1
|
Kelly D, Szymkowiak J, Hacket-Pain A, Bogdziewicz M. Fine-tuning mast seeding: as resources accumulate, plants become more sensitive to weather cues. THE NEW PHYTOLOGIST 2025; 246:1975-1985. [PMID: 40152189 DOI: 10.1111/nph.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Interannual variability of seed production, masting, has far-reaching ecological impacts, including effects on forest regeneration and the population dynamics of seed consumers. It is important to understand the mechanisms driving masting to predict how plant populations and ecosystem dynamics may change into the future, and for short-term forecasting of seed production to aid management. We used long-term observations of individual flowering effort in snow tussocks (Chionochloa pallens) and seed production in European beech (Fagus sylvatica) to test how endogenous resource levels and weather variation interact in driving masting. In both species, there was an interaction between the weather cue and plant resources. If resource reserves were high, even weak temperature cues triggered relatively high reproductive effort, and depleted resources suppressed reproduction even in the presence of strong cues. Resource dynamics played dual roles of both suppressant and prompter of reproduction, allowing plants to fine-tune the length of intervals between large seeding years regardless of variable cue frequency. The strong interaction between resource reserves and weather cues has immediate application in mast forecasting models increasingly important for global afforestation efforts. Moreover, the important role of resource reserves in the plant response to weather cues will dictate the masting responses to climate change.
Collapse
Affiliation(s)
- Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
- Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
| | - Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
2
|
Coetsee C, Wigley BJ, Higgins SI. Do savanna trees mast? Phenological dynamics of flowering and fruiting in savanna tree species. Oecologia 2025; 207:85. [PMID: 40377737 PMCID: PMC12084283 DOI: 10.1007/s00442-025-05706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/04/2025] [Indexed: 05/18/2025]
Abstract
A priori, it is not clear if masting should be expected in savannas and few studies have attempted to detect masting in savannas. We tracked the flower and fruiting phenology of 18 savanna woody species on a monthly basis in Kruger National Park for 8 years. We used multiple metrics to detect masting including phenological intensity and its CV, phenological volatility, synchrony and the proportion of failure years. Additionally, we used a process-based model of plant growth to test whether resource matching could explain the observed phenological behaviour. Overall, the measured masting metrics provided no unequivocal evidence for masting. For 4 of the 18 study species, the fruiting CV, synchrony and volatility were consistent with masting. The process-based model of plant growth could reproduce observed flowering and fruiting behaviour, suggesting that resource matching could explain the observed phenological behaviour of the species. We propose that future research should explore the possibility that masting may not be selected for in savannas due to the prevalence of generalist pollinators, dispersal agents and seed predators. Although masting does not appear to be a prevalent phenological strategy in savannas, we detected large between species variation in reproductive phenology, which is likely to have consequences for the trophic dynamics of the study system.
Collapse
Affiliation(s)
- Corli Coetsee
- Savanna Node, Scientific Services, SANParks, Skukuza, 1350, South Africa.
- School of Natural Resource Management, Nelson Mandela University, George Campus, George, 6530, South Africa.
| | - Benjamin J Wigley
- Savanna Node, Scientific Services, SANParks, Skukuza, 1350, South Africa
- School of Natural Resource Management, Nelson Mandela University, George Campus, George, 6530, South Africa
- Plant Ecology, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
| | - Steven I Higgins
- Plant Ecology, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
3
|
Bogdziewicz M, Chybicki I, Szymkowiak J, Ulaszewski B, Burczyk J, Szarek-Łukaszewska G, Meyza K, Sztupecka E, Ledwoń M, Piechnik Ł, Seget B, Kondrat K, Holeksa J, Żywiec M. Masting and Efficient Production of Seedlings: Balancing Costs of Variation Through Synchronised Fruiting. Ecol Lett 2024; 27:e14514. [PMID: 39354913 DOI: 10.1111/ele.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024]
Abstract
The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 Sorbus aucuparia trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jakub Szymkowiak
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Ewa Sztupecka
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kondrat
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jan Holeksa
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
4
|
Le Roncé I, Dardevet E, Venner S, Schönbeck L, Gessler A, Chuine I, Limousin JM. Reproduction alternation in trees: testing the resource depletion hypothesis using experimental fruit removal in Quercus ilex. TREE PHYSIOLOGY 2023; 43:952-964. [PMID: 36892403 DOI: 10.1093/treephys/tpad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 06/11/2023]
Abstract
The keystones of resource budget models to explain mast seeding are that fruit production depletes tree stored resources, which become subsequently limiting to flower production the following year. These two hypotheses have, however, rarely been tested in forest trees. Using a fruit removal experiment, we tested whether preventing fruit development would increase nutrient and carbohydrates storage and modify allocation to reproduction and vegetative growth the following year. We removed all the fruits from nine adult Quercus ilex L. trees shortly after fruit set and compared, with nine control trees, the concentrations of nitrogen (N), phosphorus (P), zinc (Zn), potassium (K) and starch in leaves, twigs and trunk before, during and after the development of female flowers and fruits. The following year, we measured the production of vegetative and reproductive organs as well as their location on the new spring shoots. Fruit removal prevented the depletion of N and Zn in leaves during fruit growth. It also modified the seasonal dynamics in Zn, K and starch in twigs, but had no effect on reserves stored in the trunk. Fruit removal increased the production of female flowers and leaves the following year, and decreased the production of male flowers. Our results show that resource depletion operates differently for male and female flowering, because the timing of organ formation and the positioning of flowers in shoot architecture differ between male and female flowers. Our results suggest that N and Zn availability constrain flower production in Q. ilex, but also that other regulatory pathways might be involved. They strongly encourage further experiments manipulating fruit development over multiple years to describe the causal relationships between variations in resource storage and/or uptake, and male and female flower production in masting species.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Elia Dardevet
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Department of Botany and Plant Sciences, University of California, Riverside, CA 9252, USA
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | | |
Collapse
|
5
|
Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner MC, Venner S. Oak masting drivers vary between populations depending on their climatic environments. Curr Biol 2023; 33:1117-1124.e4. [PMID: 36764300 DOI: 10.1016/j.cub.2023.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Large interannual variation in seed production, called masting, is very common in wind-pollinated tree populations and has profound implications for the dynamics of forest ecosystems and the epidemiology of certain human diseases.1,2,3,4,5 Comparing the reproductive characteristics of populations established in climatically contrasting environments would provide powerful insight into masting mechanisms, but the required data are extremely scarce. We built a database from an unprecedented fine-scale 8-year survey of 150 sessile oak trees (Quercus petraea) from 15 populations distributed over a broad climatic gradient, including individual recordings of annual flowering effort, fruiting rate, and fruit production. Although oak masting was previously considered to depend mainly on fruiting rate variations,6,7 we show that the female flowering effort is highly variable from year to year and explains most of the fruiting dynamics in two-thirds of the populations. What drives masting was found to differ among populations living under various climates. In soft-climate populations, the fruiting rate increases initially strongly with the flowering effort, and the intensity of masting results mainly from the flowering synchrony level between individuals. By contrast, the fruiting rate of harsh-climate populations depends mainly on spring weather, which ensures intense masting regardless of the flowering synchronization level. Our work highlights the need for jointly measuring flowering effort and fruit production to decipher the diversity of masting mechanisms among populations. Accounting for such diversity will be decisive in proposing accurate, and possibly contrasted, scenarios about future reproductive patterns of perennial plants with ongoing climate change and their numerous cascading effects.
Collapse
Affiliation(s)
- Emilie Fleurot
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Jean R Lobry
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Vincent Boulanger
- Département Recherche, Développement et Innovation, Office National des Forêts, 77300 Fontainebleau, France
| | - François Debias
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Camille Mermet-Bouvier
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Thomas Caignard
- UMR 1202, BIOGECO, Université de Bordeaux, 33615 Pessac, France
| | - Sylvain Delzon
- UMR 1202, BIOGECO, Université de Bordeaux, 33615 Pessac, France
| | - Marie-Claude Bel-Venner
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, 69622 Villeurbanne, France.
| |
Collapse
|
6
|
Garcia G, Re B, Orians C, Crone E. By wind or wing: pollination syndromes and alternate bearing in horticultural systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200371. [PMID: 34657465 PMCID: PMC8520786 DOI: 10.1098/rstb.2020.0371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/12/2022] Open
Abstract
Cyclical fluctuations in reproductive output are widespread among perennial plants, from multi-year masting cycles in forest trees to alternate bearing in horticultural crops. In natural systems, ecological drivers such as climate and pollen limitation can result in synchrony among plants. Agricultural practices are generally assumed to outweigh ecological drivers that might synchronize alternate-bearing individuals, but this assumption has not been rigorously assessed and little is known about the role of pollen limitation as a driver of synchrony in alternate-bearing crops. We tested whether alternate-bearing perennial crops show signs of alternate bearing at a national scale and whether the magnitude of national-scale alternate bearing differs across pollination syndromes. We analysed the Food and Agriculture Organization of the United Nations time series (1961-2018) of national crop yields across the top-producing countries of 27 alternate-bearing taxa, 6 wind-pollinated and 21 insect-pollinated. Alternate bearing was common in these national data and more pronounced in wind-pollinated taxa, which exhibited a more negative lag-1 autocorrelation and a higher coefficient of variation (CV). We highlight the mutual benefits of integrating ecological theory and agricultural data for (i) advancing our understanding of perennial plant reproduction across time, space and taxa, and (ii) promoting stable farmer livelihoods and global food supply. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Gabriela Garcia
- Department of Biology, Tufts University, Medford MA 02155 USA
| | - Bridget Re
- Department of Biology, Tufts University, Medford MA 02155 USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford MA 02155 USA
| | - Elizabeth Crone
- Department of Biology, Tufts University, Medford MA 02155 USA
| |
Collapse
|
7
|
Ascoli D, Hacket-Pain A, Pearse IS, Vacchiano G, Corti S, Davini P. Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200380. [PMID: 34657463 PMCID: PMC8520781 DOI: 10.1098/rstb.2020.0380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Davide Ascoli
- Department DISAFA, University of Torino (IT), Torino TO, Italy
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool (UK), UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | | | - Susanna Corti
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Bologna, Italy
| | - Paolo Davini
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Torino, Italy
| |
Collapse
|
8
|
Le Roncé I, Gavinet J, Ourcival JM, Mouillot F, Chuine I, Limousin JM. Holm oak fecundity does not acclimate to a drier world. THE NEW PHYTOLOGIST 2021; 231:631-645. [PMID: 33891307 DOI: 10.1111/nph.17412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Climate change might impact tree fecundity by altering the relative influences of meteorological and physiological drivers, and by modifying resource investment in reproduction. Using a 13-yr monitoring of Quercus ilex reproduction in a rainfall exclusion experiment, we analysed the interactive effects of long-term increased aridity and other environmental drivers on the inter-annual variation of fecundity (male flower biomass, number of initiated and mature fruits). Summer-autumn water stress was the main driver of fruit abortion during fruit growth. Rainfall exclusion treatment strongly reduced the number of initiated and mature fruits, even in masting years, and did not increase fruit tolerance to severe drought. Conversely, the relative contribution of the meteorological and physiological drivers, and the inter-annual variability of fruit production were not modified by rainfall exclusion. Rather than inducing an acclimation of tree fecundity to water limitation, increased aridity impacted it negatively through both lower fruit initiation due to changes in resource allocation, and more severe water and resource limitations during fruit growth. Long-term increased aridity affected tree reproduction beyond what is expected from the current response to inter-annual drought variations, suggesting that natural regeneration of holm oak forest could be jeopardised in the future.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jordane Gavinet
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jean-Marc Ourcival
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Florent Mouillot
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Isabelle Chuine
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jean-Marc Limousin
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| |
Collapse
|
9
|
Le Roncé I, Toïgo M, Dardevet E, Venner S, Limousin JM, Chuine I. Resource manipulation through experimental defoliation has legacy effects on allocation to reproductive and vegetative organs in Quercus ilex. ANNALS OF BOTANY 2020; 126:1165-1179. [PMID: 32686832 PMCID: PMC7684701 DOI: 10.1093/aob/mcaa137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS In plants, high costs of reproduction during some years can induce trade-offs in resource allocation with other functions such as growth, survival and resistance against herbivores or extreme abiotic conditions, but also with subsequent reproduction. Such trade-offs might also occur following resource shortage at particular moments of the reproductive cycle. Because plants are modular organisms, strategies for resource allocation to reproduction can also vary among hierarchical levels. Using a defoliation experiment, our aim was to test how allocation to reproduction was impacted by resource limitation. METHODS We applied three levels of defoliation (control, moderate and intense) to branches of eight Quercus ilex trees shortly after fruit initiation and measured the effects of resource limitation induced by leaf removal on fruit development (survival, growth and germination potential) and on the production of vegetative and reproductive organs the year following defoliation. KEY RESULTS We found that defoliation had little impact on fruit development. Fruit survival was not affected by the intense defoliation treatment, but was reduced by moderate defoliation, and this result could not be explained by an upregulation of photosynthesis. Mature fruit mass was not affected by defoliation, nor was seed germination success. However, in the following spring defoliated branches produced fewer shoots and compensated for leaf loss by overproducing leaves at the expense of flowers. Therefore, resource shortage decreased resource allocation to reproduction the following season but did not affect sex ratio. CONCLUSIONS Our results support the idea of a regulation of resource allocation to reproduction beyond the shoot scale. Defoliation had larger legacy effects than immediate effects.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Maude Toïgo
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Elia Dardevet
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Jean-Marc Limousin
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
10
|
Bogdziewicz M, Szymkowiak J, Calama R, Crone EE, Espelta JM, Lesica P, Marino S, Steele MA, Tenhumberg B, Tyre A, Żywiec M, Kelly D. Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals. ANNALS OF BOTANY 2020; 126:971-979. [PMID: 32574370 PMCID: PMC7539353 DOI: 10.1093/aob/mcaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. METHODS We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. KEY RESULTS Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. CONCLUSIONS Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn implies that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Szymkowiak
- Population Ecology Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Rafael Calama
- Department of Forest Dynamics and Management, INIA-CIFOR, Ctra A CoruñaMadrid, Spain
| | | | | | - Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Shealyn Marino
- Department of Biology, Wilkes University, Wilkes-Barre, PA, USA
| | | | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska, Lincoln, NE, USA
| | - Andrew Tyre
- School of Natural Resources, University of Nebraska, Lincoln, NE, USA
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz, Kraków, Poland
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
Bogdziewicz M, Pesendorfer M, Crone EE, Pérez-Izquierdo C, Bonal R. Flowering synchrony drives reproductive success in a wind-pollinated tree. Ecol Lett 2020; 23:1820-1826. [PMID: 32981190 DOI: 10.1111/ele.13609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022]
Abstract
Synchronised and quasi-periodic production of seeds by plant populations, known as masting, is implicated in many ecological processes, but how it arises remains poorly understood. Flowering and pollination dynamics are hypothesised to provide the mechanistic link for the observed relationship between weather and population-level seed production. We report the first experimental test of the phenological synchrony hypotheses as a driver of pollen limitation in mast seeding oaks (Quercus ilex). Higher flowering synchrony yielded greater pollination efficiency, which resulted in 2-fold greater seed set in highly synchronised oaks compared to asynchronous individuals. Pollen addition removed the negative effect of asynchronous flowering on seed set. Because phenological synchrony operates through environmental variation, this result suggests that oak masting is synchronised by exogenous rather than endogenous factors. It also points to a mechanism by which changes in flowering phenology can affect plant reproduction of mast-seeding plants, with subsequent implications for community dynamics.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mario Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | - Raul Bonal
- INDEHESA, Forest Research Group, University of Extremadura, Plasencia, Spain
| |
Collapse
|
12
|
Bogdziewicz M, Fernández‐Martínez M, Espelta JM, Ogaya R, Penuelas J. Is forest fecundity resistant to drought? Results from an 18-yr rainfall-reduction experiment. THE NEW PHYTOLOGIST 2020; 227:1073-1080. [PMID: 32329082 PMCID: PMC7496795 DOI: 10.1111/nph.16597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Recruitment is a primary determinant of the long-term dynamics of plant populations in changing environments. However, little information is known about the effects of anthropogenic environmental changes on reproductive ecology of trees. We evaluated the impact of experimentally induced 18 yr of drought on reproduction of three contrasting forest trees: Quercus ilex, Phillyrea latifolia and Arbutus unedo. Rainfall reduction did not decrease tree fecundity. Drought, however, affected the allocation of resources in Q. ilex and A. unedo but not the more drought tolerant P. latifolia. Larger crop production by Q. ilex and A. unedo was associated with a stronger decrease in growth in the rainfall-reduction plots compared with the control plots, suggesting that these species were able to maintain their fecundity by shifting their allocation of resources away from growth. Our results indicated resistance to change in tree fecundity in Mediterranean-type forest subjected to an average 15% decrease in the amount of soil moisture, suggesting that these ecosystems may adapt to a progressive increase in arid conditions. However, the species-specific reductions in growth may indirectly affect future fecundity and ultimately shift community composition, even without immediate direct effects of drought on tree fecundity.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University61‐614PoznańPoland
- CREAFCerdanyola delVallès08193CataloniaSpain
| | | | | | - Romà Ogaya
- CREAFCerdanyola delVallès08193CataloniaSpain
| | - Josep Penuelas
- CREAFCerdanyola delVallès08193CataloniaSpain
- Global Ecology UnitCSICCerdanyola del Vallès 08193CataloniaSpain
| |
Collapse
|
13
|
Extreme summer heat and drought lead to early fruit abortion in European beech. Sci Rep 2020; 10:5334. [PMID: 32210278 PMCID: PMC7093476 DOI: 10.1038/s41598-020-62073-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Years with high fruit production, known as mast years, are the usual reproduction strategy of European beech. Harsh weather conditions such as frost during flowering can lead to pollination failure in spring. It has been assumed that mast is controlled by flowering, and that after successful pollination, high amounts of fruits and seeds would be produced. However, the extremely hot and dry European summer of 2018 showed that despite successful pollination, beechnuts did not develop or were only abundant in a few forest stands. An in-depth analysis of three forest sites of European beech from the Swiss Long-Term Forest Ecosystem Research Programme over the last 15–19 years revealed for the first time that extreme summer heat and drought can act as an “environmental veto”, leading to early fruit abortion. Within the forest stands in years with fruit abortion, summer mean temperatures were 1.5 °C higher and precipitation sums were 45% lower than the long-term average. Extreme summer heat and drought, together with frost during flowering, are therefore disrupting events of the assumed biennial fruiting cycle in European beech.
Collapse
|
14
|
Bogdziewicz M, Ascoli D, Hacket‐Pain A, Koenig WD, Pearse I, Pesendorfer M, Satake A, Thomas P, Vacchiano G, Wohlgemuth T, Tanentzap A. From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol Lett 2020; 23:210-220. [PMID: 31858712 PMCID: PMC6973031 DOI: 10.1111/ele.13442] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University in PoznańUmutlowska 8961‐614PoznańPoland
| | - Davide Ascoli
- Department of Agricultural, Forest and Food SciencesUniversity of Turin10095 GrugliascoTorinoItaly
| | - Andrew Hacket‐Pain
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Ian Pearse
- Fort Collins Science Center U.S. Geological SurveyFort CollinsCOUSA
| | - Mario Pesendorfer
- Lab of OrnithologyCornell UniversityIthacaNY14850USA
- Institute of Forest EcologyDepartment of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu University819‐0395FukuokaJapan
| | - Peter Thomas
- School of Life SciencesKeele UniversityStaffordshireST5 5BGUK
| | | | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLForest Dynamics, Zürcherstrasse 111CH‐8903BirmensdorfSwitzerland
| | - Andrew Tanentzap
- Department of Plant SciencesUniversity of CambridgeDowning StCambridgeCB2 3EAUK
| |
Collapse
|
15
|
Schermer É, Bel-Venner MC, Gaillard JM, Dray S, Boulanger V, Le Roncé I, Oliver G, Chuine I, Delzon S, Venner S. Flower phenology as a disruptor of the fruiting dynamics in temperate oak species. THE NEW PHYTOLOGIST 2020; 225:1181-1192. [PMID: 31569273 DOI: 10.1111/nph.16224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Many perennial plants display masting, that is, fruiting with strong interannual variations, irregular and synchronized between trees within the population. Here, we tested the hypothesis that the early flower phenology in temperate oak species promotes stochasticity into their fruiting dynamics, which could play a major role in tree reproductive success. From a large field monitoring network, we compared the pollen phenology between temperate and Mediterranean oak species. Then, focusing on temperate oak species, we explored the influence of the weather around the time of budburst and flowering on seed production, and simulated with a mechanistic model the consequences that an evolutionary shifting of flower phenology would have on fruiting dynamics. Temperate oak species release pollen earlier in the season than do Mediterranean oak species. Such early flowering in temperate oak species results in pollen often being released during unfavorable weather conditions and frequently results in reproductive failure. If pollen release were delayed as a result of natural selection, fruiting dynamics would exhibit much reduced stochastic variation. We propose that early flower phenology might be adaptive by making mast-seeding years rare and unpredictable, which would greatly help in controlling the dynamics of seed consumers.
Collapse
Affiliation(s)
- Éliane Schermer
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622, Villeurbanne, France
| | - Marie-Claude Bel-Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622, Villeurbanne, France
| | - Stéphane Dray
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622, Villeurbanne, France
| | - Vincent Boulanger
- Département recherche, développement et innovation, Office National des Forêts, F-77300, Fontainebleau, France
| | - Iris Le Roncé
- Centre d'Écologie Fonctionnelle et Évolutive, UMR 5175, CNRS, F-34293, Montpellier, France
| | - Gilles Oliver
- Réseau National de Surveillance Aérobiologique, F-69690, Brussieu, France
| | - Isabelle Chuine
- Centre d'Écologie Fonctionnelle et Évolutive, UMR 5175, CNRS, F-34293, Montpellier, France
| | - Sylvain Delzon
- UMR 1202, BIOGECO, Institut National de la Recherche Agronomique, F-33612, Cestas, France
- UMR 1202, Biodiversité, des gènes aux communautés, Université de Bordeaux, F-33615, Pessac, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, F-69622, Villeurbanne, France
| |
Collapse
|
16
|
Large-scale spatial synchrony in red squirrel populations driven by a bottom-up effect. Oecologia 2020; 192:425-437. [PMID: 31927627 PMCID: PMC7002333 DOI: 10.1007/s00442-019-04589-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/26/2019] [Indexed: 11/28/2022]
Abstract
Spatial synchrony between populations emerges from endogenous and exogenous processes, such as intra- and interspecific interactions and abiotic factors. Understanding factors contributing to synchronous population dynamics help to better understand what determines abundance of a species. This study focuses on spatial and temporal dynamics in the Eurasian red squirrel (Sciurus vulgaris) using snow-track data from Finland from 29 years. We disentangled the effects of bottom-up and top-down forces as well as environmental factors on population dynamics with a spatiotemporally explicit Bayesian hierarchical approach. We found red squirrel abundance to be positively associated with both the abundance of Norway spruce (Picea abies) cones and the predators, the pine marten (Martes martes) and the northern goshawk (Accipiter gentilis), probably due to shared habitat preferences. The results suggest that red squirrel populations are synchronized over remarkably large distances, on a scale of hundreds of kilometres, and that this synchrony is mainly driven by similarly spatially autocorrelated spruce cone crop. Our research demonstrates how a bottom-up effect can drive spatial synchrony in consumer populations on a very large scale of hundreds of kilometres, and also how an explicit spatiotemporal approach can improve model performance for fluctuating populations.
Collapse
|