1
|
Danziger‐Isakov L, Kumar D. Vaccination of solid organ transplant candidates and recipients: Guidelines from the American society of transplantation infectious diseases community of practice. Clin Transplant 2019; 33:e13563. [DOI: 10.1111/ctr.13563] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lara Danziger‐Isakov
- Pediatric Infectious Diseases Cincinnati Children's Hospital Medical Center & University of Cincinnati Cincinnati Ohio
| | - Deepali Kumar
- Transplant Infectious Diseases University Health Network Toronto Ontario Canada
| | | |
Collapse
|
2
|
Martínez O, Bravo Cruz A, Santos S, Ramírez M, Miranda E, Shisler J, Otero M. Vaccination with a codon-optimized A27L-containing plasmid decreases virus replication and dissemination after vaccinia virus challenge. Vaccine 2017. [PMID: 28629922 DOI: 10.1016/j.vaccine.2017.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smallpox is a disease caused by Variola virus (VARV). Although eradicated by WHO in 1980, the threat of using VARV on a bioterror attack has increased. The current smallpox vaccine ACAM2000, which consists of live vaccinia virus (VACV), causes complications in individuals with a compromised immune system or with previously reported skin diseases. Thus, a safer and efficacious vaccine needs to be developed. Previously, we reported that our virus-free DNA vaccine formulation, a pVAX1 plasmid encoding codon-optimized VACV A27L gene (pA27LOPT) with and without Imiquimod adjuvant, stimulates A27L-specific production of IFN-γ and increases humoral immunity 7days post-vaccination. Here, we investigated the immune response of our novel vaccine by measuring the frequency of splenocytes producing IFN-γ by ELISPOT, the TH1 and TH2 cytokine profiles, and humoral immune responses two weeks post-vaccination, when animals were challenged with VACV. In all assays, the A27-based DNA vaccine conferred protective immune responses. Specifically, two weeks after vaccination, mice were challenged intranasally with vaccinia virus, and viral titers in mouse lungs and ovaries were significantly lower in groups immunized with pA27LOPT and pA27LOPT+Imiquimod. These results demonstrate that our vaccine formulation decreases viral replication and dissemination in a virus-free DNA vaccine platform, and provides an alternative towards a safer an efficacious vaccine.
Collapse
Affiliation(s)
- Osmarie Martínez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Ariana Bravo Cruz
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Saritza Santos
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Maite Ramírez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Eric Miranda
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States
| | - Joanna Shisler
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Miguel Otero
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, School of Medicine, San Juan, PR 00936, United States.
| |
Collapse
|
3
|
Martínez O, Miranda E, Ramírez M, Santos S, Rivera C, Vázquez L, Sánchez T, Tremblay RL, Ríos-Olivares E, Otero M. Immunomodulator-based enhancement of anti smallpox immune responses. PLoS One 2015; 10:e0123113. [PMID: 25875833 PMCID: PMC4395221 DOI: 10.1371/journal.pone.0123113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.
Collapse
Affiliation(s)
- Osmarie Martínez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Eric Miranda
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Microbiology Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Maite Ramírez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Saritza Santos
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Carlos Rivera
- Department Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Luis Vázquez
- Department Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Tomás Sánchez
- Department Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Raymond L. Tremblay
- Department of Biology, University of Puerto Rico, Humacao, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras campus, San Juan, Puerto Rico
| | - Eddy Ríos-Olivares
- Department of Microbiology Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Miguel Otero
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
4
|
Danziger-Isakov L, Kumar D. Vaccination in solid organ transplantation. Am J Transplant 2013; 13 Suppl 4:311-7. [PMID: 23465023 DOI: 10.1111/ajt.12122] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Danzinger-Isakov L, Kumar D. Guidelines for vaccination of solid organ transplant candidates and recipients. Am J Transplant 2009; 9 Suppl 4:S258-62. [PMID: 20070687 DOI: 10.1111/j.1600-6143.2009.02917.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Danzinger-Isakov
- Center for Pediatric Infectious Diseases, Children's Hospital Cleveland Clinic, Cleveland, OH, USA.
| | | | | |
Collapse
|
6
|
Lucey DR, Breman JG, Henderson DA. Smallpox and Bioterrorism. BEYOND ANTHRAX 2009. [PMCID: PMC7120204 DOI: 10.1007/978-1-59745-326-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Gangappa S, Kokko KE, Carlson LM, Gourley T, Newell KA, Pearson TC, Ahmed R, Larsen CP. Immune responsiveness and protective immunity after transplantation. Transpl Int 2008; 21:293-303. [PMID: 18225995 DOI: 10.1111/j.1432-2277.2007.00631.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growing success of solid organ transplantation poses unique challenges for the implementation of effective immunization strategies. Although live attenuated vaccines have proven benefits for the general population, immunosuppressed patients are at risk for unique complications such as infection from the vaccine because of lack of both clearance and containment of a live attenuated virus. Moreover, while vaccination strategies using killed organisms or purified peptides are believed to be safe for immunosuppressed patients, they may have reduced efficacy in this population. The current lack of knowledge of the basic safety and efficacy of vaccination strategies in the immunosuppressed has limited the development of guidelines regarding vaccination in this population. Recent fears of influenza pandemics and potential attacks by weaponized pathogens such as smallpox heighten the need for increased knowledge. Herein, we review the current understanding of the effects of immunosuppressants on the immune system and the ability of the suppressed immune system to respond to vaccination. This review highlights the need for systematic, longitudinal studies in both humans and nonhuman primates to understand better the defects in innate and adaptive immunity in transplant recipients, thereby aiding the development of strategies to vaccinate these individuals.
Collapse
Affiliation(s)
- Shivaprakash Gangappa
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nitsche A, Steger B, Ellerbrok H, Pauli G. Detection of vaccinia virus DNA on the LightCycler by fluorescence melting curve analysis. J Virol Methods 2005; 126:187-95. [PMID: 15847936 DOI: 10.1016/j.jviromet.2005.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/15/2005] [Accepted: 02/22/2005] [Indexed: 11/21/2022]
Abstract
After eradication of variola virus the worldwide vaccination program was stopped to avoid the severe complications observed in a small fraction of vaccinees. Hence, there is at least one non-vaccinated generation in the human population that is immunologically naive with respect to variola virus infections. The possibility of a deliberate release of variola virus by bioterrorist attacks has led to the resumption of vaccination of hospital employees and military personnel with vaccinia virus in certain parts of the world. However, the appearance of a single confirmed smallpox case worldwide would result in vaccination of possible contact persons with vaccinia virus. Therefore, reliable confirmation of vaccinia virus in patients presenting with smallpox-like syndromes is required. A vaccinia virus-specific single nucleotide polymorphism was identified in the gene B8R coding for a vaccinia virus IFNgamma receptor. Based on this polymorphism, the LightCycler real-time PCR assay detects vaccinia virus DNA in a linear range from 10(6) to 10 genome equivalents and discriminates vaccinia virus from other orthopoxviruses by fluorescence melting curve analysis (DeltaT = 9 degrees C). While the assay amplifies generically DNA of all orthopoxviruses tested, amplification curves are only displayed for vaccinia virus strains including strains formerly used for vaccination. In addition, an internal amplification control is described that allows reliable interpretation of results.
Collapse
Affiliation(s)
- Andreas Nitsche
- Robert Koch-Institut, Zentrum für Biologische Sicherheit 1, Nordufer 20, D-13353 Berlin, Germany.
| | | | | | | |
Collapse
|
9
|
Actualización en la vacunación del adulto. Enferm Infecc Microbiol Clin 2004. [DOI: 10.1016/s0213-005x(04)73107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Editorial overview. Curr Opin Organ Transplant 2003. [DOI: 10.1097/00075200-200312000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|