1
|
Jiménez AG, Marolf C, Swanson DL. Oxidative stress across multiple tissues in house sparrows (Passer domesticus) acclimated to warm, stable cold, and unpredictable cold thermal treatments. J Comp Physiol B 2024; 194:899-907. [PMID: 38995419 DOI: 10.1007/s00360-024-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
With climate change increasing not just mean temperatures but the frequency of cold snaps and heat waves, animals occupying thermally variable areas may be faced with thermal conditions for which they are not prepared. Studies of physiological adaptations of temperate resident birds to such thermal variability are largely lacking in the literature. To address this gap, we acclimated winter-phenotype house sparrows (Passer domesticus) to stable warm, stable cold, and fluctuating cold temperatures. We then measured several metrics of the oxidative stress (OS) system, including enzymatic and non-enzymatic antioxidants and lipid oxidative damage, in brain (post-mitotic), kidney (mitotic), liver (mitotic) and pectoralis muscle (post-mitotic). We predicted that high metabolic flexibility could be linked to increases in reactive oxygen damage. Alternatively, if variation in ROS production is not associated with metabolic flexibility, then we predict no antioxidant compensation with thermal variation. Our data suggest that ROS production is not associated with metabolic flexibility, as we found no differences across thermal treatment groups. However, we did find differences across tissues. Brain catalase activity demonstrated the lowest values compared with kidney, liver and muscle. In contrast, brain glutathione peroxidase (GPx) activities were higher than those in kidney and liver. Muscle GPx activities were intermediate to brain and kidney/liver. Lipid peroxidation damage was lowest in the kidney and highest in muscle tissue.
Collapse
Affiliation(s)
| | - Chelsi Marolf
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
2
|
Short-term exercise affects cardiac function ex vivo partially via changes in calcium channel levels, without influencing hypoxia sensitivity. J Physiol Biochem 2021; 77:639-651. [PMID: 34449060 PMCID: PMC8605979 DOI: 10.1007/s13105-021-00830-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Exercise is known to improve cardiac recovery following coronary occlusion. However, whether short-term exercise can improve cardiac function and hypoxia tolerance ex vivo independent of reperfusion injury and the possible role of calcium channels in improved hypoxia tolerance remains unknown. Therefore, in the current study, heart function was measured ex vivo using the Langendorff method at different oxygen levels after a 4-week voluntary wheel-running regimen in trained and untrained male mice (C57Bl/6NCrl). The levels of cardiac Ca2+-channels: L-type Ca2+-channel (CACNA1C), ryanodine receptor (RyR-2), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2), and sodium-calcium exchanger were measured using western blot. Trained mice displayed lower cardiac afterload pressure generation capacity (rate and amplitude), but unaltered hypoxia tolerance when compared to untrained mice with similar heart rates. The level of CACNA1C positively correlated with the pressure generation rate and amplitude. Furthermore, the CACNA1C-RYR-2 ratio also positively correlated with the pressure generation rate. While the 4-week training period was not enough to alter the intrinsic cardiac hypoxia tolerance, interestingly it decreased pressure generation capacity and slowed pressure decreasing capacity in the mouse hearts ex vivo. This reduction in pressure generation rate could be linked to the level of channel proteins in sarcolemmal Ca2+-cycling in trained mice. However, the Ca2+-channel levels did not differ significantly between the groups, and thus, the level of calcium channels cannot fully explain all the functional alterations, despite the detected correlations. Therefore, additional studies are warranted to reveal further mechanisms that contribute to the reduced intrinsic capacity for pressure production in trained mouse hearts.
Collapse
|
3
|
Sharma A, Singh D, Gupta P, Bhardwaj SK, Kaur I, Kumar V. Molecular changes associated with migratory departure from wintering areas in obligate songbird migrants. J Exp Biol 2021; 224:269085. [PMID: 34105726 DOI: 10.1242/jeb.242153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
Day length regulates the development of spring migratory and subsequent reproductive phenotypes in avian migrants. This study used molecular approaches, and compared mRNA and proteome-wide expression in captive redheaded buntings that were photostimulated under long-day (LD) conditions for 4 days (early stimulated, LD-eS) or for ∼3 weeks until each bird had shown 4 successive nights of Zugunruhe (stimulated, LD-S); controls were maintained under short days. After ∼3 weeks of LD, photostimulated indices of the migratory preparedness (fattening, weight gain and Zugunruhe) were paralleled with upregulated expression of acc, dgat2 and apoa1 genes in the liver, and of cd36, fabp3 and cpt1 genes in the flight muscle, suggesting enhanced fatty acid (FA) synthesis and transport in the LD-S state. Concurrently, elevated expression of genes involved in the calcium ion signalling and transport (camk1 and atp2a2; camk2a in LD-eS), cellular stress (hspa8 and sod1, not nos2) and metabolic pathways (apoa1 and sirt1), but not of genes associated with migratory behaviour (adcyap1 and vps13a), were found in the mediobasal hypothalamus (MBH). Further, MBH-specific quantitative proteomics revealed that out of 503 annotated proteins, 28 were differentially expressed (LD-eS versus LD-S: 21 up-regulated and 7 down-regulated) and they enriched five physiological pathways that are associated with FA transport and metabolism. These first comprehensive results on gene and protein expression suggest that changes in molecular correlates of FA transport and metabolism may aid the decision for migratory departure from wintering areas in obligate songbird migrants.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Priya Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi 110 067, India
| | | | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi 110 067, India.,Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
4
|
Sur S, Sharma A, Bhardwaj SK, Kumar V. Involvement of steroid and antioxidant pathways in spleen-mediated immunity in migratory birds. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110790. [PMID: 32800933 DOI: 10.1016/j.cbpa.2020.110790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The molecular underpinnings of the spleen-mediated immune functions during the period of heightened energetic needs in the year are not known in avian migrants. We investigated this, in Palearctic-Indian migratory male redheaded buntings, which exhibited vernal (spring) premigratory / early testicular maturation states under artificial long days. This was evidenced by increased dio2 and decreased dio3 mRNA expression in the hypothalamus, elevated levels of circulating corticosterone and testosterone, and enlarged testes in long-day-photostimulated birds, as compared to unstimulated controls under short days. The concomitant decrease in both mass and volume of the spleen, and increase in the heterophil/ lymphocyte ratio suggested the parallel innate immunity effects in photostimulated buntings. Importantly, we found increased mRNA expression of genes coding for the cytokines (il15 and il34), steroid receptors (nr3c2) and oxidative stress marker enzymes (gpx1 and sod1) in the spleen, suggesting the activation of both immune and antioxidant molecular pathways during the early photostimulated state. However, the splenic expressions of il1β, il6, tgfβ, ar and nos2 genes were not significantly different between long-day stimulated and short-day unstimulated birds. The negative correlation of plasma corticosterone levels with spleen mass further indicated a role of corticosterone in the modulation of the spleen function, probably via nr3c2 gene encoded mineralocorticoid receptors. These results suggest the activation of the spleen-mediated innate immunity in anticipation of the heightened energetic stress state of the photostimulated spring migratory/breeding period in migratory songbirds.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
5
|
Jimenez AG, Ruhs EC, Tobin KJ, Anderson KN, Le Pogam A, Regimbald L, Vézina F. Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell. J Exp Biol 2020; 223:jeb218826. [PMID: 32165437 DOI: 10.1242/jeb.218826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 01/21/2023]
Abstract
Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches -10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to -20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (-5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.
Collapse
Affiliation(s)
| | - Emily Cornelius Ruhs
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| | - Kailey J Tobin
- Colgate University, Department of Biology, Hamilton, NY 13346 , USA
| | - Katie N Anderson
- Colgate University, Department of Biology, Hamilton, NY 13346 , USA
| | - Audrey Le Pogam
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| | - Lyette Regimbald
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| | - François Vézina
- Université du Québec à Rimouski, Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'Études Nordiques, Centre de la Science de la Biodiversité du Québec, Rimouski, QC, Canada G6V 0A6
| |
Collapse
|
6
|
Parisi C, Guerriero G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants (Basel) 2019; 8:E622. [PMID: 31817462 PMCID: PMC6943697 DOI: 10.3390/antiox8120622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
The objective of this review is to briefly summarize the recent progress in studies done on the assessment of reprotoxicity risk posed by global warming for the foundation of strategic tool in ecosystem-based adaptation. The selected animal data analysis that was used in this paper focuses on antioxidative markers and fertility rate estimated over the period 2000-2019. We followed a phylogenetic methodology in order to report data on a panel of selected organisms that show dangerous effects. The oxidative damage studies related to temperature fluctuation occurring in biosentinels of different invertebrate and vertebrate classes show a consistently maintained physiological defense. Furthermore, the results from homeothermic and poikilothermic species in our study highlight the influence of temperature rise on reprotoxicity.
Collapse
Affiliation(s)
- Costantino Parisi
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Interdepartmental Research Centre for Environment, University of Naples Federico II, 80134 Naples, Italy
| |
Collapse
|
7
|
Cooper-Mullin C, Carter WA, McWilliams SR. Acute effects of intense exercise on the antioxidant system in birds: does exercise training help? ACTA ACUST UNITED AC 2019; 222:jeb.210443. [PMID: 31511346 DOI: 10.1242/jeb.210443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
The acute effects of an energy-intensive activity such as exercise may alter an animal's redox homeostasis, although these short-term effects may be ameliorated by chronic exposure to that activity, or training, over time. Although well documented in mammals, how energy-intensive training affects the antioxidant system and damage by reactive species has not been investigated fully in flight-trained birds. We examined changes to redox homeostasis in zebra finches exposed to energy-intensive activity (60 min of perch-to-perch flights twice a day), and how exercise training over many weeks affected this response. We measured multiple components of the antioxidant system: an enzymatic antioxidant (glutathione peroxidase, GPx) and non-enzymatic antioxidants (measured by the OXY-adsorbent test) as well as a measure of oxidative damage (d-ROMs). At no point during the experiment did oxidative damage change. We discovered that exposure to energy-intensive exercise training did not alter baseline levels of GPx, but induced exercise-trained birds to maintain a higher non-enzymatic antioxidant status as compared with untrained birds. GPx activity was elevated above baseline in trained birds immediately after completion of the second 1 h flight on each of the three sampling days, and non-enzymatic antioxidants were acutely depleted during flight after 13 and 44 days of training. The primary effect of exercise training on the acute response of the antioxidant system to 2 h flights was increased coordination between the enzymatic (GPx) and non-enzymatic components of the antioxidant system of birds that reduced oxidative damage associated with exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Wales A Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
8
|
Arai E, Hasegawa M, Wakamatsu K, Ito S. Males with More Pheomelanin Have a Lower Oxidative Balance in Asian Barn Swallows (Hirundo rustica gutturalis). Zoolog Sci 2018; 35:505-513. [DOI: 10.2108/zs170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Emi Arai
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0115, Japan
| | - Masaru Hasegawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0115, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
9
|
Oxidative stress in wild European rabbits naturally infected with myxoma virus and rabbit haemorrhagic disease virus. EUR J WILDLIFE RES 2018. [DOI: 10.1007/s10344-018-1203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Cheviron ZA, Swanson DL. Comparative Transcriptomics of Seasonal Phenotypic Flexibility in Two North American Songbirds. Integr Comp Biol 2018; 57:1040-1054. [PMID: 29095984 DOI: 10.1093/icb/icx118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phenotypic flexibility allows organisms to reversibly alter their phenotypes to match the changing demands of seasonal environments. Because phenotypic flexibility is mediated, at least in part, by changes in gene regulation, comparative transcriptomic studies can provide insights into the mechanistic underpinnings of seasonal phenotypic flexibility, and the extent to which regulatory responses to changing seasons are conserved across species. To begin to address these questions, we sampled individuals of two resident North American songbird species, American goldfinch (Spinus tristis) and black-capped chickadee (Poecile atricapillus) in summer and winter to measure seasonal variation in pectoralis transcriptomic profiles and to identify conserved and species-specific elements of these seasonal profiles. We found that very few genes exhibited divergent responses to changes in season between species, and instead, a core set of over 1200 genes responded to season concordantly in both species. Moreover, several key metabolic pathways, regulatory networks, and gene functional classes were commonly recruited to induce seasonal phenotypic shifts in these species. The seasonal transcriptomic responses mirror winter increases in pectoralis mass and cellular metabolic intensity documented in previous studies of both species, suggesting that these seasonal phenotypic responses are due in part to changes in gene expression. Despite growing evidence of muscle nonshivering thermogenesis (NST) in young precocial birds, we did not find strong evidence of upregulation of genes putatively involved in NST during winter in either species, suggesting that seasonal modification of muscular NST is not a prominent contributor to winter increases in thermogenic capacity for adult passerine birds. Together, these results provide the first comprehensive overview of potential common regulatory mechanisms underlying seasonally flexible phenotypes in wild, free-ranging birds.
Collapse
Affiliation(s)
- Z A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - D L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
11
|
Glippa O, Engström-Öst J, Kanerva M, Rein A, Vuori K. Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors. PLoS One 2018; 13:e0195981. [PMID: 29652897 PMCID: PMC5898752 DOI: 10.1371/journal.pone.0195981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/03/2018] [Indexed: 01/02/2023] Open
Abstract
On a daily basis, planktonic organisms migrate vertically and thus experience widely varying conditions in their physico-chemical environment. In the Gulf of Finland, these changes are larger than values predicted by climate change scenarios predicted for the next century (up to 0.5 units in pH and 5°C in temperature). In this work, we are interested in how temporal variations in physico-chemical characteristics of the water column on a daily and weekly scale influence oxidative stress level and antioxidant responses in the planktonic copepod of the genus Acartia. Responses were determined from samples collected during a two-week field survey in the western Gulf of Finland, Baltic Sea. Our results showed that GST (Glutathione-S-transferase) enzyme activity increased in the surface waters between Weeks I and II, indicating antioxidant defense mechanism activation. This is most likely due to elevating temperature, pH, and dissolved oxygen observed between these two weeks. During Week II also GSSG (oxidized glutathione) was detected, indicating that copepods responded to stressor(s) in the environment. Our results suggest that Acartia copepods seem fairly tolerant to weekly fluctuations in environmental conditions in coastal and estuarine areas, in terms of antioxidant defense and oxidative stress. This could be directly connected to a very efficient glutathione cycling system acting as antioxidant defense system for neutralizing ROS and avoiding elevated levels of LPX.
Collapse
Affiliation(s)
- Olivier Glippa
- Novia University of Applied Sciences, Ekenäs, Finland
- * E-mail:
| | | | - Mirella Kanerva
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| | - Anni Rein
- Novia University of Applied Sciences, Ekenäs, Finland
| | - Kristiina Vuori
- Laboratory of Animal Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Costantini D. Meta-analysis reveals that reproductive strategies are associated with sexual differences in oxidative balance across vertebrates. Curr Zool 2018; 64:1-11. [PMID: 29492033 PMCID: PMC5809033 DOI: 10.1093/cz/zox002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a key physiological mechanism underlying life-history tradeoffs. Here, I use meta-analytic techniques to test whether sexual differences in oxidative balance are common in vertebrates and to identify which factors are associated with such differences. The dataset included 732 effect size estimates from 100 articles (82 species). Larger unsigned effect size (meaning larger sexual differences in a given marker) occurred in: reptiles and fish; those species that do not provide parental care; and oviparous species. Estimates of signed effect size (positive values meaning higher oxidative stress in males) indicated that females were less resistant to oxidative stress than males in: reptiles while males and females were similar in fish, birds, and mammals; those species that do not provide parental care; and oviparous species. There was no evidence for a significant sexual differentiation in oxidative balance in fish, birds, and mammals. Effect size was not associated with: the number of offspring; whether the experimental animals were reproducing or not; biomarker (oxidative damage, non-enzymatic, or enzymatic antioxidant), the species body mass; the strain (wild vs. domestic); or the study environment (wild vs. captivity). Oxidative stress tended to be higher in females than males across most of the tissues analyzed. Levels of residual heterogeneity were high in all models tested. The findings of this meta-analysis indicate that diversification of reproductive strategies might be associated with sexual differences in oxidative balance. This explorative meta-analysis offers a starting platform for future research to investigate the relationship between sex and oxidative balance further.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier 75231 Paris Cedex 05, France
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| |
Collapse
|
13
|
Hernández-Arciga U, Herrera M. LG, Ibáñez-Contreras A, Miranda-Labra RU, Flores-Martínez JJ, Königsberg M. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi. PLoS One 2018; 13:e0190047. [PMID: 29293551 PMCID: PMC5749750 DOI: 10.1371/journal.pone.0190047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023] Open
Abstract
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.
Collapse
Affiliation(s)
- Ulalume Hernández-Arciga
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - L. Gerardo Herrera M.
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Alejandra Ibáñez-Contreras
- Laboratorio de Neurofisiología, Applied Research in Experimental Biomedicine S.A. de C.V. (APREXBIO), Ciudad de México, México
- Unidad de Experimentación Animal, Biología Integral para Vertebrados (BIOINVERT®), Estado de México, México
| | - Roxana U. Miranda-Labra
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - José Juan Flores-Martínez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| |
Collapse
|
14
|
Messina S, Eens M, Casasole G, AbdElgawad H, Asard H, Pinxten R, Costantini D. Experimental inhibition of a key cellular antioxidant affects vocal communication. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Giulia Casasole
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Department of Biology University of Antwerp Antwerp Belgium
- Department of Botany Faculty of Science University of Beni‐Suef Beni‐Suef62511 Egypt
| | - Han Asard
- Integrated Molecular Plant Physiology Research Department of Biology University of Antwerp Antwerp Belgium
| | - Rianne Pinxten
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- Faculty of Social Sciences Antwerp School of Education University of Antwerp Antwerp Belgium
| | - David Costantini
- Behavioural Ecology & Ecophysiology Group Department of Biology University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- UMR 7221 Muséum National d'Histoire Naturelle 7 rue Cuvier 75231 Paris Cedex 05 France
| |
Collapse
|
15
|
Chainy GBN, Paital B, Dandapat J. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species. SCIENTIFICA 2016; 2016:6126570. [PMID: 27127682 PMCID: PMC4834391 DOI: 10.1155/2016/6126570] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons.
Collapse
Affiliation(s)
| | - Biswaranjan Paital
- Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Jagneswar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| |
Collapse
|
16
|
Paital B, Panda SK, Hati AK, Mohanty B, Mohapatra MK, Kanungo S, Chainy GBN. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J Biol Chem 2016; 7:110-127. [PMID: 26981200 PMCID: PMC4768115 DOI: 10.4331/wjbc.v7.i1.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/30/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.
Collapse
|
17
|
Cecere JG, Caprioli M, Carnevali C, Colombo G, Dalle-Donne I, Mancuso E, Milzani A, Parolini M, Portanova A, Saino N, Serra L, Rubolini D. Dietary flavonoids advance timing of moult but do not affect redox status of juvenile blackbirds (Turdus merula). J Exp Biol 2016; 219:3155-3162. [DOI: 10.1242/jeb.141424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022]
Abstract
Flavonoids are the most abundant plant polyphenols, widely occurring in fruits and berries, and show a strong antioxidant activity in vitro. Studies of avian species feeding on berries suggest that dietary flavonoids have health-promoting effects and may enhance the expression of melanin-based plumage traits. These effects are likely mediated by the antioxidant activity of flavonoids. However, the effect of dietary flavonoids on oxidative status has never been investigated in any bird species. We analysed the effects of dietary flavonoids on blood non-enzymatic antioxidants and protein oxidative damage of juvenile European blackbirds (Turdus merula). In addition, we analysed the effects of the flavonoid-enriched diet on body condition and on timing of moult from juvenile to adult plumage. Dietary flavonoids did not significantly affect the redox status but significantly advanced the onset of moult, hastening plumage development. Moulting birds showed higher protein oxidative damage compared to those that had not yet started moulting. The probability to initiate moult after 40 days of dietary treatment was higher for birds with low circulating levels of oxidizing agents and high glutathione concentration. The metabolization of flavonoids could have altered their redox potential, resulting in not net effects on redox status. However, flavonoid consumption before and during moult may contribute to enhance plumage development. Moreover, our findings suggest that moulting feathers may result in redox imbalance. Given their effect on moult and growth of melanin-rich feathers, fruit flavonoids may have contributed to the evolution of plant fruiting time in relation to fruit consumption preferences by birds.
Collapse
Affiliation(s)
- Jacopo G. Cecere
- ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Manuela Caprioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Chiara Carnevali
- ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Graziano Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Elisa Mancuso
- ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Marco Parolini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Antea Portanova
- ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Nicola Saino
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Lorenzo Serra
- ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, I-40064 Ozzano dell'Emilia (BO), Italy
| | - Diego Rubolini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
18
|
Pap PL, Pătraş L, Osváth G, Buehler DM, Versteegh MA, Sesarman A, Banciu M, Vágási CI. Seasonal Patterns and Relationships among Coccidian Infestations, Measures of Oxidative Physiology, and Immune Function in Free-Living House Sparrows over an Annual Cycle. Physiol Biochem Zool 2015; 88:395-405. [DOI: 10.1086/681243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Interspecific variation in redox status regulation and immune defence in five bat species: the role of ectoparasites. Oecologia 2014; 175:811-23. [DOI: 10.1007/s00442-014-2959-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 04/18/2014] [Indexed: 12/31/2022]
|
20
|
Corticosterone secretion patterns prior to spring and autumn migration differ in free-living barn swallows (Hirundo rustica L.). Oecologia 2013; 173:689-97. [DOI: 10.1007/s00442-013-2669-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
21
|
Paital B, Chainy GBN. Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 87:33-41. [PMID: 23122870 DOI: 10.1016/j.ecoenv.2012.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
Studies on oxidative stress (OS) in crustacea are widely used as ecotoxicological indices to assess the environment risk produced by the impact of several stressor and pollutants. In the present study, effects of seasonality on OS physiology markers such as antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase), small antioxidant molecules (ascorbic acid and reduced glutathione), oxidative stress indices (lipid peroxidation, protein carbonylation and hydrogen peroxide) and total antioxidant capacity in hepatopancreas, gills and abdominal muscle of adult mud crab Scylla serrata, sampled from Chilika lagoon of India, were determined in winter, summer and rainy seasons. Results indicate that variations in enzymatic and non-enzymatic antioxidants with relation to season were not only tissue specific but also were gender specific. The levels of OS parameters were higher in hepatopancreas in comparison to gills and abdominal muscle of the crabs in all seasons. OS indices in tissues of the crabs were mainly higher in summer season when temperature and salinity of the lagoon were high with low oxygen content. Although OS was lower in winter season and moderate in rainy season in tissues of male crabs, it was higher in gills and hepatopancreas of females in rainy season. Correlation analyses between hydrological parameters of the lagoon (temperature, salinity and dissolved oxygen content) and OS physiology parameters in tissues of crabs suggest that abiotic factors influence the levels of antioxidant enzymes and, thereby the OS status in a tissue and sex specific manner. Collectively, the results of the present work suggest that further investigation is warranted before using OS parameters in S. serrata as biomarkers to monitor estuarine environment as these are influenced by gender, tissue and season.
Collapse
|