10.1038/jhg.2016.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/09/2022]
|
13
|
Tan JQ, Chen DY, Mo ZQ, Li ZT, Huang JW, Cai R, Yan TZ. [Pancytopenia and metabolic decompensation in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1150-1153. [PMID: 27817783 PMCID: PMC7389842 DOI: 10.7499/j.issn.1008-8830.2016.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
A 9-day-old male patient was admitted to the hospital because of cough, anhelation, feeding difficulty and lethargy. The diagnostic examinations indicated pulmonary infection, severe metabolic acidosis, hyperglycemia, hyperammonemia and pancytopenia in the patient. Blood and urine screening and isovaleryl-CoA dehydrogenase (IVD) gene detection for inherited metabolic diseases were performed to clarify the etiology. Tandem mass spectrometric screening for blood showed an elevated isovalerylcarnitine (C5) level. The organic acid analysis of urine by gas chromatography-mass spectrometry showed significantly increased levels in isovaleryl glycine and 3-hydroxyisovaleric acid. Homozygous mutations (c.1208A>G, p.Tyr403Cys) in the IVD gene were identified in the patient. His parents were heterozygous carriers. After the treatment with low-leucine diets and L-carnitine for 3 days, the patient showed a significant improvement in symptoms, but he died one week later. It is concluded that the neonates with pneumonia and metabolic decompensation of unknown etiology should be screened for genetic metabolic disease.
Collapse
Affiliation(s)
- Jian-Qiang Tan
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi 545001, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
15
|
Scolamiero E, Cozzolino C, Albano L, Ansalone A, Caterino M, Corbo G, di Girolamo MG, Di Stefano C, Durante A, Franzese G, Franzese I, Gallo G, Giliberti P, Ingenito L, Ippolito G, Malamisura B, Mazzeo P, Norma A, Ombrone D, Parenti G, Pellecchia S, Pecce R, Pierucci I, Romanelli R, Rossi A, Siano M, Stoduto T, Villani GRD, Andria G, Salvatore F, Frisso G, Ruoppolo M. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. MOLECULAR BIOSYSTEMS 2015; 11:1525-35. [DOI: 10.1039/c4mb00729h] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper highlights the importance of metabolic profiling by LC-MS/MS and GC-MS of biological fluids for diagnosis of inborn errors of metabolism and confirms a high incidence of these disorders.
Collapse
|
16
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
17
|
Ozgul RK, Karaca M, Kilic M, Kucuk O, Yucel-Yilmaz D, Unal O, Hismi B, Aliefendioglu D, Sivri S, Tokatli A, Coskun T, Dursun A. Phenotypic and genotypic spectrum of Turkish patients with isovaleric acidemia. Eur J Med Genet 2014; 57:596-601. [DOI: 10.1016/j.ejmg.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
|
18
|
Two novel isovaleryl-CoA dehydrogenase gene mutations in a Chinese infant. Gene 2013; 524:396-400. [PMID: 23587913 DOI: 10.1016/j.gene.2013.03.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
Abstract
Isovaleric acidemia (IVA) is a rare inherited metabolic disease caused by a deficiency in isovaleryl-CoA dehydrogenase (IVD). Newborn screening with tandem mass spectrometry leads to early identification of individuals with risk of IVA. The family specific mutations are useful for prenatal diagnosis. Molecular genetic analysis helps to further confirm the clinical diagnosis of IVA. We describe here the clinical and metabolic features of a Chinese infant with early onset IVA. Sequence analysis of the IVD gene identifies compound heterozygous mutations in this patient, c.39G>A (p.W13X) nonsense mutation and c.597C>G (p.I199 M) missense mutation, both of which are previously unreported. Structural analyses suggest that the p.I199 M missense mutation may destabilize the IVD monomer structure and affect the interaction between IVD and flavin adenine dinucleotide. Both the clinical and genetic features of this patient help to further expand our knowledge of IVA.
Collapse
|
19
|
Hertecant JL, Ben-Rebeh I, Marah MA, Abbas T, Ayadi L, Ben Salem S, Al-Jasmi FA, Al-Gazali L, Al-Yahyaee SA, Ali BR. Clinical and molecular analysis of isovaleric acidemia patients in the United Arab Emirates reveals remarkable phenotypes and four novel mutations in the IVD gene. Eur J Med Genet 2012; 55:671-676. [PMID: 22960500 DOI: 10.1016/j.ejmg.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 08/02/2012] [Indexed: 02/05/2023]
Abstract
Isovaleric acidemia (IVA) is an autosomal recessive inborn error of leucine metabolism caused by deficiency of mitochondrial isovaleryl-CoA dehydrogenase (IVD). Accumulation of isovaleryl-CoA derivatives to toxic levels results in clinical symptoms of the disease. Here, we investigate the clinical and molecular features of Arab patients with IVA. Patients from five unrelated families were evaluated clinically and for defects in the IVD gene. Four novel mutations (p.F382fs, p.R392H, p.R395Q and p.E408K) have been identified with p.R395Q occurring in two families. In addition, molecular modeling of the identified missense mutations predicted their damaging effects on the protein and computational analysis of the p.F382fs mutation predicted the disruption of a 3' splicing site resulting in inactive or unstable gene product. Furthermore, we found an unusual case of a 17 years old female homozygous for the p.R392H mutation with no clinical symptoms. Our results illustrate a heterogeneous mutation spectrum and clinical presentation in the relatively small UAE population.
Collapse
Affiliation(s)
- Jozef L Hertecant
- Department of Paediatrics, Tawam Hospital, Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dercksen M, Duran M, Ijlst L, Mienie LJ, Reinecke CJ, Ruiter JPN, Waterham HR, Wanders RJA. Clinical variability of isovaleric acidemia in a genetically homogeneous population. J Inherit Metab Dis 2012; 35:1021-9. [PMID: 22350545 DOI: 10.1007/s10545-012-9457-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
Isovaleric acidemia (IVA) is one of the most common organic acidemias found in South Africa. Since 1983, a significant number of IVA cases have been identified in approximately 20,000 Caucasian patients screened for metabolic defects. IVA is caused by an autosomal recessive deficiency of isovaleryl-CoA dehydrogenase (IVD) resulting in the accumulation of isovaleryl-CoA and its metabolites. In total, 10 IVA patients and three carriers were available for phenotypic and genotypic investigation in this study. All patients were found to be homozygous for a single c.367 G > A (p.G123R) mutation. The amino acid substitution of a glycine to arginine resulted in a markedly reduced steady-state level of the IVD protein, which explains the nearly complete lack of IVD enzyme activity as assessed in fibroblast homogenates. Despite the genetic homogeneity of this South African IVA group, the clinical presentation varied widely, ranging from severe mental handicap and multiple episodes of metabolic derangement to an asymptomatic state. The variation may be due to poor dietary intervention, delayed diagnosis or even epigenetic and polygenetic factors of unknown origin.
Collapse
Affiliation(s)
- M Dercksen
- Centre for Human Metabonomics, North-West University (Potchefstroom Campus), Potchefstroom, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ellis JR, Heinrich B, Mautner VF, Kluwe L. Effects of splicing mutations on NF2-transcripts: transcript analysis and information theoretic predictions. Genes Chromosomes Cancer 2011; 50:571-84. [PMID: 21563229 DOI: 10.1002/gcc.20876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 11/07/2022] Open
Abstract
This study examined the effects of 22 putative splicing mutations in the NF2 gene by means of transcript analysis and information theory based prediction. Fourteen mutations were within the dinucleotide acceptor and donor regions, often referred to as (AG/GT) sequences. Six were outside these dinucleotide regions but within the more broadly defined splicing regions used in the information theory based model. Two others were in introns and outside the broadly defined regions. Transcript analysis revealed exon skipping or activation of one or more cryptic splicing sites for 17 mutations. No alterations were found for the two intronic mutations and for three mutations in the broadly defined splicing regions. Concordance and partial concordance between the calculated predictions and the results of transcript analysis were found for 14 and 6 mutations, respectively. For two mutations, the predicted alteration was not found in the transcripts. Our results demonstrate that the effects of splicing mutations in NF2 are often complex and that information theory based analysis is helpful in elucidating the consequences of these mutations.
Collapse
Affiliation(s)
- James R Ellis
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892-5766, USA.
| | | | | | | |
Collapse
|
22
|
Mucaki EJ, Ainsworth P, Rogan PK. Comprehensive prediction of mRNA splicing effects of BRCA1 and BRCA2 variants. Hum Mutat 2011; 32:735-42. [DOI: 10.1002/humu.21513] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/08/2011] [Indexed: 12/17/2022]
|
23
|
Daniotti M, la Marca G, Fiorini P, Filippi L. New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int J Gen Med 2011; 4:21-8. [PMID: 21403788 PMCID: PMC3056327 DOI: 10.2147/ijgm.s10490] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is a true neonatal emergency with high toxicity for the central nervous system and developmental delay. The causes of neonatal hyperammonemia are genetic defects of urea cycle enzymes, organic acidemias, lysinuric protein intolerance, hyperammonemia-hyperornithinemia- homocitrullinemia syndrome, transient hyperammonemia of the newborn, and congenital hyperinsulinism with hyperammonemia. In some of these conditions the high blood ammonia levels are due to the reduction of N-acetylglutamate, an essential cofactor necessary for the function of the urea cycle, or to the reduction of carbamoyl-phosphate synthase-I activity. In these cases, N-carbamylglutamate (carglumic acid) can be administered together with the conventional therapy. Carglumic acid is an analog of N-acetylglutamate that has a direct action on carbamoyl-phosphate synthase-I. Its effects are reactivation of the urea cycle and reduction of plasma ammonia levels. As a consequence it improves the traditional treatment, avoiding the need of hemodialysis and peritoneal dialysis. In this review we evaluate the possible field of application of carglumic acid and its effectiveness and safety.
Collapse
Affiliation(s)
- Marta Daniotti
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Giancarlo la Marca
- Mass Spectrometry, Clinical Chemistry and Pharmacology Laboratory, Neuroscience Department, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Patrizio Fiorini
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| |
Collapse
|
24
|
Woolfe A, Mullikin JC, Elnitski L. Genomic features defining exonic variants that modulate splicing. Genome Biol 2010; 11:R20. [PMID: 20158892 PMCID: PMC2872880 DOI: 10.1186/gb-2010-11-2-r20] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/03/2010] [Accepted: 02/16/2010] [Indexed: 12/21/2022] Open
Abstract
A comparative analysis of SNPs and their exonic and intronic environments identifies the features predictive of splice affecting variants. Background Single point mutations at both synonymous and non-synonymous positions within exons can have severe effects on gene function through disruption of splicing. Predicting these mutations in silico purely from the genomic sequence is difficult due to an incomplete understanding of the multiple factors that may be responsible. In addition, little is known about which computational prediction approaches, such as those involving exonic splicing enhancers and exonic splicing silencers, are most informative. Results We assessed the features of single-nucleotide genomic variants verified to cause exon skipping and compared them to a large set of coding SNPs common in the human population, which are likely to have no effect on splicing. Our findings implicate a number of features important for their ability to discriminate splice-affecting variants, including the naturally occurring density of exonic splicing enhancers and exonic splicing silencers of the exon and intronic environment, extensive changes in the number of predicted exonic splicing enhancers and exonic splicing silencers, proximity to the splice junctions and evolutionary constraint of the region surrounding the variant. By extending this approach to additional datasets, we also identified relevant features of variants that cause increased exon inclusion and ectopic splice site activation. Conclusions We identified a number of features that have statistically significant representation among exonic variants that modulate splicing. These analyses highlight putative mechanisms responsible for splicing outcome and emphasize the role of features important for exon definition. We developed a web-tool, Skippy, to score coding variants for these relevant splice-modulating features.
Collapse
Affiliation(s)
- Adam Woolfe
- Genomic Functional Analysis Section, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20892, USA.
| | | | | |
Collapse
|
25
|
Abstract
Xeroderma pigmentosum-variant (XP-V) patients have sun sensitivity and increased skin cancer risk. Their cells have normal nucleotide excision repair, but have defects in the POLH gene encoding an error-prone polymerase, DNA polymerase eta (pol eta). To survey the molecular basis of XP-V worldwide, we measured pol eta protein in skin fibroblasts from putative XP-V patients (aged 8-66 years) from 10 families in North America, Turkey, Israel, Germany, and Korea. Pol eta was undetectable in cells from patients in eight families, whereas two showed faint bands. DNA sequencing identified 10 different POLH mutations. There were two splicing, one nonsense, five frameshift (3 deletion and 2 insertion), and two missense mutations. Nine of these mutations involved the catalytic domain. Although affected siblings had similar clinical features, the relation between the clinical features and the mutations was not clear. POLH mRNA levels were normal or reduced by 50% in three cell strains with undetectable levels of pol eta protein, indicating that nonsense-mediated message decay was limited. We found a wide spectrum of mutations in the POLH gene among XP-V patients in different countries, suggesting that many of these mutations arose independently.
Collapse
|
26
|
Ryu MJ, Lee C, Kim J, Shin HS, Yu MH. Proteomic analysis of stargazer mutant mouse neuronal proteins involved in absence seizure. J Neurochem 2008; 104:1260-70. [DOI: 10.1111/j.1471-4159.2007.05100.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Rincón A, Aguado C, Desviat LR, Sánchez-Alcudia R, Ugarte M, Pérez B. Propionic and methylmalonic acidemia: antisense therapeutics for intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet 2007; 81:1262-70. [PMID: 17966092 PMCID: PMC2276355 DOI: 10.1086/522376] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/09/2007] [Indexed: 11/03/2022] Open
Abstract
We describe the use of antisense morpholino oligonucleotides (AMOs) to restore normal splicing caused by intronic molecular defects identified in methylmalonic acidemia (MMA) and propionic acidemia (PA). The three new point mutations described in deep intronic regions increase the splicing scores of pseudoexons or generate consensus binding motifs for splicing factors, such as SRp40, which favor the intronic inclusions in MUT (r.1957ins76), PCCA (r.1284ins84), or PCCB (r.654ins72) messenger RNAs (mRNAs). Experimental confirmation that these changes are pathogenic and cause the activation of the pseudoexons was obtained by use of minigenes. AMOs were targeted to the 5? or 3? cryptic splice sites to block access of the splicing machinery to the pseudoexonic regions in the pre-mRNA. Using this antisense therapeutics, we have obtained correctly spliced mRNA that was effectively translated, and propionyl coenzyme A (CoA) carboxylase (PCC) or methylmalonylCoA mutase (MCM) activities were rescued in patients' fibroblasts. The effect of AMOs was sequence and dose dependent. In the affected patient with MUT mutation, close to 100% of MCM activity, measured by incorporation of (14)C-propionate, was obtained after 48 h, and correctly spliced MUT mRNA was still detected 15 d after treatment. In the PCCA-mutated and PCCB-mutated cell lines, 100% of PCC activity was measured after 72 h of AMO delivery, and the presence of biotinylated PCCA protein was detected by western blot in treated PCCA-deficient cells. Our results demonstrate that the aberrant inclusions of the intronic sequences are disease-causing mutations in these patients. These findings provide a new therapeutic strategy in these genetic disorders, potentially applicable to a large number of cases with deep intronic changes that, at the moment, remain undetected by standard mutation-detection techniques.
Collapse
Affiliation(s)
- A Rincón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universitad Autónoma de Madrid, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Lee YW, Lee DH, Vockley J, Kim ND, Lee YK, Ki CS. Different spectrum of mutations of isovaleryl-CoA dehydrogenase (IVD) gene in Korean patients with isovaleric acidemia. Mol Genet Metab 2007; 92:71-7. [PMID: 17576084 PMCID: PMC4136440 DOI: 10.1016/j.ymgme.2007.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 12/15/2022]
Abstract
Isovaleric acidemia (IVA) is an autosomal recessive inborn error of the leucine metabolism that is caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD). Recent application of tandem mass spectrometry to newborn screening has allowed a significant expansion of the recognition of individuals with IVD deficiency. Although many patients have been reported worldwide, there are no genetically confirmed patients in Korea. This study characterizes IVD mutations in seven Korean IVA patients from six unrelated families. Bi-directional sequencing analysis identified two novel variations affecting consensus splice sites (c.144+1G>T in intron 1 and c.457-3_2CA>GG in intron 4) and three novel variations altering coding sequences (c.149G>T; Arg21Leu, c.832A>G; Ser249Gly, and c.1135T>G; Phe350Val). Five patients from four families were found to be compound heterozygotes while two unrelated patients were homozygous for the c.457-3_2CA>GG variation. Reverse-transcription polymerase chain reaction confirmed that both intron variations cause aberrant splicing. Furthermore, analysis of cultured lymphocyte extracts of the seven patients showed no detectable enzyme activity and reduced levels of IVD protein (<10.0% of control) in all samples. These results confirm IVD mutations in Korean patients with IVA and reveal that the mutation spectrum is different from previously reported patients.
Collapse
Affiliation(s)
- Yong-Wha Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Dong Hwan Lee
- Department of Pediatrics, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, The Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Nam-Doo Kim
- R&D Center, Equispharm Co., Ltd., Ansan, Republic of Korea
| | - You Kyoung Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, Republic of Korea
- Corresponding author. Fax: +82 2 3410 2719. (C.-S. Ki)
| |
Collapse
|
29
|
Lin WD, Wang CH, Lee CC, Lai CC, Tsai Y, Tsai FJ. Genetic mutation profile of isovaleric acidemia patients in Taiwan. Mol Genet Metab 2007; 90:134-9. [PMID: 17027310 DOI: 10.1016/j.ymgme.2006.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 12/15/2022]
Abstract
Isovaleric acidemia (IVA), a rare recessive autosomal disorder, is caused by isovaleryl-CoA dehydrogenase (IVD) deficiency. IVA may present with symptoms during the acute stage of severe metabolic acidosis, ketosis, vomiting, and altered mental status. With the help of newborn screening (NBS) by tandem mass spectrometry (MS/MS), IVA can now be diagnosed presymptomatically. According to statistic data, the incidence of IVA in Taiwan was about 1/365,000. In this study, six IVA patients from five families were investigated and followed-up clinically. As for the timing, two patients were found before MS technique introduced to Taiwan, the others were identified after MS/MS applied to NBS. The blood level of C5-carnitine in our patients was 7.43-18.96 microM (with upper limit in our laboratory <0.51 microM) and all of their urines contained raised amounts of 3-hydroxyisovaleric acid and isovalerylglycine. Molecular analysis of their IVD gene revealed six mutation profiles, among which the 149G-->A (Arg21His) and 1174 C-->T (Arg363Cys) mutations have been reported previously, while the other four mutations, 386A-->G (His100Arg), 347C-->T (Ser87Phe), 1007G-->A (Cys307Tyr) and 1199A-->G (Tyr371Cys), were first reported. Specially, we found 1199A-->G (Tyr371Cys) mutated was a common recurring missense mutation in our population (4 in 10 mutant alleles).
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Lastella P, Surdo NC, Resta N, Guanti G, Stella A. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genomics 2006; 7:243. [PMID: 16995940 PMCID: PMC1590028 DOI: 10.1186/1471-2164-7-243] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 09/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormalities of pre-mRNA splicing are increasingly recognized as an important mechanism through which gene mutations cause disease. However, apart from the mutations in the donor and acceptor sites, the effects on splicing of other sequence variations are difficult to predict. Loosely defined exonic and intronic sequences have been shown to affect splicing efficiency by means of silencing and enhancement mechanisms. Thus, nucleotide substitutions in these sequences can induce aberrant splicing. Web-based resources have recently been developed to facilitate the identification of nucleotide changes that could alter splicing. However, computer predictions do not always correlate with in vivo splicing defects. The issue of unclassified variants in cancer predisposing genes is very important both for the correct ascertainment of cancer risk and for the understanding of the basic mechanisms of cancer gene function and regulation. Therefore we aimed to verify how predictions that can be drawn from in silico analysis correlate with results obtained in an in vivo splicing assay. RESULTS We analysed 99 hMLH1 and hMSH2 missense mutations with six different algorithms. Transfection of three different cell lines with 20 missense mutations, showed that a minority of them lead to defective splicing. Moreover, we observed that some exons and some mutations show cell-specific differences in the frequency of exon inclusion. CONCLUSION Our results suggest that the available algorithms, while potentially helpful in identifying splicing modulators especially when they are located in weakly defined exons, do not always correspond to an obvious modification of the splicing pattern. Thus caution must be used in assessing the pathogenicity of a missense or silent mutation with prediction programs. The variations observed in the splicing proficiency in three different cell lines suggest that nucleotide changes may dictate alternative splice site selection in a tissue-specific manner contributing to the widely observed phenotypic variability in inherited cancers.
Collapse
Affiliation(s)
- Patrizia Lastella
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Nicoletta Concetta Surdo
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Nicoletta Resta
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Ginevra Guanti
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedicine in Childhood, University of Bari, Italy. Policlinico P.zza G.Cesare 11 70124 Bari, Italy
| |
Collapse
|
31
|
Vorechovský I. Aberrant 3' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 2006; 34:4630-41. [PMID: 16963498 PMCID: PMC1636351 DOI: 10.1093/nar/gkl535] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency distribution of mutation-induced aberrant 3' splice sites (3'ss) in exons and introns is more complex than for 5' splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3'ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3'ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3'ss was achieved by the maximum entropy model. Almost one half of aberrant 3'ss was activated by AG-creating mutations and approximately 95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3'ss was characterized by higher purine content than for authentic sites, particularly in position -3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position -11. A newly developed online database of aberrant 3'ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools.
Collapse
Affiliation(s)
- Igor Vorechovský
- University of Southampton School of Medicine, Division of Human Genetics, Mailpoint 808, Southampton SO16 6YD, UK
| |
Collapse
|
32
|
Abstract
Information theory-based software tools have been useful in interpreting noncoding sequence variation within functional sequence elements such as splice sites. Individual information analysis detects activated cryptic splice sites and associated splicing regulatory sites and is capable of distinguishing null from partially functional alleles. We present a server (https://splice.cmh.edu) designed to analyze splicing mutations in binding sites in either human genes, genome-mapped mRNAs, user-defined sequences, or dbSNP entries. Standard HUGO-approved gene symbols and HGVS-approved systematic mutation nomenclature (or dbSNP format) are entered via a web portal. After verifying the accuracy of input variant(s), the surrounding interval is retrieved from the human genome or user-supplied reference sequence. The server then computes the information contents (Ri) of all potential constitutive and/or regulatory splice sites in both the reference and variant sequences. Changes in information content are color-coded, tabulated, and visualized as sequence walkers, which display the binding sites with the reference sequence. The software was validated by analyzing approximately 1,300 mutations from Human Mutation as well as eight mapped SNPs from dbSNP designated as splice site variants. All of the splicing mutations and variants affected splice site strength or activated cryptic splice sites. The server also detected several missense mutations that were unexpectedly predicted to have concomitant effects on splicing or appeared to activate cryptic splicing.
Collapse
Affiliation(s)
- Vijay K Nalla
- Laboratory of Human Molecular Genetics, Children's Mercy Hospital and Clinics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | |
Collapse
|
33
|
Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:95-103. [PMID: 16602101 PMCID: PMC2652706 DOI: 10.1002/ajmg.c.30089] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isovaleric acidemia (IVA) is an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD) resulting in the accumulation of derivatives of isovaleryl-CoA. It was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. IVD is a flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and transfers electrons to the electron transfer flavoprotein. Human IVD has been purified from tissue and recombinant sources and its biochemical and physical properties have been extensively studied. Molecular analysis of the IVD gene from patients with IVA has allowed characterization of different types of mutations in this gene. One missense mutation, 932C>T (A282V), is particularly common in patients identified through newborn screening with mild metabolite elevations and who have remained asymptomatic to date. This mutation leads to a partially active enzyme with altered catalytic properties; however, its effects on clinical outcome and the necessity of therapy are still unknown. A better understanding of the heterogeneity of this disease and the relevance of genotype/phenotype correlations to clinical management of patients are among the challenges remaining in the study of this disorder in the coming years.
Collapse
Affiliation(s)
- Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15238, USA.
| | | |
Collapse
|
34
|
Gaedigk A, Bhathena A, Ndjountché L, Pearce RE, Abdel-Rahman SM, Alander SW, Bradford LD, Rogan PK, Leeder JS. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. THE PHARMACOGENOMICS JOURNAL 2005; 5:173-82. [PMID: 15768052 PMCID: PMC1440720 DOI: 10.1038/sj.tpj.6500305] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome P4502D6 (CYP2D6) genotyping reliably predicts poor metabolizer phenotype in Caucasians, but is less accurate in African Americans. To evaluate discordance we have observed in phenotype to genotype correlation studies, select African American subjects were chosen for complete resequencing of the CYP2D6 gene including 4.2 kb of the CYP2D7-2D6 intergenic region. Comparisons were made to a CYP2D6(*)1 reference sequence revealing novel SNPs in the upstream, coding and intervening sequences. These sequence variations, defining four functional alleles (CYP2D6(*)41B, (*)45A and B and (*)46), were characterized for their ability to influence splice site strength, transcription level or catalytic protein activity. Furthermore, their frequency was determined in a population of 251 African Americans. A -692(TGTG) deletion (CYP2D6(*)45B) did not significantly decrease gene expression, nor could any other upstream SNP explain a genotype-discordant case. CYP2D6(*)45 and (*)46 have a combined frequency of 4% and can be identified by a common SNP. Carriers are predicted to exhibit an extensive or intermediate CYP2D6 phenotype.
Collapse
Affiliation(s)
- A Gaedigk
- Division of Clinical Pharmacology and Experimental Therapeutics, Children's Mercy Hospital & Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Iacobazzi V, Invernizzi F, Baratta S, Pons R, Chung W, Garavaglia B, Dionisi-Vici C, Ribes A, Parini R, Huertas MD, Roldan S, Lauria G, Palmieri F, Taroni F. Molecular and functional analysis of SLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency. Hum Mutat 2005; 24:312-20. [PMID: 15365988 DOI: 10.1002/humu.20085] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The enzyme carnitine-acylcarnitine translocase (CACT) is involved in the transport of long-chain fatty acids into mitochondria. CACT deficiency is a life-threatening, recessively inherited disorder of lipid beta-oxidation which manifests in early infancy with hypoketotic hypoglycemia, cardiomyopathy, liver failure, and muscle weakness. We report here the clinical, biochemical, and molecular features of six CACT-deficient patients from Italy, Spain, and North America who exhibited significant clinical heterogeneity. In five patients (Patients 1, 2, 4, 5, and 6) the disease manifested in the neonatal period, while the remaining patient (Patient 3), the younger sibling of an infant who had died with clinical suspicion of fatty acid oxidation defect, has been treated since birth and was clinically asymptomatic at 4.5 years of age. Patients 1 and 4 were deceased within 6 months from the onset of this study, while the remaining four are still alive at 8, 4.5, 3.5, and 2 years, respectively. Sequence analysis of the CACT gene (SLC25A20) disclosed five novel mutations and three previously reported mutations. Three patients were homozygous for the identified mutations. Two of the novel mutations (c.718+1G>C and c.843+4_843+50del) altered the donor splice site of introns 7 and 8, respectively. The 47-nt deletion in intron 8 caused both skipping of exon 8 only and skipping of exons 6-8. Four mutations [[c.159dupT;c.163delA] ([p.Gly54Trp;p.Thr55Ala]) c.397C>T (p.Arg133Trp), c.691G>C (p.Asp231His), and c.842C>T (p.Ala281Val)] resulted in amino acid substitutions affecting evolutionarily conserved regions of the protein. Interestingly, one of these exonic mutations (p.Ala281Val) was associated with a splicing defect also characterized by skipping of exons 6-8. The deleterious effect of the p.Arg133Trp substitution was demonstrated by measuring CACT activity upon expression of the normal and the mutant protein in E. coli and functional reconstitution into liposomes. Combined analysis of clinical, biochemical, and molecular data failed to indicate a correlation between the phenotype and the genotype.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goetzman ES, Mohsen AWA, Prasad K, Vockley J. Convergent evolution of a 2-methylbutyryl-CoA dehydrogenase from isovaleryl-CoA dehydrogenase in Solanum tuberosum. J Biol Chem 2004; 280:4873-9. [PMID: 15574432 DOI: 10.1074/jbc.m412640200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The potato cDNAs Solanum tuberosum isovaleryl-CoA dehydrogenases 1 and 2 (St-IVD1 and St-IVD2) encode proteins that are 84% identical to each other and 65 and 64% identical to human IVD, respectively. St-IVD2 protein was previously partially purified from potato tubers and confirmed to be an IVD. The function of St-IVD1 is unknown. In these experiments, both proteins were expressed in Escherichia coli and purified as intact homotetramers. The substrate preference profile of the St-IVD2 protein was similar to that of human IVD. However, recombinant St-IVD1 had maximal activity with 2-methylbutyryl-CoA, which in humans is dehydrogenated by short/branched-chain acyl-CoA dehydrogenase (SBCAD). Whereas molecular modeling predicts that the 2-methylbutyryl-CoA dehydrogenase (2MBCD) and IVD substrate binding pockets are nearly identical, 2MBCD has amino acid substitutions at five residues that are invariant among all of the known and putative IVDs. Site-directed mutagenesis was used to match the human IVD active site with that of potato 2MBCD. The resulting mutant IVD had detectable activity with 2-methylbutyryl-CoA and no activity with isovaleryl-CoA. The 2MBCD active site was compared with that of human SBCAD using molecular modeling. Residues Met-361 and Ala-365 of 2MBCD appear to partially substitute for the function of Tyr-380 in human SBCAD, binding the methyl branch linked to C2 of 2-methylbutyryl-CoA, whereas residues Val-88, Val-92, and Val-96 appear to bind the distal C4 methyl group. The presence of a 2MBCD in potato that is highly homologous to IVD is an example of convergent evolution within the acyl-CoA dehydrogenase family, leading to the independent occurrence of two enzymes (SBCAD and 2MBCD) specific for 2-methylbutyryl-CoA.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
37
|
Ensenauer R, Vockley J, Willard JM, Huey JC, Sass JO, Edland SD, Burton BK, Berry SA, Santer R, Grünert S, Koch HG, Marquardt I, Rinaldo P, Hahn S, Matern D. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 2004; 75:1136-42. [PMID: 15486829 PMCID: PMC1182150 DOI: 10.1086/426318] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/27/2004] [Indexed: 12/15/2022] Open
Abstract
Isovaleric acidemia (IVA) is an inborn error of leucine metabolism that can cause significant morbidity and mortality. Since the implementation, in many states and countries, of newborn screening (NBS) by tandem mass spectrometry, IVA can now be diagnosed presymptomatically. Molecular genetic analysis of the IVD gene for 19 subjects whose condition was detected through NBS led to the identification of one recurring mutation, 932C-->T (A282V), in 47% of mutant alleles. Surprisingly, family studies identified six healthy older siblings with identical genotype and biochemical evidence of IVA. Our findings indicate the frequent occurrence of a novel mild and potentially asymptomatic phenotype of IVA. This has significant consequences for patient management and counseling.
Collapse
Affiliation(s)
- Regina Ensenauer
- Department of Laboratory Medicine & Pathology, Division of Clinical Epidemiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gregersen N, Bross P, Andresen BS. Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. ACTA ACUST UNITED AC 2004; 271:470-82. [PMID: 14728674 DOI: 10.1046/j.1432-1033.2003.03949.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial fatty acid oxidation deficiencies are due to genetic defects in enzymes of fatty acid beta-oxidation and transport proteins. Genetic defects have been identified in most of the genes where nearly all types of sequence variations (mutation types) have been associated with disease. In this paper, we will discuss the effects of the various types of sequence variations encountered and review current knowledge regarding the genotype-phenotype relationship, especially in patients with acyl-CoA dehydrogenase deficiencies where sufficient material exists for a meaningful discussion. Because mis-sense sequence variations are prevalent in these diseases, we will discuss the implications of these types of sequence variations on the processing and folding of mis-sense variant proteins. As the prevalent mis-sense variant K304E MCAD protein has been studied intensively, the investigations on biogenesis, stability and kinetic properties for this variant enzyme will be discussed in detail and used as a paradigm for the study of other mis-sense variant proteins. We conclude that the total effect of mis-sense sequence variations may comprise an invariable--sequence variation specific--effect on the catalytic parameters and a conditional effect, which is dependent on cellular, physiological and genetic factors other than the sequence variation itself.
Collapse
Affiliation(s)
- Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
39
|
Ober C, Aldrich CL, Chervoneva I, Billstrand C, Rahimov F, Gray HL, Hyslop T. Variation in the HLA-G promoter region influences miscarriage rates. Am J Hum Genet 2003; 72:1425-35. [PMID: 12721954 PMCID: PMC1180303 DOI: 10.1086/375501] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Accepted: 03/14/2003] [Indexed: 01/08/2023] Open
Abstract
The HLA-G gene is primarily expressed in placental cells that invade the maternal decidua during pregnancy. This gene encodes multiple isoforms that fulfill a variety of functions at the maternal-fetal interface throughout gestation. Recently, a null allele for the most abundant HLA-G isoform was associated with recurrent miscarriage in two independent studies, suggesting that reduced levels of the HLA-G1 protein may compromise successful pregnancy. We initiated the present study to determine whether other polymorphisms that could affect expression levels of HLA-G were associated with fetal loss in women participating in a 15-year prospective study of pregnancy outcome. We genotyped these subjects for 18 single-nucleotide polymorphisms in the 1,300 bp upstream of exon 1, 13 of which were identified as part of this study, as well as for an insertion/deletion (in/del) polymorphism in the 3' untranslated region. The 18 SNPs defined eight unique haplotypes. One polymorphism, -725C/G, was associated with fetal loss, with an increased risk for miscarriage in couples in which both partners carried the -725G allele, compared with couples not carrying this allele (odds ratio 2.76, 95% confidence interval 1.08-7.09; P=.035). Further, the G at nucleotide -725 creates a CpG dinucleotide, and we demonstrate that this CpG site is methylated on -725G alleles. Overall, this study identified extraordinary levels of variation in the 5'-upstream regulatory region of HLA-G and provides evidence for an association between a promoter-region SNP and fetal loss rates, further attesting to the novel features and critical role of this gene in pregnancy.
Collapse
Affiliation(s)
- Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rogan PK, Svojanovsky S, Leeder JS. Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations. PHARMACOGENETICS 2003; 13:207-18. [PMID: 12668917 DOI: 10.1097/00008571-200304000-00005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several mutations are known or suspected to affect mRNA splicing of CYP2C19, CYP2D6 and CYP3A5 genes; however, little experimental evidence exists to support these conclusions. The present study applies mathematical models that measure changes in information content of splice sites in these genes to demonstrate the relationship between the predicted phenotypes of these variants to the corresponding genotypes. Based on information analysis, the CYP2C19*2 variant activates a new cryptic site 40 nucleotides downstream of the natural splice site. CYP2C19*7 abolishes splicing at the exon 5 donor site. The CYP2D6*4 allele similarly inactivates splicing at the acceptor site of exon 4 and activates a new cryptic site one nucleotide downstream of the natural acceptor. CYP2D6*11 inactivates the acceptor site of exon 2. The CYP3A5*3 allele activates a new cryptic site 236 nucleotides upstream of the exon 4 natural acceptor site. CYP3A5*5 inactivates the exon 5 donor site and CYP3A5*6 strengthens a site upstream of the natural donor site, resulting in skipping of exon 7. Other previously described missense and nonsense mutations at terminal codons of exons in these genes affected splicing. CYP2D6*8 and CYP2D6*14 both decrease the strength of the exon 3 donor site, producing transcripts lacking this exon. The results of information analysis are consistent with the poor metabolizer phenotypes observed in patients with these mutations, and illustrate the potential value of these mathematical models to quantitatively evaluate the functional consequences of new mutations suspected of altering mRNA splicing.
Collapse
Affiliation(s)
- Peter K Rogan
- Laboratory of Human Molecular Genetics, Children's Mercy Hospital and Clinics, Kansas City, Missouri 64108, USA.
| | | | | |
Collapse
|
41
|
Pérez B, Desviat LR, Rodríguez-Pombo P, Clavero S, Navarrete R, Perez-Cerdá C, Ugarte M. Propionic acidemia: identification of twenty-four novel mutations in Europe and North America. Mol Genet Metab 2003; 78:59-67. [PMID: 12559849 DOI: 10.1016/s1096-7192(02)00197-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Propionic acidemia is an inherited metabolic disease caused by the deficiency of the mitochondrial protein propionyl-CoA carboxylase (PCC), one of the four biotin-dependent enzymes. PCC is a multimeric protein composed of two different alpha- and beta-PCC subunits, nuclearly encoded by the PCCA and PCCB genes, respectively. Mutations in either gene cause the clinically heterogeneous disease propionic acidemia. In this work we describe the mutational analysis of PCCA and PCCB deficient patients from different European countries (Spain, Italy, Belgium, Croatia, and Austria) and from America (mainly USA). We report 24 novel PA mutations, nine affecting the PCCA gene and 15 affecting the PCCB gene. They include six missense mutations, one nonsense mutation, one point exonic mutation affecting splicing, seven splicing mutations affecting splice sequences, and nine short insertions or deletions, only two in-frame. We have found a highly heterogenous spectrum of PCCA mutations, most of the PCCA deficient patients are homozygous carrying a unique genotype. The PCCA mutational spectrum includes a high proportion of short insertions or deletions affecting one nucleotide. In the PCCA mutant alleles analyzed we have also found one single nucleotide change, a novel nonsynonymous SNP. On the other hand, the PCCB deficient patients carry a more reduced spectrum of mutations, 50% of them are missense. This work represents an extensive update of the mutational study of propionic acidemia providing important information about the worldwide distribution of PA mutations and representing another essential part in the study of the phenotype-genotype correlations for the prediction of the metabolic outcome and for the implementation of treatments tailored to each PA patient.
Collapse
Affiliation(s)
- B Pérez
- Centro de Biología Molecular "Severo Ochoa," Facultad de Ciencias, Universidad Autònoma de Madrid, CSIC-UAM, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Cederbaum SD, Koo-McCoy S, Tein I, Hsu BYL, Ganguly A, Vilain E, Dipple K, Cvitanovic-Sojat L, Stanley C. Carnitine membrane transporter deficiency: a long-term follow up and OCTN2 mutation in the first documented case of primary carnitine deficiency. Mol Genet Metab 2002; 77:195-201. [PMID: 12409266 DOI: 10.1016/s1096-7192(02)00169-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three older patients were diagnosed with systemic carnitine deficiency in childhood nearly a generation ago and have together been treated for more than 50 patient years. Treatment improved tissue carnitine stores (proven in two) and eliminated most of the signs and symptoms of carnitine deficiency. All three have continued to respond to carnitine therapy and remain well except for the irreversible sequelae of the pretreatment illnesses. We demonstrate here that transformed lymphocytes from the first documented case of plasma membrane carnitine transporter deficiency fail to take up carnitine from the medium. The analysis of the cDNA of this patient and his parents revealed a homozygous frameshift mutation, 1027delT in exon 4. The resulting polypeptide terminates after amino acid 295. His parents are heterozygous for this mutation. The deletion resulted in predominately abnormal mRNA splicing with either a 13 or 19bp insertion between the junction of exons 3 and 4. The 13/19bp insertions were found in both parents, predominantly in cis with the deletion, and rarely seen with normal alleles from either parents or controls.
Collapse
Affiliation(s)
- Stephen D Cederbaum
- Department of Psychiatry, UCLA, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3:285-98. [PMID: 11967553 DOI: 10.1038/nrg775] [Citation(s) in RCA: 1621] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Point mutations in the coding regions of genes are commonly assumed to exert their effects by altering single amino acids in the encoded proteins. However, there is increasing evidence that many human disease genes harbour exonic mutations that affect pre-mRNA splicing. Nonsense, missense and even translationally silent mutations can inactivate genes by inducing the splicing machinery to skip the mutant exons. Similarly, coding-region single-nucleotide polymorphisms might cause phenotypic variability by influencing splicing accuracy or efficiency. As the splicing mechanisms that depend on exonic signals are elucidated, new therapeutic approaches to treating certain genetic diseases can begin to be explored.
Collapse
Affiliation(s)
- Luca Cartegni
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
44
|
Hsu BY, Iacobazzi V, Wang Z, Harvie H, Chalmers RA, Saudubray JM, Palmieri F, Ganguly A, Stanley CA. Aberrant mRNA splicing associated with coding region mutations in children with carnitine-acylcarnitine translocase deficiency. Mol Genet Metab 2001; 74:248-55. [PMID: 11592821 DOI: 10.1006/mgme.2001.3235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report describes three infants with genetic defects of carnitine-acylcarnitine translocase (CACT), an inner mitochondrial membrane carrier that is essential for long-chain fatty acid oxidation. Two of the patients were of European and Chinese origin; the third was from consanguineous Turkish parents. CACT activity was totally deficient in cultured skin fibroblasts from all three patients. Patient 1 was heterozygous for a paternal frameshift mutation (120 del T in exon 1) and a maternal lariat branch point mutation (-10 T --> G in intron 2). Patient 2 was heterozygous for the same lariat branch point (-10T --> G intron 2) mutation, derived from the father, and a maternal frameshift mutation (362 del G in exon 3). Patient 3 was homozygous for a frameshift mutation (306 del C in exon 3). All of the three frameshift mutations give rise to the same stop codon at amino acid residue 127 which is predicted to cause premature protein truncation. In addition, cDNA transcript analysis showed that these coding sequence mutations also increase the amount of aberrant mRNA splicing and exon skipping at distances up to 7.7 kb nucleotides from mutation sites. The data suggest that the stability of mRNA transcripts is decreased or the frequency of aberrant splicing is increased in the presence of CACT coding sequence mutations. These results confirm that CACT is the genetic locus of the recessive mutations responsible for the fatal defects of fatty acid metabolism previously associated with deficiency of translocase activity in these three cases.
Collapse
Affiliation(s)
- B Y Hsu
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Willard JM, Reinard T, Mohsen A, Vockley J. Cloning of genomic and cDNA for mouse isovaleryl-CoA dehydrogenase (IVD) and evolutionary comparison to other known IVDs. Gene 2001; 270:253-7. [PMID: 11404023 DOI: 10.1016/s0378-1119(01)00466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Isovaleryl-CoA dehydrogenase (IVD) is an intramitochondrial homotetrameric flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA in the leucine catabolism pathway. Deficiency of IVD in humans causes isovaleric acidemia, which shows tremendous clinical variability for reasons that are unknown. To help better understand this disorder, we have cloned and sequenced the mouse IVD genomic and cDNAs. The mouse IVD gene spans approximately 17 kb and contains 12 coding exons organized identically to the human gene. It maps to mouse chromosome 2 in the area of band 2E4-E5, corresponding to the syntenic region of human chromosome 15. Mouse IVD predicted amino acid sequences are 95.8 and 89.6% identical to that of the rat and human sequences, respectively, with conservation of key functional residues. We have now identified IVD sequences from seven species. Comparison of these sequences shows that the rat and mouse proteins are the most closely related, both of which, in turn, share highest homology to human. All of the mammalian enzymes appear to be more closely related than any of the IVDs on other branches of the phylogram, while the fly and worm IVDs are the most divergent. The invertebrate IVDs are more closely related to the mammalian enzymes than to those from two plant species.
Collapse
Affiliation(s)
- J M Willard
- Department of Medical Genetics, Mayo Clinic and Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
46
|
Nakamura K, Fukao T, Perez-Cerda C, Luque C, Song XQ, Naiki Y, Kohno Y, Ugarte M, Kondo N. A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab 2001; 72:115-21. [PMID: 11161837 DOI: 10.1006/mgme.2000.3125] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most mutation-related aberrant splicing occurs in the conserved splice-acceptor and -donor sites and some exonic mutations also affect splicing. We identified and characterized a point mutation (380C>T) in a Spanish patient (GK25) with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. GK25 is a homozygote of 380C>T, which activates a cryptic splice-acceptor site 5 bases downstream from 380C>T within exon 5, causing aberrant splicing in 94% of transcripts. The aberrant splicing results in a 17-amino acids deletion, including the active-site 126Cys. The 380C>T mutation also results in A127V mutation in 6% of transcripts. Transient expression analysis showed that the A127V mutation did not retain T2 activity, indicating that 380C>T was a null mutation. Although this cryptic splice site has a higher Shapiro and Senapathy's score (86) in even a normal sequence than the authentic splice-acceptor site of intron 4 (78), it is not used in normal controls. While the 380C>T mutation increases the score slightly (90), the cryptic splice site is used in almost all transcripts in GK25 fibroblasts. This is an example in which a point mutation activates a cryptic splice-acceptor site motif that is used preferentially over the upstream authentic splice site.
Collapse
Affiliation(s)
- K Nakamura
- Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|