1
|
Mateu-Borrás M, Dublin SR, Kang J, Monroe HL, Sen-Kilic E, Miller SJ, Witt WT, Chapman JA, Pyles GM, Nallar SC, Huckaby AB, Yang E, Rocuskie-Marker C, Grund ME, Amin MS, Lukomski S, Snyder GA, Ray K, Lewis GK, Ricke DO, Damron FH, Barbier M. Novel broadly reactive monoclonal antibody protects against Pseudomonas aeruginosa infection. Infect Immun 2025; 93:e0033024. [PMID: 39670709 PMCID: PMC11784295 DOI: 10.1128/iai.00330-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024] Open
Abstract
The incidence of infections attributed to antimicrobial-resistant (AMR) pathogens has increased exponentially over the recent decades reaching 1.27 million deaths worldwide in 2019. Without intervention, these infections are predicted to cause up to 10 million deaths a year and incur costs of up to 100 trillion US dollars globally by 2050. The emergence of AMR bacteria such as the ESKAPEE pathogens, and in particular Pseudomonas aeruginosa and species from the genus Burkholderia, underscores an urgent need for new therapeutic strategies. Monoclonal antibody (mAb) therapy offers a promising alternative to treat and prevent bacterial infections. In this study, we used peptides from highly conserved areas of the bacterial flagellin to generate monoclonal antibodies capable of broad binding to flagellated Gram-negative bacteria. We generated a broadly reactive IgG2bĸ mAb (WVDC-2109) that recognizes P. aeruginosa, Burkholderia sp., and other Gram-negative pathogens of interest. Characterization of the therapeutic potential of this antibody was determined using P. aeruginosa as model. In vitro characterization of WVDC-2109 demonstrated complement-mediated bactericidal activity and enhanced opsonophagocytosis of P. aeruginosa. Prophylactic administration of WVDC-2109 markedly improved survival and outcome in a lethal sepsis model and a sub-lethal murine pneumonia model of P. aeruginosa infection, reducing bacterial burden and inflammation. These findings suggest that WVDC-2109 and similar FliC-targeting antibodies could be valuable in preventing or treating diseases caused by P. aeruginosa as well as other life-threatening diseases of concern.IMPORTANCEAntimicrobial resistance (AMR) costs hundreds of thousands of lives and billions of dollars annually. To protect the population against these infections, it is imperative to develop new medical countermeasures targeting AMR pathogens like P. aeruginosa and Burkholderia sp. The administration of broadly reactive monoclonal antibodies can represent an alternative to treat and prevent infections caused by multi-drug-resistant bacteria. Unlike vaccines, antibodies can provide protection regardless of the immune status of the infected host. In this study, we generated an antibody capable of recognizing flagellin from P. aeruginosa and B. pseudomallei along with other Gram-negative pathogens of concern. Our findings demonstrate that the administration of the monoclonal antibody WVDC-2109 enhances survival rates and outcomes in different murine models of P. aeruginosa infection. These results carry significant implications in the field given that there are no available vaccines for P. aeruginosa.
Collapse
Affiliation(s)
- Margalida Mateu-Borrás
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Spencer R. Dublin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Hunter L. Monroe
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Sarah J. Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua A. Chapman
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Shreeram C. Nallar
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Evita Yang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Carleena Rocuskie-Marker
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Megan E. Grund
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Greg A. Snyder
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Krishanu Ray
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - George K. Lewis
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | | | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Zirbes CF, Feder A, Pamatmat AJ, Bartels AR, Pitcher NJ, Rozen AL, Teresi M, Krogh J, Regan M, Arnold EA, Hill JJ, Reinhardt LD, Oberto CL, Boyken L, Reeb VC, Moustafa AM, Planet PJ, Fischer AJ. Genetic Concordance of Staphylococcus aureus From Oropharyngeal and Sputum Cultures in People With Cystic Fibrosis. Pediatr Pulmonol 2025; 60:e27475. [PMID: 39785222 PMCID: PMC11715147 DOI: 10.1002/ppul.27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND People with cystic fibrosis (CF) may not expectorate sputum at young ages or after they receive CFTR modulators. While oropharyngeal swabs are commonly used to test for lower airway pathogens, it is unknown whether Staphylococcus aureus from the oropharynx matches the strain(s) infecting the lungs. Our goal was to determine whether oropharyngeal and sputum isolates of S. aureus are genetically distinct in a cohort of patients with CF. METHODS We obtained historical S. aureus isolates from patients who intermittently expectorated sputum in 2018, and we prospectively cultured S. aureus from oropharyngeal swabs and sputum from subjects with CF between August 2020 and February 2022. We performed short-read whole genome sequencing, determined sequence type, and performed phylogenetic analysis using S. aureus core genome single nucleotide polymorphisms (SNPs). We assigned isolates from a patient to the same strain if they had the same sequence type and differed by ≤ 60 SNPs or the isolates were not disturbed by clade breaker analysis. RESULTS 36 subjects had S. aureus in ≥ 1 oropharyngeal swab and ≥ 1 sputum in 2018. In the prospective collection, 31 subjects had synchronous oropharyngeal swab and sputum collections. Although polyclonal infections were detected, sputum and oropharyngeal isolates of S. aureus typically matched the same strain within study subjects, both over the span of 2018 (31/36 patients) and when collected simultaneously from 2020 to 2022 (29/31 patients). CONCLUSIONS In patients with CF who intermittently produce sputum, oropharyngeal swabs identify S. aureus with genetic and phenotypic similarity to those cultured from sputum.
Collapse
Affiliation(s)
- Christian F. Zirbes
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Andries Feder
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Anthony J. Pamatmat
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Alyssa R. Bartels
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Nicholas J. Pitcher
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Alexis L. Rozen
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Mary Teresi
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Justin Krogh
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Margaret Regan
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Erin A. Arnold
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Jared J. Hill
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Lindsey D. Reinhardt
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Carlos L. Oberto
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Linda Boyken
- Department of PathologyUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Valérie C. Reeb
- State Hygienic LaboratoryThe University of IowaIowa CityIowaUSA
| | - Ahmed M. Moustafa
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul J. Planet
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Anthony J. Fischer
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| |
Collapse
|
3
|
Carey JN, Lamont S, Wozniak DJ, Dandekar AA, Parsek MR. Quorum sensing regulation of Psl polysaccharide production by Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0031224. [PMID: 39530727 PMCID: PMC11656772 DOI: 10.1128/jb.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen and a model organism for studying bacterial sociality. A social behavior of P. aeruginosa that is critical for its success as a pathogen is its ability to form protective biofilms. Many of P. aeruginosa's social phenotypes are regulated by quorum sensing-a type of cell-cell communication that allows bacteria to respond to population density. Although biofilm formation is known to be affected by quorum sensing, evidence for direct regulation of biofilm production by quorum regulators has remained elusive. In this work, we show that production of the major biofilm matrix polysaccharide Psl in P. aeruginosa PAO1 is regulated by the quorum regulators LasR and RhlR in stationary-phase cultures. Secretion of Psl into the culture medium requires LasR, RhlR, and the quorum signal molecules N-3-oxo-dodecanoyl-homoserine lactone and N-butanoyl homoserine lactone. Psl production in strains unable to synthesize the homoserine lactone signals can be restored by exogenous introduction of the signal molecules. We found that LasR and RhlR perform different roles in the regulation of Psl production: LasR acts at the promoter of the psl operon and activates transcription of the Psl biosynthetic genes, while RhlR activates translation of the psl transcripts. This work contributes to our understanding of the overlapping but distinct functions of the Las and Rhl quorum-sensing systems and implicates both in the direct regulation of biofilm matrix production.IMPORTANCEPseudomonas aeruginosa biofilms are responsible for many treatment-resistant infections in humans. Many cooperative behaviors in P. aeruginosa are controlled by quorum sensing, but evidence for a direct role of quorum sensing in the regulation of biofilm matrix production has been scant. In this work, we show that the Las and Rhl quorum-sensing systems have distinct roles in regulating production of the matrix polysaccharide Psl and that this regulation happens at the level of transcription (Las) and translation (Rhl) of the psl operon. These findings deepen our understanding of overlapping functions of Las and Rhl quorum sensing and the complex regulation of biofilm development in P. aeruginosa.
Collapse
Affiliation(s)
- Jeffrey N. Carey
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Sabrina Lamont
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Daniel J. Wozniak
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Basu B, Dutta S, Rahaman M, Bose A, Das S, Prajapati J, Prajapati B. The Future of Cystic Fibrosis Care: Exploring AI's Impact on Detection and Therapy. CURRENT RESPIRATORY MEDICINE REVIEWS 2024; 20:302-321. [DOI: 10.2174/011573398x283365240208195944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/03/2025]
Abstract
:
Cystic Fibrosis (CF) is a fatal hereditary condition marked by thicker mucus production,
which can cause problems with the digestive and respiratory systems. The quality of life and
survival rates of CF patients can be improved by early identification and individualized therapy
measures. With an emphasis on its applications in diagnosis and therapy, this paper investigates
how Artificial Intelligence (AI) is transforming the management of Cystic Fibrosis (CF). AI-powered
algorithms are revolutionizing CF diagnosis by utilizing huge genetic, clinical, and imaging
data databases. In order to identify CF mutations quickly and precisely, machine learning methods
evaluate genomic profiles. Furthermore, AI-driven imaging analysis helps to identify lung and gastrointestinal
issues linked to cystic fibrosis early and allows for prompt treatment. Additionally,
AI aids in individualized CF therapy by anticipating how patients will react to already available
medications and enabling customized treatment regimens. Drug repurposing algorithms find
prospective candidates from already-approved drugs, advancing treatment choices. Additionally,
AI supports the optimization of pharmacological combinations, enhancing therapeutic results
while minimizing side effects. AI also helps with patient stratification by connecting people with
CF mutations to therapies that are best for their genetic profiles. Improved treatment effectiveness
is promised by this tailored strategy. The transformational potential of artificial intelligence (AI)
in the field of cystic fibrosis is highlighted in this review, from early identification to individualized
medication, bringing hope for better patient outcomes, and eventually prolonging the lives of
people with this difficult ailment.
Collapse
Affiliation(s)
- Biswajit Basu
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Srabona Dutta
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Monosiz Rahaman
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Anirbandeep Bose
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Sarisha, Diamond Harbour, West
Bengal, India
| | - Jigna Prajapati
- Achaya Motibhai Patel Institute of Computer Studies, Ganpat University, Mehsana, Gujarat, 384012,
India
| | - Bhupendra Prajapati
- S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012,
India
| |
Collapse
|
5
|
Garbero OV, Sardelli L, Butnarasu CS, Frasca E, Medana C, Dal Bello F, Visentin S. Tracing the path of Quorum sensing molecules in cystic fibrosis mucus in a biomimetic in vitro permeability platform. Sci Rep 2024; 14:25907. [PMID: 39472521 PMCID: PMC11522324 DOI: 10.1038/s41598-024-77375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
P. aeruginosa employs specific quorum sensing (QS) mechanisms to orchestrate biofilm formation, enhancing resistance to host defences. In physiological conditions, QS molecules permeate the lung environment and cellular membrane to reach the cytoplasmic Aryl Hydrocarbon Receptor (AhR) that is pivotal for activating the immune response against infection. In pathological conditions like cystic fibrosis (CF) this interkingdom communication is altered, favouring P. aeruginosa persistence and chronic infection. Here, we aim to investigate the molecular journey of QS molecules from CF-like environments to the cytoplasm by quantifying via HPLC-MS the permeability of selected QS molecules (quinolones, lactones, and phenazines) through in vitro models of the two main biological lung barriers: CF-mucus and cellular membrane. While QS molecules not activating AhR exhibit intermediate permeability through the cellular membrane model (PAMPA) (1.0-4.0 × 10-6 cm/s), the AhR-activating molecule (pyocyanin) shows significantly higher permeability (8.6 ± 1.4 × 10-6 cm/s). Importantly, combining the CF mucus model with PAMPA induces a 50% decrease in pyocyanin permeability, indicating a strong mucus-shielding effect with pathological implications in infection eradication. This study underscores the importance of quantitatively describing the AhR-active bacterial molecules, even in vitro, to offer new perspectives for understanding P. aeruginosa virulence mechanisms and for proposing new antibacterial therapeutic approaches.
Collapse
Affiliation(s)
- Olga Valentina Garbero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Lorenzo Sardelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Cosmin Stefan Butnarasu
- Institute of Pharmacy Biopharmaceuticals, SupraFAB, Freie Universität Berlin, Altensteinstr 23a, 14195, Berlin, Germany
| | - Enrica Frasca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy.
| |
Collapse
|
6
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. mBio 2024; 15:e0345123. [PMID: 38651896 PMCID: PMC11237767 DOI: 10.1128/mbio.03451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
Affiliation(s)
- Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Suzanne L Meinig
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucas M Plott
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas P Vitko
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlyn R Rouillard
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jerome Carpenter
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
8
|
Kesthely CA, Rogers RR, El Hafi B, Jean-Pierre F, O’Toole GA. Transcriptional profiling and genetic analysis of a cystic fibrosis airway-relevant model shows asymmetric responses to growth in a polymicrobial community. Microbiol Spectr 2023; 11:e0220123. [PMID: 37772884 PMCID: PMC10580927 DOI: 10.1128/spectrum.02201-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Bacterial infections in the lungs of persons with cystic fibrosis are typically composed of multispecies biofilm-like communities, which modulate clinically relevant phenotypes that cannot be explained in the context of a single species culture. Most analyses to date provide a picture of the transcriptional responses of individual pathogens; however, there is relatively little data describing the transcriptional landscape of clinically relevant multispecies communities. Harnessing a previously described cystic fibrosis-relevant, polymicrobial community model consisting of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica, we performed an RNA-Seq analysis on the biofilm population to elucidate the transcriptional profiles of the community grown in artificial sputum medium (ASM) as compared to growth in monoculture, without mucin, and in fresh medium supplemented with tobramycin. We provide evidence that, although the transcriptional profile of P. aeruginosa is community agnostic, the transcriptomes of S. aureus and S. sanguinis are community aware. Furthermore, P. aeruginosa and P. melaninogenica are transcriptionally sensitive to the presence of mucin in ASM, whereas S. aureus and S. sanguinis largely do not alter their transcriptional profiles in the presence of mucin when grown in a community. Only P. aeruginosa shows a robust response to tobramycin. Genetic studies of mutants altered in community-specific growth provide complementary data regarding how these microbes adapt to a community context. IMPORTANCE Polymicrobial infections constitute the majority of infections in the cystic fibrosis (CF) airway, but their study has largely been neglected in a laboratory setting. Our lab previously reported a polymicrobial community that can help explain clinical outcomes in the lungs of persons with CF. Here, we obtained transcriptional profiles of the community versus monocultures to provide transcriptional information about how this model community responds to CF-related growth conditions and perturbations. Genetic studies provide complementary functional outputs to assess how the microbes adapt to life in a community.
Collapse
Affiliation(s)
- Christopher A. Kesthely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rendi R. Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
9
|
Llanos A, Achard P, Bousquet J, Lozano C, Zalacain M, Sable C, Revillet H, Murris M, Mittaine M, Lemonnier M, Everett M. Higher levels of Pseudomonas aeruginosa LasB elastase expression are associated with early-stage infection in cystic fibrosis patients. Sci Rep 2023; 13:14208. [PMID: 37648735 PMCID: PMC10468528 DOI: 10.1038/s41598-023-41333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Pseudomonas aeruginosa is a common pathogen in cystic fibrosis (CF) patients and a major contributor to progressive lung damage. P. aeruginosa elastase (LasB), a key virulence factor, has been identified as a potential target for anti-virulence therapy. Here, we sought to differentiate the P. aeruginosa isolates from early versus established stages of infection in CF patients and to determine if LasB was associated with either stage. The lasB gene was amplified from 255 P. aeruginosa clinical isolates from 70 CF patients from the Toulouse region (France). Nine LasB variants were identified and 69% of the isolates produced detectable levels of LasB activity. Hierarchical clustering using experimental and clinical data distinguished two classes of isolates, designated as 'Early' and 'Established' infection. Multivariate analysis revealed that the isolates from the Early infection class show higher LasB activity, fast growth, tobramycin susceptibility, non-mucoid, pigmented colonies and wild-type lasR genotype. These traits were associated with younger patients with polymicrobial infections and high pFEV1. Our findings show a correlation between elevated LasB activity in P. aeruginosa isolates and early-stage infection in CF patients. Hence, it is this patient group, prior to the onset of chronic disease, that may benefit most from novel therapies targeting LasB.
Collapse
Affiliation(s)
- Agustina Llanos
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France.
| | - Pauline Achard
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Justine Bousquet
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Clarisse Lozano
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Magdalena Zalacain
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Carole Sable
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène, CHU de Toulouse, Toulouse, France
- IRSD, INSERM, Université de Toulouse, INRAE, ENVT, UPS, Toulouse, France
| | - Marlène Murris
- Adult Cystic Fibrosis Centre, Pulmonology Unit, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | | | - Marc Lemonnier
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| | - Martin Everett
- Antabio SAS, Biostep, 436, rue Pierre et Marie Curie, 31760, Labège, France
| |
Collapse
|
10
|
Nakatsuka Y, Matsumoto M, Inohara N, Núñez G. Pseudomonas aeruginosa hijacks the murine nitric oxide metabolic pathway to evade killing by neutrophils in the lung. Cell Rep 2023; 42:112973. [PMID: 37561628 DOI: 10.1016/j.celrep.2023.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils play a critical role in the eradication of Pseudomonas aeruginosa, a major pathogen causing lung infection. However, the mechanisms used by the pathogen to evade neutrophil-mediated killing remain poorly understood. Using a high-density transposon screen, we find that P. aeruginosa colonization in the lung is promoted by pathogen nitrite reductase nirD. nirD is required for ammonia production from nitrite, a metabolite derived from nitrogen oxide (NO) generated by inducible NO synthetase (iNOS) in phagocytes. P. aeruginosa deficient in nirD exhibit reduced survival in wild-type neutrophils but not in iNOS-deficient neutrophils. Mechanistically, nirD enhances P. aeruginosa survival in neutrophils by inhibiting the localization of the pathogen in late phagosomes. P. aeruginosa deficient in nirD show impaired lung colonization after infection in wild-type mice but not in mice with selective iNos deficiency in neutrophils. Thus, P. aeruginosa uses neutrophil iNOS-mediated NO production to limit neutrophil pathogen killing and to promote its colonization in the lung.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| | - Masanori Matsumoto
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| |
Collapse
|
11
|
Chandler CE, Hofstaedter CE, Hazen TH, Rasko DA, Ernst RK. Genomic and Functional Characterization of Longitudinal Pseudomonas aeruginosa Isolates from Young Patients with Cystic Fibrosis. Microbiol Spectr 2023; 11:e0155623. [PMID: 37358436 PMCID: PMC10433850 DOI: 10.1128/spectrum.01556-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Individuals with cystic fibrosis (CF) suffer from frequent and recurring microbial airway infections. The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common organisms isolated from CF patient airways. P. aeruginosa establishes chronic infections that persist throughout a patient's lifetime and is a major cause of morbidity and mortality. Throughout the course of infection, P. aeruginosa must evolve and adapt from an initial state of early, transient colonization to chronic colonization of the airways. Here, we examined isolates of P. aeruginosa from children under the age of 3 years old with CF to determine genetic adaptations the bacterium undergoes during this early stage of colonization and infection. These isolates were collected when early aggressive antimicrobial therapy was not the standard of care and therefore highlight strain evolution under limited antibiotic pressure. Examination of specific phenotypic adaptations, such as lipid A palmitoylation, antibiotic resistance, and loss of quorum sensing, did not reveal a clear genetic basis for such changes. Additionally, we demonstrate that the geography of patient origin, within the United States or among other countries, does not appear to significantly influence genetic adaptation. In summary, our results support the long-standing model that patients acquire individual isolates of P. aeruginosa that subsequently become hyperadapted to the patient-specific airway environment. This study provides a multipatient genomic analysis of isolates from young CF patients in the United States and contributes data regarding early colonization and adaptation to the growing body of research about P. aeruginosa evolution in the context of CF airway disease. IMPORTANCE Chronic lung infection with Pseudomonas aeruginosa is of major concern for patients with cystic fibrosis (CF). During infection, P. aeruginosa undergoes genomic and functional adaptation to the hyperinflammatory CF airway, resulting in worsening lung function and pulmonary decline. All studies that describe these adaptations use P. aeruginosa obtained from older children or adults during late chronic lung infection; however, children with CF can be infected with P. aeruginosa as early as 3 months of age. Therefore, it is unclear when these genomic and functional adaptations occur over the course of CF lung infection, as access to P. aeruginosa isolates in children during early infection is limited. Here, we present a unique cohort of CF patients who were identified as being infected with P. aeruginosa at an early age prior to aggressive antibiotic therapy. Furthermore, we performed genomic and functional characterization of these isolates to address whether chronic CF P. aeruginosa phenotypes are present during early infection.
Collapse
Affiliation(s)
- Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - David A. Rasko
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Kang J, Mateu-Borrás M, Monroe HL, Sen-Kilic E, Miller SJ, Dublin SR, Huckaby AB, Yang E, Pyles GM, Nunley MA, Chapman JA, Amin MS, Damron FH, Barbier M. Monoclonal antibodies against lipopolysaccharide protect against Pseudomonas aeruginosa challenge in mice. Front Cell Infect Microbiol 2023; 13:1191806. [PMID: 37424774 PMCID: PMC10326049 DOI: 10.3389/fcimb.2023.1191806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections, including central line-associated bloodstream infections and ventilator-associated pneumonia. Unfortunately, effective control of these infections can be difficult, in part due to the prevalence of multi-drug resistant strains of P. aeruginosa. There remains a need for novel therapeutic interventions against P. aeruginosa, and the use of monoclonal antibodies (mAb) is a promising alternative strategy to current standard of care treatments such as antibiotics. To develop mAbs against P. aeruginosa, we utilized ammonium metavanadate, which induces cell envelope stress responses and upregulates polysaccharide expression. Mice were immunized with P. aeruginosa grown with ammonium metavanadate and we developed two IgG2b mAbs, WVDC-0357 and WVDC-0496, directed against the O-antigen lipopolysaccharide of P. aeruginosa. Functional assays revealed that WVDC-0357 and WVDC-0496 directly reduced the viability of P. aeruginosa and mediated bacterial agglutination. In a lethal sepsis model of infection, prophylactic treatment of mice with WVDC-0357 and WVDC-0496 at doses as low as 15 mg/kg conferred 100% survival against challenge. In both sepsis and acute pneumonia models of infection, treatment with WVDC-0357 and WVDC-0496 significantly reduced bacterial burden and inflammatory cytokine production post-challenge. Furthermore, histopathological examination of the lungs revealed that WVDC-0357 and WVDC-0496 reduced inflammatory cell infiltration. Overall, our results indicate that mAbs directed against lipopolysaccharide are a promising therapy for the treatment and prevention of P. aeruginosa infections.
Collapse
Affiliation(s)
- Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borrás
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Hunter L. Monroe
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Spencer R. Dublin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Evita Yang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Josh A. Chapman
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
13
|
Langton Hewer SC, Smith S, Rowbotham NJ, Yule A, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2023; 6:CD004197. [PMID: 37268599 PMCID: PMC10237531 DOI: 10.1002/14651858.cd004197.pub6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Respiratory tract infections with Pseudomonas aeruginosa occur in most people with cystic fibrosis (CF). Established chronic P aeruginosa infection is virtually impossible to eradicate and is associated with increased mortality and morbidity. Early infection may be easier to eradicate. This is an updated review. OBJECTIVES Does giving antibiotics for P aeruginosa infection in people with CF at the time of new isolation improve clinical outcomes (e.g. mortality, quality of life and morbidity), eradicate P aeruginosa infection, and delay the onset of chronic infection, but without adverse effects, compared to usual treatment or an alternative antibiotic regimen? We also assessed cost-effectiveness. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and conference proceedings. Latest search: 24 March 2022. We searched ongoing trials registries. Latest search: 6 April 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) of people with CF, in whom P aeruginosa had recently been isolated from respiratory secretions. We compared combinations of inhaled, oral or intravenous (IV) antibiotics with placebo, usual treatment or other antibiotic combinations. We excluded non-randomised trials and cross-over trials. DATA COLLECTION AND ANALYSIS Two authors independently selected trials, assessed risk of bias and extracted data. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 11 trials (1449 participants) lasting between 28 days and 27 months; some had few participants and most had relatively short follow-up periods. Antibiotics in this review are: oral - ciprofloxacin and azithromycin; inhaled - tobramycin nebuliser solution for inhalation (TNS), aztreonam lysine (AZLI) and colistin; IV - ceftazidime and tobramycin. There was generally a low risk of bias from missing data. In most trials it was difficult to blind participants and clinicians to treatment. Two trials were supported by the manufacturers of the antibiotic used. TNS versus placebo TNS may improve eradication; fewer participants were still positive for P aeruginosa at one month (odds ratio (OR) 0.06, 95% confidence interval (CI) 0.02 to 0.18; 3 trials, 89 participants; low-certainty evidence) and two months (OR 0.15, 95% CI 0.03 to 0.65; 2 trials, 38 participants). We are uncertain whether the odds of a positive culture decrease at 12 months (OR 0.02, 95% CI 0.00 to 0.67; 1 trial, 12 participants). TNS (28 days) versus TNS (56 days) One trial (88 participants) comparing 28 days to 56 days TNS treatment found duration of treatment may make little or no difference in time to next isolation (hazard ratio (HR) 0.81, 95% CI 0.37 to 1.76; low-certainty evidence). Cycled TNS versus culture-based TNS One trial (304 children, one to 12 years old) compared cycled TNS to culture-based therapy and also ciprofloxacin to placebo. We found moderate-certainty evidence of an effect favouring cycled TNS therapy (OR 0.51, 95% CI 0.31 to 0.82), although the trial publication reported age-adjusted OR and no difference between groups. Ciprofloxacin versus placebo added to cycled and culture-based TNS therapy One trial (296 participants) examined the effect of adding ciprofloxacin versus placebo to cycled and culture-based TNS therapy. There is probably no difference between ciprofloxacin and placebo in eradicating P aeruginosa (OR 0.89, 95% CI 0.55 to 1.44; moderate-certainty evidence). Ciprofloxacin and colistin versus TNS We are uncertain whether there is any difference between groups in eradication of P aeruginosa at up to six months (OR 0.43, 95% CI 0.15 to 1.23; 1 trial, 58 participants) or up to 24 months (OR 0.76, 95% CI 0.24 to 2.42; 1 trial, 47 participants); there was a low rate of short-term eradication in both groups. Ciprofloxacin plus colistin versus ciprofloxacin plus TNS One trial (223 participants) found there may be no difference in positive respiratory cultures at 16 months between ciprofloxacin with colistin versus TNS with ciprofloxacin (OR 1.28, 95% CI 0.72 to 2.29; low-certainty evidence). TNS plus azithromycin compared to TNS plus oral placebo Adding azithromycin may make no difference to the number of participants eradicating P aeruginosa after a three-month treatment phase (risk ratio (RR) 1.01, 95% CI 0.75 to 1.35; 1 trial, 91 participants; low-certainty evidence); there was also no evidence of any difference in the time to recurrence. Ciprofloxacin and colistin versus no treatment A single trial only reported one of our planned outcomes; there were no adverse effects in either group. AZLI for 14 days plus placebo for 14 days compared to AZLI for 28 days We are uncertain whether giving 14 or 28 days of AZLI makes any difference to the proportion of participants having a negative respiratory culture at 28 days (mean difference (MD) -7.50, 95% CI -24.80 to 9.80; 1 trial, 139 participants; very low-certainty evidence). Ceftazidime with IV tobramycin compared with ciprofloxacin (both regimens in conjunction with three months colistin) IV ceftazidime with tobramycin compared with ciprofloxacin may make little or no difference to eradication of P aeruginosa at three months, sustained to 15 months, provided that inhaled antibiotics are also used (RR 0.84, 95 % CI 0.65 to 1.09; P = 0.18; 1 trial, 255 participants; high-certainty evidence). The results do not support using IV antibiotics over oral therapy to eradicate P aeruginosa, based on both eradication rate and financial cost. AUTHORS' CONCLUSIONS We found that nebulised antibiotics, alone or with oral antibiotics, were better than no treatment for early infection with P aeruginosa. Eradication may be sustained in the short term. There is insufficient evidence to determine whether these antibiotic strategies decrease mortality or morbidity, improve quality of life, or are associated with adverse effects compared to placebo or standard treatment. Four trials comparing two active treatments have failed to show differences in rates of eradication of P aeruginosa. One large trial showed that intravenous ceftazidime with tobramycin is not superior to oral ciprofloxacin when inhaled antibiotics are also used. There is still insufficient evidence to state which antibiotic strategy should be used for the eradication of early P aeruginosa infection in CF, but there is now evidence that intravenous therapy is not superior to oral antibiotics.
Collapse
Affiliation(s)
- Simon C Langton Hewer
- Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Sherie Smith
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicola J Rowbotham
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alexander Yule
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alan R Smyth
- Academic Unit of Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Kesthely CA, Rogers RR, Hafi BE, Jean-Pierre F, O'Toole GA. Transcriptional Profiling and Genetic Analysis of a Cystic Fibrosis Airway-Relevant Model Shows Asymmetric Responses to Growth in a Polymicrobial Community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542191. [PMID: 37293107 PMCID: PMC10245937 DOI: 10.1101/2023.05.24.542191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infections in the lungs of persons with cystic fibrosis are typically composed of multispecies biofilm-like communities, which modulate clinically relevant phenotypes that cannot be explained in the context of a single species culture. Most analyses to-date provide a picture of the transcriptional responses of individual pathogens, however, there is relatively little data describing the transcriptional landscape of clinically-relevant multispecies communities. Harnessing a previously described cystic fibrosis-relevant, polymicrobial community model consisting of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis and Prevotella melaninogenica , we performed an RNA-Seq analysis to elucidate the transcriptional profiles of the community grown in artificial sputum medium (ASM) as compared to growth in monoculture, without mucin, and in fresh medium supplemented with tobramycin. We provide evidence that, although the transcriptional profile of P. aeruginosa is community agnostic, the transcriptomes of S. aureus and S. sanguinis are community aware. Furthermore, P. aeruginosa and P. melaninogenica are transcriptionally sensitive to the presence of mucin in ASM, whereas S. aureus and S. sanguinis largely do not alter their transcriptional profiles in the presence of mucin when grown in a community. Only P. aeruginosa shows a robust response to tobramycin. Genetic studies of mutants altered in community-specific growth provide complementary data regarding how these microbes adapt to a community context. Importance Polymicrobial infections constitute the majority of infections in the cystic fibrosis (CF) airway, but their study has largely been neglected in a laboratory setting. Our lab previously reported a polymicrobial community that can explain clinical outcomes in the lungs of persons with CF. Here we obtain transcriptional profiles of the community versus monocultures to provide transcriptional information about how this model community responds to CF-related growth conditions and perturbations. Genetic studies provide complementary functional outputs to assess how the microbes adapt to life in a community.
Collapse
Affiliation(s)
| | - Rendi R Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| |
Collapse
|
15
|
Horspool AM, Sen-Kilic E, Malkowski AC, Breslow SL, Mateu-Borras M, Hudson MS, Nunley MA, Elliott S, Ray K, Snyder GA, Miller SJ, Kang J, Blackwood CB, Weaver KL, Witt WT, Huckaby AB, Pyles GM, Clark T, Al Qatarneh S, Lewis GK, Damron FH, Barbier M. Development of an anti- Pseudomonas aeruginosa therapeutic monoclonal antibody WVDC-5244. Front Cell Infect Microbiol 2023; 13:1117844. [PMID: 37124031 PMCID: PMC10140502 DOI: 10.3389/fcimb.2023.1117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti-P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa. The anti-P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro, even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.
Collapse
Affiliation(s)
- Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C. Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Scott L. Breslow
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borras
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S. Hudson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sean Elliott
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Krishanu Ray
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Greg A. Snyder
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Tammy Clark
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - Saif Al Qatarneh
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - George K. Lewis
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
16
|
Beg AZ, Rashid F, Talat A, Haseen MA, Raza N, Akhtar K, Dueholm MKD, Khan AU. Functional Amyloids in Pseudomonas aeruginosa Are Essential for the Proteome Modulation That Leads to Pathoadaptation in Pulmonary Niches. Microbiol Spectr 2023; 11:e0307122. [PMID: 36475836 PMCID: PMC9927170 DOI: 10.1128/spectrum.03071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Persistence and survival of Pseudomonas aeruginosa in chronic lung infections is closely linked to the biofilm lifestyle. One biofilm component, functional amyloid of P. aeruginosa (Fap), imparts structural adaptations for biofilms; however, the role of Fap in pathogenesis is still unclear. Conservation of the fap operon encoding Fap and P. aeruginosa being an opportunistic pathogen of lung infections prompted us to explore its role in lung infection. We found that Fap is essential for establishment of lung infection in rats, as its genetic exclusion led to mild focal infection with quick resolution. Moreover, without an underlying cystic fibrosis (CF) genetic disorder, overexpression of Fap reproduced the CF pathotype. The molecular basis of Fap-mediated pulmonary adaptation was explored through surface-associated proteomics in vitro. Differential proteomics positively associated Fap expression with activation of known proteins related to pulmonary pathoadaptation, attachment, and biofilm fitness. The aggregative bacterial phenotype in the pulmonary niche correlated with Fap-influenced activation of biofilm sustainability regulators and stress response regulators that favored persistence-mediated establishment of pulmonary infection. Fap overexpression upregulated proteins that are abundant in the proteome of P. aeruginosa in colonizing CF lungs. Planktonic lifestyle, defects in anaerobic pathway, and neutrophilic evasion were key factors in the absence of Fap that impaired establishment of infection. We concluded that Fap is essential for cellular equilibration to establish pulmonary infection. Amyloid-induced bacterial aggregation subverted the immune response, leading to chronic infection by collaterally damaging tissue and reinforcing bacterial persistence. IMPORTANCE Pseudomonas aeruginosa is inextricably linked with chronic lung infections. In this study, the well-conserved Fap operon was found to be essential for pathoadaptation in pulmonary infection in a rat lung model. Moreover, the presence of Fap increased pathogenesis and biofilm sustainability by modulating bacterial physiology. Hence, a pathoadaptive role of Fap in pulmonary infections can be exploited for clinical application by targeting amyloids. Furthermore, genetic conservation and extracellular exposure of Fap make it a commendable target for such interventions.
Collapse
Affiliation(s)
- Ayesha Z. Beg
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Absar Talat
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Azam Haseen
- Department of Cardiothoracic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nadeem Raza
- Department of Anaesthesiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Kafil Akhtar
- Pathology Department, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Asad U. Khan
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
17
|
Blackwood CB, Mateu-Borrás M, Sen-Kilic E, Pyles GM, Miller SJ, Weaver KL, Witt WT, Huckaby AB, Kang J, Chandler CE, Ernst RK, Heath Damron F, Barbier M. Bordetella pertussis whole cell immunization protects against Pseudomonas aeruginosa infections. NPJ Vaccines 2022; 7:143. [PMID: 36357402 PMCID: PMC9649022 DOI: 10.1038/s41541-022-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Whole cell vaccines are complex mixtures of antigens, immunogens, and sometimes adjuvants that can trigger potent and protective immune responses. In some instances, such as whole cell Bordetella pertussis vaccination, the immune response to vaccination extends beyond the pathogen the vaccine was intended for and contributes to protection against other clinically significant pathogens. In this study, we describe how B. pertussis whole cell vaccination protects mice against acute pneumonia caused by Pseudomonas aeruginosa. Using ELISA and western blot, we identified that B. pertussis whole cell vaccination induces production of antibodies that bind to lab-adapted and clinical strains of P. aeruginosa, regardless of immunization route or adjuvant used. The cross-reactive antigens were identified using immunoprecipitation, mass spectrometry, and subsequent immunoblotting. We determined that B. pertussis GroEL and OmpA present in the B. pertussis whole cell vaccine led to production of antibodies against P. aeruginosa GroEL and OprF, respectively. Finally, we showed that recombinant B. pertussis OmpA was sufficient to induce protection against P. aeruginosa acute murine pneumonia. This study highlights the potential for use of B. pertussis OmpA as a vaccine antigen for prevention of P. aeruginosa infection, and the potential of broadly protective antigens for vaccine development.
Collapse
Affiliation(s)
- Catherine B Blackwood
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Margalida Mateu-Borrás
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Emel Sen-Kilic
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Gage M Pyles
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Sarah Jo Miller
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Kelly L Weaver
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - William T Witt
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Annalisa B Huckaby
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Jason Kang
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Courtney E Chandler
- University of Maryland, Baltimore Department of Microbial Pathogenesis, School of Dentistry, 650 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert K Ernst
- University of Maryland, Baltimore Department of Microbial Pathogenesis, School of Dentistry, 650 W. Baltimore St., Baltimore, MD, 21201, USA
| | - F Heath Damron
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Mariette Barbier
- West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell Biology, 64 Medical Center Drive, Morgantown, WV, 26505, USA.
| |
Collapse
|
18
|
Muacevic A, Adler JR. Role of Inhalational Aztreonam Lysine in Lower Airway Infections in Cystic Fibrosis: An Updated Literature Review. Cureus 2022; 14:e30833. [PMID: 36451641 PMCID: PMC9703835 DOI: 10.7759/cureus.30833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder most prevalent in the Caucasian population, characterized by a functional abnormality of the transmembrane conductance regulator protein that leads to a wide array of complications, including chronic lung infections. Pseudomonas aeruginosa (PA) is a frequently acquired microbe in CF patients and is associated with deterioration in pulmonary function and increased mortality. Inhaled anti-infective agents are an established curative therapy for CF airway infections, especially with chronic PA lung disease. Amongst them, aztreonam lysine for inhalation (AZLI) is an aerosolized monobactam antibiotic aztreonam, approved for use in CF patients nearly a decade ago. This literature review aims to explore studies based on the efficacy, safety, and tolerability of AZLI use in CF patients with pulmonary infections. We searched for all the relevant articles present in PubMed, Google Scholar, Cochrane Library, EMBASE, ClinicalTrials.gov, and Journal of Cystic Fibrosis for our data collection from 2000 to 2020. The use of AZLI has substantially improved lung function, respiratory symptoms, and remarkably reduced sputum PA density in CF patients, thereby improving the patient's overall quality of life. The adverse effects reported were compatible with CF lung disease. Hence, inhalational therapy with AZLI is highly efficacious and safe in the management of chronic airway infections. More clinical trials need to be conducted in the future to assess its long-term clinical benefits and adverse events as well as to explore the role of AZLI in the setting of acute lung infections.
Collapse
|
19
|
Greenwald MA, Wolfgang MC. The changing landscape of the cystic fibrosis lung environment: From the perspective of Pseudomonas aeruginosa. Curr Opin Pharmacol 2022; 65:102262. [DOI: 10.1016/j.coph.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
|
20
|
Potential opportunities and challenges for infection prevention and control for cystic fibrosis in the modern era. Curr Opin Infect Dis 2022; 35:346-352. [PMID: 35849525 DOI: 10.1097/qco.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We describe recent changes in care for people with cystic fibrosis (PwCF) that could impact infection prevention and control (IP&C) practices. RECENT FINDINGS Current IP&C guidelines primarily aim to prevent acquisition and transmission of pathogens in PwCF utilizing evidence-based recommendations for healthcare settings. Currently, highly effective modulator therapy (HEMT) is dramatically improving the clinical manifestations of cystic fibrosis and reducing pulmonary exacerbations and hospitalizations. Thus, it is feasible that long-term, sustained improvements in pulmonary manifestations of cystic fibrosis could favorably alter cystic fibrosis microbiology. The COVID-19 pandemic increased the use of virtual care, enabling PwCF to spend less time in healthcare settings and potentially reduce the risk of acquiring cystic fibrosis pathogens. The increasing use of whole genome sequencing (WGS) shows great promise in elucidating sources of cystic fibrosis pathogens, shared strains, and epidemic strains and ultimately could allow the cystic fibrosis community to monitor the safety of changed IP&C practices, if deemed appropriate. Finally, given the nonhealthcare environmental reservoirs for cystic fibrosis pathogens, practical guidance can inform PwCF and their families about potential risks and mitigation strategies. SUMMARY New developments in the treatment of PwCF, a shift toward virtual care delivery of care, and use of WGS could change future IP&C practices.
Collapse
|
21
|
Genetic and Transcriptomic Characteristics of RhlR-Dependent Quorum Sensing in Cystic Fibrosis Isolates of Pseudomonas aeruginosa. mSystems 2022; 7:e0011322. [PMID: 35471121 PMCID: PMC9040856 DOI: 10.1128/msystems.00113-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In people with the genetic disease cystic fibrosis (CF), bacterial infections involving the opportunistic pathogen Pseudomonas aeruginosa are a significant cause of morbidity and mortality. P. aeruginosa uses a cell-cell signaling mechanism called quorum sensing (QS) to regulate many virulence functions. One type of QS consists of acyl-homoserine lactone (AHL) signals produced by LuxI-type signal synthases, which bind a cognate LuxR-type transcription factor. In laboratory strains and conditions, P. aeruginosa employs two AHL synthase/receptor pairs arranged in a hierarchy, with the LasI/R system controlling the RhlI/R system and many downstream virulence factors. However, P. aeruginosa isolates with inactivating mutations in lasR are frequently isolated from chronic CF infections. We and others have shown that these isolates frequently use RhlR as the primary QS regulator. RhlR is rarely mutated in CF and environmental settings. We were interested in determining whether there were reproducible genetic characteristics of these isolates and whether there was a central group of genes regulated by RhlR in all isolates. We examined five isolates and found signatures of adaptation common to CF isolates. We did not identify a common genetic mechanism to explain the switch from Las- to Rhl-dominated QS. We describe a core RhlR regulon encompassing 20 genes encoding 7 products. These results suggest a key group of QS-regulated factors important for pathogenesis of chronic infections and position RhlR as a target for anti-QS therapeutics. Our work underscores the need to sample a diversity of isolates to understand QS beyond what has been described in laboratory strains. IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa can cause chronic infections that are resistant to treatment in immunocompromised individuals. Over the course of these infections, the original infecting organism adapts to the host environment. P. aeruginosa uses a cell-cell signaling mechanism termed quorum sensing (QS) to regulate virulence factors and cooperative behaviors. The key QS regulator in laboratory strains, LasR, is frequently mutated in infection-adapted isolates, leaving another transcription factor, RhlR, in control of QS gene regulation. Such isolates provide an opportunity to understand Rhl-QS regulation without the confounding effects of LasR, as well as the scope of QS in the context of within-host evolution. We show that a core group of virulence genes is regulated by RhlR in a variety of infection-adapted LasR-null isolates. Our results reveal commonalities in infection-adapted QS gene regulation and key QS factors that may serve as therapeutic targets in the future.
Collapse
|
22
|
Direct Inhibition of RetS Synthesis by RsmA Contributes to Homeostasis of the Pseudomonas aeruginosa Gac/Rsm Signaling System. J Bacteriol 2022; 204:e0058021. [PMID: 35041497 PMCID: PMC8923221 DOI: 10.1128/jb.00580-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gac/Rsm system is a global regulator of Pseudomonas aeruginosa gene expression. The primary effectors are RsmA and RsmF. Both are RNA-binding proteins that interact with target mRNAs to modulate protein synthesis. RsmA/RsmF recognize GGA sequences presented in the loop portion of stem-loop structures. For repressed targets, the GGA sites usually overlap the ribosome binding site (RBS) and RsmA/RsmF binding inhibits translation initiation. RsmA/RsmF activity is controlled by several small non-coding RNAs (sRNA) that sequester RsmA/RsmF from target mRNAs. The most important sequestering sRNAs are RsmY and RsmZ. Transcription of rsmY/rsmZ is directly controlled by the GacSA two-component regulatory system. GacSA activity is antagonized by RetS, a hybrid sensor kinase. In the absence of retS, rsmY/rsmZ transcription is derepressed and RsmA/RsmF are sequestered by RsmY/RsmZ. Gac/Rsm system homeostasis is tightly controlled by at least two mechanisms. First, direct binding of RsmA to the rsmA and rsmF mRNAs inhibits further synthesis of both proteins. Second, RsmA stimulates rsmY/rsmZ transcription through an undefined mechanism. In this study we demonstrate that RsmA stimulates rsmY/rsmZ transcription by directly inhibiting RetS synthesis. RetS protein levels are elevated 2.5-fold in an rsmA mutant. Epistasis experiments demonstrate that the rsmA requirement for rsmY/rsmZ transcription is entirely suppressed in an rsmA, retS double mutant. RsmA directly interacts with the retS mRNA and requires two distinct GGA sites, one of which overlaps the RBS. We propose a model wherein RsmA inhibits RetS synthesis to promote rsmY/rsmZ transcription and that this acts as a checkpoint to limit RsmA/RsmF availability. IMPORTANCE The Pseudomonas aeruginosa Gac/Rsm system controls ∼500 genes and governs a critical lifestyle switch by inversely regulating factors that favor acute or chronic colonization. Control of gene expression by the Gac/Rsm system is mediated through RsmA and RsmF, small RNA-binding proteins that interact with target mRNAs to inhibit or promote protein synthesis and/or mRNA stability. RsmA/RsmF activity is governed by two small non-coding RNAs (RsmY and RsmZ) that sequester RsmA/RsmF from target mRNAs. The GacSA two-component regulatory system plays a pivotal role in the Gac/Rsm system by controlling rsmYZ transcription. This study provides insight into the control of homeostasis by demonstrating that RsmA directly targets and inhibits expression of RetS, an orphan sensor kinase critical for rsmYZ transcription.
Collapse
|
23
|
Prevalence of antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis infection: A systematic review and meta-analysis. Microb Pathog 2022; 165:105461. [DOI: 10.1016/j.micpath.2022.105461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
|
24
|
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol 2021; 11:758392. [PMID: 34938668 PMCID: PMC8685529 DOI: 10.3389/fcimb.2021.758392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
With respiratory infections accounting for significant morbidity and mortality, the issue of antibiotic resistance has added to the gravity of the situation. Treatment of pulmonary infections (bacterial pneumonia, cystic fibrosis-associated bacterial infections, tuberculosis) is more challenging with the involvement of multi-drug resistant bacterial strains, which act as etiological agents. Furthermore, with the dearth of new antibiotics available and old antibiotics losing efficacy, it is prudent to switch to non-antibiotic approaches to fight this battle. Phage therapy represents one such approach that has proven effective against a range of bacterial pathogens including drug resistant strains. Inhaled phage therapy encompasses the use of stable phage preparations given via aerosol delivery. This therapy can be used as an adjunct treatment option in both prophylactic and therapeutic modes. In the present review, we first highlight the role and action of phages against pulmonary pathogens, followed by delineating the different methods of delivery of inhaled phage therapy with evidence of success. The review aims to focus on recent advances and developments in improving the final success and outcome of pulmonary phage therapy. It details the use of electrospray for targeted delivery, advances in nebulization techniques, individualized controlled inhalation with software control, and liposome-encapsulated nebulized phages to take pulmonary phage delivery to the next level. The review expands knowledge on the pulmonary delivery of phages and the advances that have been made for improved outcomes in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zuozhou Xie
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Jinhong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zhenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Chen Yang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| |
Collapse
|
25
|
Morgan SJ, Durfey SL, Ravishankar S, Jorth P, Ni W, Skerrett DT, Aitken ML, McKone EF, Salipante SJ, Radey MC, Singh PK. A population-level strain genotyping method to study pathogen strain dynamics in human infections. JCI Insight 2021; 6:e152472. [PMID: 34935640 PMCID: PMC8783678 DOI: 10.1172/jci.insight.152472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A hallmark of chronic bacterial infections is the long-term persistence of 1 or more pathogen species at the compromised site. Repeated detection of the same bacterial species can suggest that a single strain or lineage is continually present. However, infection with multiple strains of a given species, strain acquisition and loss, and changes in strain relative abundance can occur. Detecting strain-level changes and their effects on disease is challenging because most methods require labor-intensive isolate-by-isolate analyses, and thus, only a few cells from large infecting populations can be examined. Here, we present a population-level method for enumerating and measuring the relative abundance of strains called population multi-locus sequence typing (PopMLST). The method exploits PCR amplification of strain-identifying polymorphic loci, next-generation sequencing to measure allelic variants, and informatic methods to determine whether variants arise from sequencing errors or low-abundance strains. These features enable PopMLST to simultaneously interrogate hundreds of bacterial cells that are cultured en masse from patient samples or are present in DNA directly extracted from clinical specimens without ex vivo culture. This method could be used to detect epidemic or super-infecting strains, facilitate understanding of strain dynamics during chronic infections, and enable studies that link strain changes to clinical outcomes.
Collapse
Affiliation(s)
- Sarah J. Morgan
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Samantha L. Durfey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sumedha Ravishankar
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wendy Ni
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Duncan T. Skerrett
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Moira L. Aitken
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew C. Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pradeep K. Singh
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
26
|
Nontypeable Haemophilus influenzae infection impedes Pseudomonas aeruginosa colonization and persistence in mouse respiratory tract. Infect Immun 2021; 90:e0056821. [PMID: 34780275 DOI: 10.1128/iai.00568-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with cystic fibrosis (CF) experience lifelong respiratory infections which are a significant cause of morbidity and mortality. These infections are polymicrobial in nature, and the predominant bacterial species undergo a predictable series of changes as patients age. Young patients have populations dominated by opportunists that are typically found within the microbiome of the human nasopharynx, such as nontypeable Haemophilus influenzae (NTHi); these are eventually supplanted and the population within the CF lung is later dominated by pathogens such as Pseudomonas aeruginosa (Pa). In this study, we investigated how initial colonization with NTHi impacts colonization and persistence of Pa in the respiratory tract. Analysis of polymicrobial biofilms in vitro by confocal microscopy revealed that NTHi promoted greater levels of Pa biofilm volume and diffusion. However, sequential respiratory infection of mice with NTHi followed by Pa resulted in significantly lower Pa as compared to infection with Pa alone. Coinfected mice also had reduced airway tissue damage and lower levels of inflammatory cytokines as compared with Pa infected mice. Similar results were observed after instillation of heat-inactivated NTHi bacteria or purified NTHi lipooligosaccharide (LOS) endotoxin prior to Pa introduction. Based on these results, we conclude that NTHi significantly reduces susceptibility to subsequent Pa infection, most likely due to priming of host innate immunity rather than a direct competitive interaction between species. These findings have potential significance with regard to therapeutic management of early life infections in patients with CF.
Collapse
|
27
|
Wang M, Chan EWC, Xu C, Chen K, Yang C, Chen S. Econazole as adjuvant to conventional antibiotics is able to eradicate starvation-induced tolerant bacteria by causing proton motive force dissipation. J Antimicrob Chemother 2021; 77:425-432. [PMID: 34747463 DOI: 10.1093/jac/dkab384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Bacterial antibiotic tolerance is responsible for the recalcitrance of chronic infections. This study aims to investigate a potential drug that can effectively kill antibiotic-tolerant bacteria and evaluate the ability of this drug on the eradication of tolerant cells both in vitro and in vivo. METHODS The in vitro effect of econazole on eradicating starvation-induced tolerant bacterial populations was studied by testing the amount of survival bacteria in the presence of econazole combining conventional antibiotics. Proton motive force (PMF) was determined after econazole treatment by DiOC2(3). Finally, mouse infection models were used to detect the ability of econazole on killing the tolerant populations in vivo. RESULTS Econazole eradicated starvation-induced tolerant cells of various bacterial species within 24 or 96 h when used in combination with conventional antibiotics. Moreover, mouse survival rate drastically increased along with the decrease of in vivo bacterial count after treatment of infected mice with the econazole and ceftazidime combination for 72 h. PMF was found to have dissipated almost completely in econazole-treated cells. CONCLUSIONS Econazole could act in combination with conventional antibiotics to effectively eradicate bacterial tolerant cells. The combined use of econazole and ceftazidime was shown to be effective for eradicating tolerant cells in a mouse infection model. The ability of econazole to eradicate tolerant cells was due to its ability to cause dissipation of bacterial transmembrane PMF. Econazole-mediated PMF disruption is a feasible strategy for the treatment of chronic and recurrent bacterial infections.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
28
|
Linnane B, O'Connell N, Obande E, Dunne S, Clancy C, Kiernan M, McGrath D, O'Sullivan K, O'Sullivan L, Dunne C. Assessment of the microbial load of airway clearance devices used by a cohort of children with cystic fibrosis. Infect Prev Pract 2021; 3:100153. [PMID: 34647008 PMCID: PMC8498708 DOI: 10.1016/j.infpip.2021.100153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background Positive expiratory pressure (PEP) devices are an important element of the management of cystic fibrosis, and of other respiratory diseases. Whereas there have been reports in the literature of contamination of airway clearance devices and their surfaces by microbial pathogens, there is little evidence available regarding such contamination and its contribution to respiratory infection. Aim To establish whether pathogenic bacteria can contaminate PEP devices in the context of normal cleaning and maintenance practices. Methods Patients' home-use clearance devices were brought to a routine clinic appointment and collected for microbiology sampling and analysis. The patients were provided with replacement devices. Nineteen such devices were collected from 17 patients, reflecting use of multiple devices by some patients. Swabs were taken and cultured from each patient's used device, the patient's airway, as well as from new unopened and unused devices that acted as controls. Results Seven of 19 devices (37%) tested positive for presence of pathogenic bacteria. Device-cleaning methods varied among patients and non-sterilization methods were found to be ineffective at removing pathogens. Microbial species found on the devices did not correlate with those identified from airway swabs. Conclusion This study demonstrates the presence of pathogens on positive expiratory pressure devices. The potential for transmission of these pathogens to the patient's airway and the risk of infection remains unclear and requires further study.
Collapse
Affiliation(s)
- B. Linnane
- Paediatric Cystic Fibrosis Department, University Hospital Limerick, Limerick, Ireland
- National Children's Research Centre, Crumlin, Dublin, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - N.H. O'Connell
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
- Department of Clinical Microbiology, University Limerick Hospital Group, Limerick, Ireland
| | - E. Obande
- Paediatric Cystic Fibrosis Department, University Hospital Limerick, Limerick, Ireland
- National Children's Research Centre, Crumlin, Dublin, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - S.S. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - C. Clancy
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - M.G. Kiernan
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - D. McGrath
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - K.J. O'Sullivan
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
- Rapid Innovation Unit – Confirm Centre for Smart Manufacturing, School of Design & Health Research Institute, University of Limerick, Limerick, Ireland
| | - L. O'Sullivan
- Rapid Innovation Unit – Confirm Centre for Smart Manufacturing, School of Design & Health Research Institute, University of Limerick, Limerick, Ireland
| | - C.P. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
- Corresponding author. Address: School of Medicine, University of Limerick, Castletroy, Limerick, Ireland. Tel.: +353-(0)86-0430739.
| |
Collapse
|
29
|
Monteiro R, Magalhães AP, Pereira MO, Sousa AM. Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 2021; 16:879-893. [PMID: 34319132 DOI: 10.2217/fmb-2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
30
|
Thomassen JC, Trojan T, Walz M, Vohlen C, Fink G, Rietschel E, Alejandre Alcazar MA, van Koningsbruggen-Rietschel S. Reduced neutrophil elastase inhibitor elafin and elevated transforming growth factor-β 1 are linked to inflammatory response in sputum of cystic fibrosis patients with Pseudomonas aeruginosa. ERJ Open Res 2021; 7:00636-2020. [PMID: 34291109 PMCID: PMC8287132 DOI: 10.1183/23120541.00636-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/19/2021] [Indexed: 11/05/2022] Open
Abstract
Research question Pulmonary disease progression in patients with cystic fibrosis (CF) is characterised by inflammation and fibrosis and aggravated by Pseudomonas aeruginosa (Pa). We investigated the impact of Pa specifically on: 1) protease/antiprotease balance; 2) inflammation; and 3) the link of both parameters to clinical parameters of CF patients. Methods Transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-8, neutrophil elastase (NE) and elastase inhibitor elafin were measured (ELISA assays), and gene expression of the NF-κB pathway was assessed (reverse transcriptase PCR) in the sputum of 60 CF patients with a minimum age of 5 years. Spirometry was assessed according to American Thoracic Society guidelines. Results Our results demonstrated the following: 1) NE was markedly increased in Pa-positive sputum, whereas elafin was significantly decreased; 2) increased IL-1β/IL-8 levels were associated with both Pa infection and reduced forced expiratory volume in 1 s, and sputum TGF-β1 was elevated in Pa-infected CF patients and linked to an impaired lung function; and 3) gene expression of NF-κB signalling components was increased in sputum of Pa-infected patients, and these findings were positively correlated with IL-8. Conclusion Our study links Pa infection to an imbalance of NE and NE inhibitor elafin and increased inflammatory mediators. Moreover, our data demonstrate an association between high TGF-β1 sputum levels and a progress in chronic lung inflammation and pulmonary fibrosis in CF. Controlling the excessive airway inflammation by inhibition of NE and TGF-β1 might be promising therapeutic strategies in future CF therapy and a possible complement to cystic fibrosis transmembrane conductance regulator (CFTR) modulators.
Collapse
Affiliation(s)
- Jan C Thomassen
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Tobias Trojan
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Maxine Walz
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ernst Rietschel
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- CF Center, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Children's Hospital, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | |
Collapse
|
31
|
Waters V. Beneath the surface: assessing cystic fibrosis pulmonary infections in the era of highly effective modulator therapy. J Cyst Fibros 2021; 20:723-724. [PMID: 34275758 DOI: 10.1016/j.jcf.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022]
Affiliation(s)
- V Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada M5G 1 × 8; Department of Pediatrics, University of Toronto, Toronto. Ontario, Canada.
| |
Collapse
|
32
|
Marshall CW, Gloag ES, Lim C, Wozniak DJ, Cooper VS. Rampant prophage movement among transient competitors drives rapid adaptation during infection. SCIENCE ADVANCES 2021; 7:7/29/eabh1489. [PMID: 34272240 PMCID: PMC8284892 DOI: 10.1126/sciadv.abh1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Interactions between bacteria, their close competitors, and viral parasites are common in infections, but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny. Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.
Collapse
Affiliation(s)
| | - Erin S Gloag
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Christina Lim
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Banjar H, Ghawi A, AlMogarri I, Alhaider S, Alomran H, Hejazi A, Alfadhel A, Khanjar S, AlAshgar M, Alghazzi A, Abanemai L, AlFattani A. First report on the prevalence of bacteria in cystic fibrosis patients (CF) in a tertiary care center in Saudi Arabia. Int J Pediatr Adolesc Med 2021; 9:108-112. [PMID: 35663786 PMCID: PMC9152558 DOI: 10.1016/j.ijpam.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Introduction Bacterial infections in CF patients are common and start early in life. The prognosis of the disease is substantially dependent on chronic respiratory infection and inflammation. Pseudomonas aeruginosa (PA) infection or chronic colonization have been established to cause a chronic decline in pulmonary function (PFT), and/or increase CF mortality. Objectives To obtain the prevalence of all bacterial pathogens in our CF patients and assess their evolution over time. Method A retrospective review of 327 patients with confirmed CF of all age groups, who had respiratory culture samples at the first visit and on a regular follow-up between January 1, 1990 and December 2018, was conducted. Results A total of 327 patients had a respiratory culture obtained at presentation. Two hundred and sixteen (66%) of 327 patients are alive, while 111 (34%) have died. Respiratory cultures were taken from nasopharyngeal aspiration (NPA) in 199 patients (61%), tracheal aspirate in 9 (3%), bronchoalveolar lavage (BAL)in one (0.29%), and in 124 patients (38%), sputum was induced. The eastern province contributed to the highest number of patients (122, 37.7%). There is a persistent increase in the prevalence of the common bacteria over the follow-up period of 7 years, namely Hemophilus influenzae (H. influenzae), Staphylococcus aureus (S. aureus), and all Pseudomonas (P. aeruginosa) culture types. Comparing cultures from the first and last follow-up visits, there was an increase in the prevalence of all (P. aeruginosa) cultures from 120 (34%) to 137 (53%), and a decrease in the prevalence of (S. aureus) and (H. influenzae) during the same follow-up period. Conclusion There is a progressive increase in the number of patients with the most pathogenic types of bacteria because of the advanced age at presentation. As more adult patients are enrolled, there is a need for improved awareness regarding the early eradication of pathogenic bacteria to prevent progressive pulmonary damage.
Collapse
|
34
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
35
|
Ma Z, Xu C, Zhang X, Wang D, Pan X, Liu H, Zhu G, Bai F, Cheng Z, Wu W, Jin Y. A MexR Mutation Which Confers Aztreonam Resistance to Pseudomonas aeruginosa. Front Microbiol 2021; 12:659808. [PMID: 34248872 PMCID: PMC8264304 DOI: 10.3389/fmicb.2021.659808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022] Open
Abstract
Therapy for Pseudomonas aeruginosa infections is hard due to its high natural and acquirable antibiotic resistance. After colonization in the hosts, P. aeruginosa commonly accumulates genomic mutations which confer them antibiotic resistance and better adaptations to the host environment. Deciphering the mechanisms of antibiotic resistance development in the clinical setting may provide critical insights into the design of effective combinatory antibiotic therapies to treat P. aeruginosa infections. In this work, we demonstrate a resistance mechanism to aztreonam of a clinical isolate (ARP36) in comparison with a sensitive one (CSP18). RNAseq and genomic DNA resequencing were carried out to compare the global transcriptional profiles and in the clinical setting genomic profiles between these two isolates. The results demonstrated that hyperexpression of an efflux pump MexAB-OprM caused by a R70Q substitution in MexR, contributed to the increased resistance to aztreonam in the isolate ARP36. Simulation of mexR of ARP36 by gene editing in CSP18 conferred CSP18 an ARP36-like susceptibility to the aztreonam. The R70Q substitution prevented MexR from binding to the intergenic region between mexR and mexAB-oprM operon, with no impact on its dimerization. The presented experimental results explain for the first time why the clinically relevant R70Q substitution in the MexR derepresses the expression of mexAB-oprM in P. aeruginosa.
Collapse
Affiliation(s)
- Zhenzhen Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
36
|
Martin I, Kenna DTD, Morales S, Alton EWFW, Davies JC. Variability in Bacteriophage and Antibiotic Sensitivity in Serial Pseudomonas aeruginosa Isolates from Cystic Fibrosis Airway Cultures over 12 Months. Microorganisms 2021; 9:microorganisms9030660. [PMID: 33810202 PMCID: PMC8004851 DOI: 10.3390/microorganisms9030660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Antibiotic treatment for Pseudomonas aeruginosa (Pa) in cystic fibrosis is limited in efficacy and may lead to multi-drug resistance (MDR). Alternatives such as bacteriophages are being explored but well designed, and controlled trials are crucial. The rational selection of patients with bacteriophage susceptible infections is required for both safety and efficacy monitoring. We questioned whether bacteriophage susceptibility profiles were constant or variable over time, variability having been reported with antibiotics. Serial Pa isolates (n = 102) from 24 chronically infected cystic fibrosis (CF) patients over one year were investigated with plaque and antibiotic disc diffusion assays. Variable number tandem repeat (VNTR) analysis identified those patients with >1 isolate. A median (range) of 4 (3–6) isolates/patient were studied. Twenty-one (87.5%) individuals had a single VNTR type; three (12.5%) had two VNTR types at different times. Seventy-five percent of isolates were sensitive to bacteriophage at ≥ 1 concentration; 50% of isolates were antibiotic multidrug resistant. Serial isolates, even when representing a single VNTR type, varied in sensitivity to both bacteriophages and antibiotics. The rates of sensitivity to bacteriophage supports the development of this therapy; however, the variability in response has implications for the selection of patients in future trials which must be on the basis of current, not past, isolate testing.
Collapse
Affiliation(s)
- Isaac Martin
- National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, London SW3 6LY, UK; (E.W.F.W.A.); (J.C.D.)
- Royal Brompton & Harefield Hospitals, Sydney St., London SW3 6NP, UK
- Correspondence: ; Tel.: +1-(647)-223-7782
| | - Dervla T. D. Kenna
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK;
| | - Sandra Morales
- AmpliPhi Biosciences Corporation, Global Research, Brookvale, NSW 2100, Australia;
| | - Eric W. F. W. Alton
- National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, London SW3 6LY, UK; (E.W.F.W.A.); (J.C.D.)
- Royal Brompton & Harefield Hospitals, Sydney St., London SW3 6NP, UK
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, London SW3 6LY, UK; (E.W.F.W.A.); (J.C.D.)
- Royal Brompton & Harefield Hospitals, Sydney St., London SW3 6NP, UK
| |
Collapse
|
37
|
Marguet C, Houdouin V, Pin I, Reix P, Huet F, Mittaine M, Ramel S, Wizla-Derambure N, Abely M, Dalphin ML, Fayon M, Bihouée T, Le Bourgeois M, Deneuville E, Corvol H, Laurans M, Couderc L, Leroux E, Lémée L. Chest physiotherapy enhances detection of Pseudomonas aeruginosa in nonexpectorating children with cystic fibrosis. ERJ Open Res 2021; 7:00513-2020. [PMID: 33718497 PMCID: PMC7938055 DOI: 10.1183/23120541.00513-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 11/05/2022] Open
Abstract
Lung damage in cystic fibrosis (CF) is strongly associated with lower airway infections. Early treatment of Pseudomonas aeruginosa is recommended. Pathogen detection requires sampling of lower airway secretions, which remains a challenge in nonexpectorating patients. Our hypothesis was that chest physiotherapy would improve the quality of airway secretion samples and increase the rates of pathogens detected in nonexpectorating patients. This prospective multicentre study compared three successive methods for sampling airway secretions applied through the same session: 1) an oropharyngeal swab (OP), 2) a chest physiotherapy session followed by a provoked cough to obtain sputum (CP-SP) and 3) a second oropharyngeal swab collected after chest physiotherapy (CP-OP). Haemophilus influenzae, Staphylococcus aureus and P. aeruginosa growth cultures were assessed. Accuracy tests and an equivalence test were performed to compare the three successive methods of collection. 300 nonexpectorating children with CF were included. P. aeruginosa was detected cumulatively in 56 (18.9%) children, and according to the different collection methods in 28 (9.8%), 37 (12.4%) and 44 (14.7%) children by using OP, CP-OP and CP-SP, respectively. Compared with OP, the increased detection rate was +22% for CP-OP (p=0.029) and +57% for CP-SP (p=0.003). CP-SP had the best positive predictive value (86.3%) and negative predictive value (96.0%) for P. aeruginosa compared with the overall detection. The results of this adequately powered study show differences in the rates of pathogens detected according to the sampling method used. Chest physiotherapy enhanced detection of P. aeruginosa in nonexpectorating children with CF. Sputum collection after a chest physiotherapy session strongly enhances the detection of P. aeruginosa in nonexpectorating CF children compared with the commonly used oropharyngeal swab method. Oropharyngeal swab after physiotherapy may be an acceptable alternative.https://bit.ly/3757ewq
Collapse
Affiliation(s)
- Christophe Marguet
- CF Centre, Dept of Paediatrics and Adolescent Medicine, University Hospital Charles Nicolle, CIC INSERM 1404, EA 2656, Rouen University, Rouen, France
| | - Véronique Houdouin
- Paediatric CF Centre, University Hospital Robert Debre, INSERM UMR S 976, Paris Diderot University, Paris, France
| | - Isabelle Pin
- Paediatric CF Centre, Grenoble Alpes University Hospital, INSERM, Institute for Advanced Bioscences, Grenoble Alpes University, Grenoble, France
| | - Philippe Reix
- Paediatric CF Centre, Hospices Civils de Lyon, UMR 5558 (EMET), CNRS, LBBE, Lyon University, Villeurbanne, France
| | - Frédéric Huet
- Paediatric CF Centre, Dijon University Hospital, Bourgogne University, Dijon, France
| | - Marie Mittaine
- Paediatric CF Centre, Toulouse University Hospital, Toulouse III Paul Sabatier University, Toulouse, France
| | - Sophie Ramel
- CF Centre, Centre Perardihy, Service de Soins de Suite Nutritionnelle et Respiratoire, Roskoff, France
| | - Nathalie Wizla-Derambure
- Pediatric CF Centre, Dept of Paediatrics, Lille University Jeanne de Flandre Hospital, Lille University, Lille, France
| | - Michel Abely
- CF Centre, Dept of Paediatrcs, Reims University Hospital, Reims Champagne Ardennes University, Reims, France
| | - Marie-Laure Dalphin
- CF Centre, Dept of Paediatrics, Besançon University Hospital, Franche-Comté University, Besançon, France
| | - Michael Fayon
- Paediatric CF Centre, GH Pellegrin, Hôpital des Enfants, Bordeaux University Hospital, Bordeaux University, Bordeaux, France
| | - Tiphaine Bihouée
- Paediatric CF Centre, Nantes Children and Adolescent University Hospital, Nantes University, Nantes, France
| | - Muriel Le Bourgeois
- Paediatric CF Centre, Service de Pneumo-Allergologie Pédiatrique, Hôpital Universitaire Necker-Enfant Malades, AP-HP, Paris, France
| | - Eric Deneuville
- CF Centre, Dept of Paediatrics, Rennes University South Hospital, Rennes University, Rennes, France
| | - Harriet Corvol
- Paediatric CF Centre, Trousseau Hospital, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), AP-HP, Paris, France
| | - Muriel Laurans
- CF Centre, Dept of Paediatrics, Caen University Childrens Hospital, Caen University, Caen, France
| | - Laure Couderc
- CF Centre, Dept of Paediatrics and Adolescent Medicine, University Hospital Charles Nicolle, CIC INSERM 1404, EA 2656, Rouen University, Rouen, France
| | | | - Ludovic Lémée
- Bacteriology Unit, Dept of Microbiology, University Hospital Charles Nicolle, EA 2656, Rouen University, Rouen, France
| |
Collapse
|
38
|
Jorth P, Durfey S, Rezayat A, Garudathri J, Ratjen A, Staudinger BJ, Radey MC, Genatossio A, McNamara S, Cook DA, Aitken ML, Gibson RL, Yahr TL, Singh PK. Cystic Fibrosis Lung Function Decline after Within-Host Evolution Increases Virulence of Infecting Pseudomonas aeruginosa. Am J Respir Crit Care Med 2021; 203:637-640. [PMID: 33137262 PMCID: PMC7924579 DOI: 10.1164/rccm.202007-2735le] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter Jorth
- University of Washington School of MedicineSeattle, Washington
- Cedars-Sinai Medical CenterLos Angeles, California
| | - Samantha Durfey
- University of Washington School of MedicineSeattle, Washington
| | - Amir Rezayat
- University of Washington School of MedicineSeattle, Washington
| | | | - Anina Ratjen
- University of Washington School of MedicineSeattle, Washington
| | | | | | | | | | - David A. Cook
- Confluence Health-Central Washington HospitalWenatchee, Washingtonand
| | - Moira L. Aitken
- University of Washington School of MedicineSeattle, Washington
| | | | | | | |
Collapse
|
39
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Portelinha J, Angeles-Boza AM. The Antimicrobial Peptide Gad-1 Clears Pseudomonas aeruginosa Biofilms under Cystic Fibrosis Conditions. Chembiochem 2021; 22:1646-1655. [PMID: 33428273 DOI: 10.1002/cbic.202000816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA.,Institute of Material Science, University of Connecticut, 97 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| |
Collapse
|
41
|
Vaitekenas A, Tai AS, Ramsay JP, Stick SM, Kicic A. Pseudomonas aeruginosa Resistance to Bacteriophages and Its Prevention by Strategic Therapeutic Cocktail Formulation. Antibiotics (Basel) 2021; 10:145. [PMID: 33540528 PMCID: PMC7912912 DOI: 10.3390/antibiotics10020145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance poses a significant threat to modern healthcare as it limits treatment options for bacterial infections, particularly impacting those with chronic conditions such as cystic fibrosis (CF). Viscous mucus accumulation in the lungs of individuals genetically predisposed to CF leads to recurrent bacterial infections, necessitating prolonged antimicrobial chemotherapy. Pseudomonas aeruginosa infections are the predominant driver of CF lung disease, and airway isolates are frequently resistant to multiple antimicrobials. Bacteriophages, or phages, are viruses that specifically infect bacteria and are a promising alternative to antimicrobials for CF P. aeruginosa infections. However, the narrow host range of P. aeruginosa-targeting phages and the rapid evolution of phage resistance could limit the clinical efficacy of phage therapy. A promising approach to overcome these issues is the strategic development of mixtures of phages (cocktails). The aim is to combine phages with broad host ranges and target multiple distinct bacterial receptors to prevent the evolution of phage resistance. However, further research is required to identify and characterize phage resistance mechanisms in CF-derived P. aeruginosa, which differ from their non-CF counterparts. In this review, we consider the mechanisms of P. aeruginosa phage resistance and how these could be overcome by an effective future phage therapy formulation.
Collapse
Affiliation(s)
- Andrew Vaitekenas
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA 6102, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Crawley, WA 6009, Australia; (A.V.); (S.M.S.)
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia;
- Institute for Respiratory Health, Perth, WA 6009, Australia
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P. Ramsay
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Crawley, WA 6009, Australia; (A.V.); (S.M.S.)
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Anthony Kicic
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA 6102, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Crawley, WA 6009, Australia; (A.V.); (S.M.S.)
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| |
Collapse
|
42
|
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming Challenges to Make Bacteriophage Therapy Standard Clinical Treatment Practice for Cystic Fibrosis. Front Microbiol 2021; 11:593988. [PMID: 33505366 PMCID: PMC7829477 DOI: 10.3389/fmicb.2020.593988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against bacterial lung infection, which contributes to the growing emergence of multidrug resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that are commonly isolated from individuals with CF are armed with an arsenal of protective and virulence mechanisms, complicating eradication and treatment strategies. While translation of phage therapy into standard care for CF has been explored, challenges such as the lack of an appropriate animal model demonstrating safety in vivo exist. In this review, we have discussed and provided some insights in the use of primary airway epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety and efficacy of phage therapy. The combination of phage therapy and antimicrobials is gaining attention and has the potential to delay the onset of MDR infections. It is evident that efforts to translate phage therapy into standard clinical practice have gained traction in the past 5 years. Ultimately, collaboration, transparency in data publications and standardized policies are needed for clinical translation.
Collapse
Affiliation(s)
- Renee N. Ng
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Anna S. Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Institute for Respiratory Health, School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Chang
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Center, Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
43
|
A bird eye view on cystic fibrosis: An underestimated multifaceted chronic disorder. Life Sci 2020; 268:118959. [PMID: 33383045 DOI: 10.1016/j.lfs.2020.118959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease which involves the mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF involves in the inflammatory processes and is considered as a multisystem disorder that is not confined to lungs, but it also affects other vital organs that leads to numerous co-morbidities. The respiratory disorder in the CF results in mortality and morbidity which is characterized by series of serious events involving mucus hypersecretion, microbial infections, airways obstruction, inflammation, destruction of epithelium, tissue remodeling and terminal lung diseases. Mucins are the high molecular weight glycoproteins important for the viscoelastic properties of the mucus, play a significant role in the disease mechanisms. Determining the functional association between the CFTR and mucins might help to identify the putative target for specific therapeutic approach. In fact, furin enzyme which helps in the entry of novel COVID-19 virus into the cell, is upregulated in CF and this can also serve as a potential target for CF treatment. Moreover, the use of nano-formulations for CF treatment is an area of research being widely studied as they have also demonstrated promising outcomes. The in-depth knowledge of non-coding RNAs like miRNAs and lncRNAs and their functional association with CFTR gene expression and mutation can provide a different range of opportunity to identify the promising therapeutic approaches for CF.
Collapse
|
44
|
Theng S, Williamson KS, Franklin MJ. Role of Hibernation Promoting Factor in Ribosomal Protein Stability during Pseudomonas aeruginosa Dormancy. Int J Mol Sci 2020; 21:E9494. [PMID: 33327444 PMCID: PMC7764885 DOI: 10.3390/ijms21249494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.
Collapse
Affiliation(s)
- Sokuntheary Theng
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
| | - Kerry S. Williamson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
45
|
Abstract
Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. A better understanding of the ecological dynamics of this ecosystem may enable clinicians to harness these interactions and thereby improve treatment outcomes. Like all ecosystems, the CF lung microbial community develops through a series of stages, each of which may present with distinct microbial communities that generate unique host-microbe and microbe-microbe interactions, metabolic profiles, and clinical phenotypes. While insightful models have been developed to explain some of these stages and interactions, there is no unifying model to describe how these infections develop and persist. Here, we review current perspectives on the ecology of the CF airway and present the CF Ecological Succession (CFES) model that aims to capture the spatial and temporal complexity of CF lung infection, address current challenges in disease management, and inform the development of ecologically driven therapeutic strategies.
Collapse
|
46
|
Doroudian M, O'Neill A, O'Reilly C, Tynan A, Mawhinney L, McElroy A, Webster SS, MacLoughlin R, Volkov Y, E Armstrong M, A O'Toole G, Prina-Mello A, C Donnelly S. Aerosolized drug-loaded nanoparticles targeting migration inhibitory factors inhibit Pseudomonas aeruginosa-induced inflammation and biofilm formation. Nanomedicine (Lond) 2020; 15:2933-2953. [PMID: 33241979 DOI: 10.2217/nnm-2020-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine, which has been shown to promote disease severity in cystic fibrosis. Methods: In this study, aerosolized drug-loaded nanoparticles containing SCD-19, an inhibitor of MIF's tautomerase enzymatic activity, were developed and characterized. Results: The aerosolized nanoparticles had an optimal droplet size distribution for deep lung deposition, with a high degree of biocompatibility and significant cellular uptake. Conclusion: For the first time, we have developed an aerosolized nano-formulation against MIF's enzymatic activity that achieved a significant reduction in the inflammatory response of macrophages, and inhibited Pseudomonas aeruginosa biofilm formation on airway epithelial cells. This represents a potential novel adjunctive therapy for the treatment of P. aeruginosa infection in cystic fibrosis.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew O'Neill
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aisling Tynan
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife McElroy
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Shanice S Webster
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,Department of Histology, Cytology & Embryology, First Moscow State Sechenov Medical University, Russian Federation
| | - Michelle E Armstrong
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - George A O'Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,CRANN Institute & AMBER Centre, Trinity College Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland
| |
Collapse
|
47
|
Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J Clin Med 2020; 9:jcm9123800. [PMID: 33255354 PMCID: PMC7760986 DOI: 10.3390/jcm9123800] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous and opportunistic microorganism and is considered one of the most significant pathogens that produce chronic colonization and infection of the lower respiratory tract, especially in people with chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and bronchiectasis. From a microbiological viewpoint, the presence and persistence of P. aeruginosa over time are characterized by adaptation within the host that precludes any rapid, devastating injury to the host. Moreover, this microorganism usually develops antibiotic resistance, which is accelerated in chronic infections especially in those situations where the frequent use of antimicrobials facilitates the selection of “hypermutator P. aeruginosa strain”. This phenomenon has been observed in people with bronchiectasis, CF, and the “exacerbator” COPD phenotype. From a clinical point of view, a chronic bronchial infection of P. aeruginosa has been related to more severity and poor prognosis in people with CF, bronchiectasis, and probably in COPD, but little is known on the effect of this microorganism infection in people with asthma. The relationship between the impact and treatment of P. aeruginosa infection in people with airway diseases emerges as an important future challenge and it is the most important objective of this review.
Collapse
Affiliation(s)
- Marta Garcia-Clemente
- Pneumology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - David de la Rosa
- Pneumology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Luis Máiz
- Servicio de Neumología, Unidad de Fibrosis Quística, Bronquiectasias e Infección Bronquial Crónica, Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Rosa Girón
- Pneumology Department, Hospital Univesitario la Princesa, 28006 Madrid, Spain;
| | - Marina Blanco
- Servicio de Neumología, Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Casilda Olveira
- Servicio de Neumología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain;
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Miguel Angel Martinez-García
- Pneumology Department, Universitary and Polytechnic La Fe Hospital, 46012 Valencia, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-609865934
| |
Collapse
|
48
|
Early acquisition and conversion of Pseudomonas aeruginosa in Hispanic youth with cystic fibrosis in the United States. J Cyst Fibros 2020; 20:424-431. [PMID: 33162303 DOI: 10.1016/j.jcf.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND For unknown reasons, Hispanic patients with cystic fibrosis (CF) have more severe pulmonary disease than non-Hispanic white patients. In CF, the pulmonary pathogen Pseudomonas aeruginosa is associated with worse outcomes. We sought to determine if Hispanic patients with CF are at an increased risk of acquiring P. aeruginosa or acquire it earlier than non-Hispanic white patients. METHODS This is a longitudinal study comparing the timing and risk of acquisition of different forms of P. aeruginosa between Hispanic and non-Hispanic white patients aged 0-21 years old with CF in the CF Foundation Patient Registry (CFFPR) in 2008-2013. The age at the initial acquisition of P. aeruginosa (initial acquisition, mucoid, chronic, multidrug-resistant) was summarized using Kaplan-Meier survival curves and analyzed using Cox proportional hazards regression models. RESULTS Of 10,464 patients, 788 (7.5%) were Hispanic and 9,676 (92.5%) were non-Hispanic white. Hispanic patients acquired all forms of P. aeruginosa at a younger age than non-Hispanic white patients. Hispanic patients had a higher risk of acquiring P. aeruginosa than non-Hispanic white patients: the hazard ratio (HR) was 1.26 (95% CI 1.16-1.38, p<0.001) for initial P. aeruginosa, 1.59 (95% CI 1.43-1.77, p<0.001) for mucoid P. aeruginosa, 1.91 (95% CI 1.64-2.23, p<0.001) for multidrug-resistant P. aeruginosa, and 1.39 (95% CI 1.25-1.55, p<0.001) for chronic P. aeruginosa. CONCLUSIONS Hispanic patients have an increased risk of acquiring P. aeruginosa and acquire it at an earlier age than non-Hispanic white patients in the United States. This may contribute to increased morbidity and mortality in Hispanic patients with CF.
Collapse
|
49
|
Jackson L, Waters V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros 2020; 20:8-16. [PMID: 33172756 DOI: 10.1016/j.jcf.2020.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
In recent years considerable improvements have been made in increasing the life expectancy of patients with cystic fibrosis. New highly effective modulator therapies targeting the underlying defect in the cystic fibrosis transmembrane conductance regulator protein are expected to enhance lifespan even further. However, chronic Pseudomonas aeruginosa pulmonary infections continue to threaten CF patient lung health and mortality rates. Early and aggressive antibiotic eradication therapies targeting P. aeruginosa are standard practice, but these eradication therapies fail in 10-40% of patients. The reasons for P. aeruginosa eradication failure remain unclear. Thus, this review summarizes the evidence to date for pseudomonal acquisition and eradication failure in the cystic fibrosis lung. A complex combination of host and bacterial factors are responsible for initial establishment of P. aeruginosa pulmonary infections. Moreover, host and pseudomonal factors, polymicrobial interactions, and antimicrobial limitations in relation to P. aeruginosa eradication therapy failure are summarized.
Collapse
Affiliation(s)
- Lindsay Jackson
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.
| | - Valerie Waters
- Translational Medicine, Hospital for Sick Children, Toronto, Canada; Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
50
|
Pseudomonas aeruginosa Volatilome Characteristics and Adaptations in Chronic Cystic Fibrosis Lung Infections. mSphere 2020; 5:5/5/e00843-20. [PMID: 33028687 PMCID: PMC7568651 DOI: 10.1128/msphere.00843-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test. Pseudomonas aeruginosa chronic lung infections in individuals with cystic fibrosis (CF) significantly reduce quality of life and increase morbidity and mortality. Tracking these infections is critical for monitoring patient health and informing treatments. We are working toward the development of novel breath-based biomarkers to track chronic P. aeruginosa lung infections in situ. Using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOF-MS), we characterized the in vitro volatile metabolomes (“volatilomes”) of 81 P. aeruginosa isolates collected from 17 CF patients over at least a 5-year period of their chronic lung infections. We detected 539 volatiles produced by the P. aeruginosa isolates, 69 of which were core volatiles that were highly conserved. We found that each early infection isolate has a unique volatilome, and as infection progresses, the volatilomes of isolates from the same patient become increasingly dissimilar, to the point that these intrapatient isolates are no more similar to one another than to isolates from other patients. We observed that the size and chemical diversity of P. aeruginosa volatilomes do not change over the course of chronic infections; however, the relative abundances of core hydrocarbons, alcohols, and aldehydes do change and are correlated with changes in phenotypes associated with chronic infections. This study indicates that it may be feasible to track P. aeruginosa chronic lung infections by measuring changes to the infection volatilome and lays the groundwork for exploring the translatability of this approach to direct measurement using patient breath. IMPORTANCEPseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test.
Collapse
|