1
|
Kustra MC, Carrier TJ. Microbes as manipulators of egg size and developmental evolution. mBio 2025; 16:e0365524. [PMID: 40243374 PMCID: PMC12077187 DOI: 10.1128/mbio.03655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Marine invertebrates mainly reproduce by energy-poor eggs that develop into feeding larvae or energy-rich eggs that develop into non-feeding larvae. Evolutionary transitions between these developmental modes have been studied in detail, yet the evolutionary factor(s) responsible for these switches remains elusive. Here, we use theoretical models to support the premise that microbes with the capacity to manipulate host reproduction may be one possible factor. Our model predicts that microbial manipulators could create a sperm-limited environment that selects for larger eggs by shifting the host's sex ratio toward female dominance and, as a result, drive an evolutionary transition in the developmental mode for marine invertebrates. The loss of a microbial manipulator could then recover the ancestral egg size and developmental mode. We also suggest more than a dozen genera of marine invertebrates from throughout the world's oceans that fit the framework of a microbe-induced evolutionary transition between these predominant developmental modes. We anticipate that microbial manipulators have a yet-to-be-appreciated influence on the developmental evolution of marine invertebrates. We find it paramount to understand whether evolutionary transitions in developmental mode occur with and without microbial manipulators as well as whether the underlying mechanisms of these manipulations are convergent with terrestrial systems. IMPORTANCE Microbes that manipulate animal reproduction are widespread on land, and their evolutionary influence is widely acknowledged. Relatives of these manipulators are increasingly found in the ocean, but uniquely with taxa that recently underwent a transition in developmental evolution from feeding to non-feeding larvae. Here, we present theoretical models supporting that microbial manipulators could create a sperm-limited environment that selects for larger eggs by shifting the host's sex ratio toward female dominance and, as a result, drive an evolutionary transition in the developmental mode for free-spawning marine invertebrates. This theoretical model provides a complementary viewpoint to the theory regarding the evolutionary process that marine invertebrates undergo to transition between developmental modes as well as a fruitful opportunity to compare with terrestrial systems.
Collapse
Affiliation(s)
- Matthew C. Kustra
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, California, USA
| | - Tyler J. Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Byrne M, Cisternas P, O'Hara TD, Sewell MA, Selvakumaraswamy P. Evolution of Maternal Provisioning and Development in the Ophiuroidea: Egg Size, Larval Form, and Parental Care. Integr Comp Biol 2024; 64:1536-1555. [PMID: 38782731 PMCID: PMC11659680 DOI: 10.1093/icb/icae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The Ophiuroidea is the most speciose class of echinoderms and has the greatest diversity of larval forms, but we know less about the evolution of development (evo-devo) in this group than for the other echinoderm classes. As is typical of echinoderms, evo-devo in the Ophiuroidea resulted in the switch from production of small eggs and feeding (planktotrophic) larvae to large eggs and non-feeding (lecithotrophic) larvae. Parental care (ovoviviparity or viviparity/matrotrophy) is the most derived life history. Analysis of egg data for 140 species (excluding viviparity and facultative planktotrophy) indicated a bimodal distribution in egg volume corresponding to planktotrophy and lecithotrophy + ovoviviparity, with three significant egg size groups due to the very large eggs of the ovoviviparous species. The marked reduction in fecundity in species with extremely large eggs is exemplified by the ovoviviparous species. Egg size in the two species with facultative planktotrophy was intermediate with respect to the two modes. Identifying the ancestral larval life history pattern and the pathways in the switch from feeding to non-feeding larvae is complicated by the two patterns of metamorphosis seen in species with planktotrophic development: Type I (ophiopluteus only) and Type II (ophiopluteus + vitellaria larva). The variability in arm resorption at metamorphosis across ophiuroid families indicates that the Type I and II patterns may be two ends of a morphological continuum. This variability indicates ancestral morphological plasticity at metamorphosis, followed by canalization in some taxa to the vitellaria as the metamorphic larva. Vestigial ophiopluteal traits in lecithotrophic ophioplutei and vitellaria indicate evolution from the ancestral (feeding larva) state. Parental care has evolved many times from an ancestor that had a planktonic ophiopluteus or vitellaria and is often associated with hermaphroditism and paedomorphosis. A secondary reduction in egg size occurred in the viviparous species.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales 2006, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales 2006, Australia
- Museum Victoria, 11 Nicholson St, Melbourne, Victoria 3001, Australia
| | - Timothy D O'Hara
- Museum Victoria, 11 Nicholson St, Melbourne, Victoria 3001, Australia
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paulina Selvakumaraswamy
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Chan KYK, Ko WH. Modeling Fertilization Outcome in a Changing World. Integr Comp Biol 2024; 64:905-920. [PMID: 38871950 DOI: 10.1093/icb/icae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.
Collapse
Affiliation(s)
| | - Wing Ho Ko
- Physics and Astronomy Department, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
4
|
Johnson DW, Chhor JT, Shelley CE, Siegfried EJ. Indirect costs of reproduction and the tradeoff between offspring size and number: a framework illustrated by fitness costs and benefits of ovarian fluid. Evolution 2024; 78:1248-1260. [PMID: 38572986 DOI: 10.1093/evolut/qpae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The theory describing the evolution of offspring size often assumes that the production cost per unit volume is the same for small and large offspring. However, this may not be true if indirect costs of reproduction (e.g., material and energetic costs of supporting offspring development) scale disproportionately with offspring size. Here we show how direct and indirect costs of reproduction can be explicitly modeled within the Smith-Fretwell framework and how observations of size-number relationships can thus be used to evaluate indirect costs. We applied this analysis to measures of egg volume and fecundity for over 300 individuals of a coastal fish species and found that the tradeoff was much stronger than the expected inverse (fecundity scaled with volume-1.843). Larger offspring were thus more expensive to produce. For our study species, an important indirect cost was that larger eggs were accompanied by disproportionately more ovarian fluid. Calorimetry and removal experiments were used to further measure both the energetic costs and fitness benefits of ovarian fluid. In addition, we show that indirect costs of reproduction can intensify size-number tradeoffs in a variety of fishes. Indirect costs of reproduction can be large and may therefore play an important role in the evolution of offspring size.
Collapse
Affiliation(s)
- Darren W Johnson
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - James T Chhor
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Callyn E Shelley
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Emma J Siegfried
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| |
Collapse
|
5
|
Li N, Griffith AW, Manahan DT. Integrative biological analyses of responses to food deprivation reveal resilience mechanisms in sea urchin larvae. Mol Ecol 2024; 33:e17120. [PMID: 37646910 DOI: 10.1111/mec.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
A fundamental question in ecology is how organisms survive food deprivation. In the ocean, climate change is impacting the phenology of food availability for early life-history stages of animals. In this study, we undertook an integrative analysis of larvae of the sea urchin Strongylocentrotus purpuratus-an important keystone species in marine ecology and a molecular biological model organism in developmental biology. Specifically, to identify the mechanisms of resilience that maintain physiological state and the ability of organisms to recover from food deprivation, a suite of molecular biological, biochemical, physiological and whole organism measurements was completed. Previous studies focused on the importance of energy reserves to sustain larvae during periods of food deprivation. We show, however, that utilization of endogenous energy reserves only supplied 15% of the metabolic requirements of long-term survival (up to 22 days) in the absence of particulate food. This large energy gap was not supplied by larvae feeding on bacteria. Estimates of larval ability to transport dissolved organic matter directly from seawater showed that such substrates could fully supply metabolic needs. Integrative approaches allowed for filtering of gene expression signatures, linked with gene network analyses and measured biochemical and physiological traits, to identify biomarkers of resilience. We identified 14 biomarkers related to nutrition-responsive gene expression, of which a specific putative amino acid transporter gene was quantified in a single larva experiencing continuous nutritional stress. Advances in applications of gene expression technologies offer novel approaches to determine the physiological state of marine larval forms in ecological settings undergoing environmental change.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Andrew W Griffith
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Donal T Manahan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Carrier TJ, Schmittmann L, Jung S, Pita L, Hentschel U. Maternal provisioning of an obligate symbiont in a sponge. Ecol Evol 2023; 13:e10012. [PMID: 37153023 PMCID: PMC10154371 DOI: 10.1002/ece3.10012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023] Open
Abstract
The transmission of microbes from mother to offspring is an ancient, advantageous, and widespread feature of metazoan life history. Despite this, little is known about the quantitative strategies taken to maintain symbioses across generations. The quantity of maternal microbes that is provided to each offspring through vertical transmission could theoretically be stochastic (no trend), consistent (an optimal range is allocated), or provisioned (a trade-off with fecundity). Examples currently come from animals that release free-living eggs (oviparous) and suggest that offspring are provided a consistent quantity of symbionts. The quantity of maternal microbes that is vertically transmitted in other major reproductive strategies has yet to be assessed. We used the brooding (viviparous) sponge Halichondria panicea to test whether offspring receive quantitatively similar numbers of maternal microbes. We observed that H. panicea has a maternal pool of the obligate symbiont Candidatus Halichondribacter symbioticus and that this maternal pool is provisioned proportionally to reproductive output and allometrically by offspring size. This pattern was not observed for the total bacterial community. Experimental perturbation by antibiotics could not reduce the abundance of Ca. H. symbioticus in larvae, while the total bacterial community could be reduced without affecting the ability of larvae to undergo metamorphosis. A trade-off between offspring size and number is, by definition, maternal provisioning and parallel differences in Ca. H. symbioticus abundance would suggest that this obligate symbiont is also provisioned.
Collapse
Affiliation(s)
- Tyler J. Carrier
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Zoological Institute, Christian‐Albrechts University of KielKielGermany
| | | | - Sabrina Jung
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
| | - Lucía Pita
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Department Marine Biology and OceanographyInstitute of Marine Sciences (ICM‐CSIC)BarcelonaSpain
| | - Ute Hentschel
- GEOMAR Helmholtz Center for Ocean ResearchKielGermany
- Zoological Institute, Christian‐Albrechts University of KielKielGermany
| |
Collapse
|
7
|
Strader ME, Wolak ME, Simon OM, Hofmann GE. Genetic variation underlies plastic responses to global change drivers in the purple sea urchin, Strongylocentrotus purpuratus. Proc Biol Sci 2022; 289:20221249. [PMID: 36043281 PMCID: PMC9428524 DOI: 10.1098/rspb.2022.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity and adaptive evolution enable population persistence in response to global change. However, there are few experiments that test how these processes interact within and across generations, especially in marine species with broad distributions experiencing spatially and temporally variable temperature and pCO2. We employed a quantitative genetics experiment with the purple sea urchin, Strongylocentrotus purpuratus, to decompose family-level variation in transgenerational and developmental plastic responses to ecologically relevant temperature and pCO2. Adults were conditioned to controlled non-upwelling (high temperature, low pCO2) or upwelling (low temperature, high pCO2) conditions. Embryos were reared in either the same conditions as their parents or the crossed environment, and morphological aspects of larval body size were quantified. We find evidence of family-level phenotypic plasticity in response to different developmental environments. Among developmental environments, there was substantial additive genetic variance for one body size metric when larvae developed under upwelling conditions, although this differed based on parental environment. Furthermore, cross-environment correlations indicate significant variance for genotype-by-environment interactive effects. Therefore, genetic variation for plasticity is evident in early stages of S. purpuratus, emphasizing the importance of adaptive evolution and phenotypic plasticity in organismal responses to global change.
Collapse
Affiliation(s)
- Marie E. Strader
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matthew E. Wolak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Olivia M. Simon
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Pettersen AK, Schuster L, Metcalfe NB. The Evolution of Offspring Size: a Metabolic Scaling Perspective. Integr Comp Biol 2022; 62:icac076. [PMID: 35657724 PMCID: PMC9724151 DOI: 10.1093/icb/icac076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Size at the start of life reflects the initial per offspring parental investment - including both the embryo and the nutrients supplied to it. Initial offspring size can vary substantially both within and among species. Within species, increasing offspring size can enhance growth, reproduction, competitive ability, and reduce susceptibility to predation and starvation later in life, that can ultimately increase fitness. Previous work has suggested that the fitness benefits of larger offspring size may be driven by energy expenditure during development - or how offspring metabolic rate scales with offspring size. Despite the importance of early life energy expenditure in shaping later life fitness trajectories, consideration of among-species scaling of metabolic rate at the time of birth as a potential source of general metabolic scaling patterns has been overlooked by theory. Here we review the patterns and processes of energy expenditure at the start of life when mortality is often greatest. We compile existing data on metabolic rate and offspring size for 191 ectotherm species spanning eight phyla and use phylogenetically-controlled methods to quantify among-species scaling patterns. Across a 109-fold mass range, we find that offspring metabolic rate scales hypometrically with size, with an overall scaling exponent of 0.66. This exponent varies across ontogenetic stage and feeding activity, but is consistently hypometric, including across environmental temperatures. Despite differences in parental investment, life history and habitat, large-offspring species use relatively less energy as a proportion of size, compared with small-offspring species. Greater residual energy can be used to fuel the next stages of life, particularly in low resource environments. Based on available evidence, we conclude that, while large knowledge gaps remain, the evolution of offspring size is likely shaped by context-dependent selection acting on correlated traits, including metabolic rates maintaining hypometric scaling, that operates within broader physical constraints.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G20 0TH, UK
| | - Lukas Schuster
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G20 0TH, UK
| |
Collapse
|
9
|
Kustra M, Carrier TJ. On the spread of microbes that manipulate reproduction in marine invertebrates. Am Nat 2022; 200:217-235. [DOI: 10.1086/720282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Crown of thorns starfish life-history traits contribute to outbreaks, a continuing concern for coral reefs. Emerg Top Life Sci 2022; 6:67-79. [PMID: 35225331 PMCID: PMC9023020 DOI: 10.1042/etls20210239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Crown of thorns starfish (COTS, Acanthaster sp.) are notorious for their destructive consumption of coral that decimates tropical reefs, an attribute unique among tropical marine invertebrates. Their populations can rapidly increase from 0–1 COTS ha−1 to more than 10–1000 COTS ha−1 in short order causing a drastic change to benthic communities and reducing the functional and species diversity of coral reef ecosystems. Population outbreaks were first identified to be a significant threat to coral reefs in the 1960s. Since then, they have become one of the leading causes of coral loss along with coral bleaching. Decades of research and significant investment in Australia and elsewhere, particularly Japan, have been directed towards identifying, understanding, and managing the potential causes of outbreaks and designing population control methods. Despite this, the drivers of outbreaks remain elusive. What is becoming increasingly clear is that the success of COTS is tied to their inherent biological traits, especially in early life. Survival of larval and juvenile COTS is likely to be enhanced by their dietary flexibility and resilience to variable food conditions as well as their phenotypically plastic growth dynamics, all magnified by the extreme reproductive potential of COTS. These traits enable COTS to capitalise on anthropogenic disturbances to reef systems as well as endure less favourable conditions.
Collapse
|
11
|
Multiyear trend in reproduction underpins interannual variation in gametogenic development of an Antarctic urchin. Sci Rep 2021; 11:18868. [PMID: 34552166 PMCID: PMC8458454 DOI: 10.1038/s41598-021-98444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Ecosystems and their biota operate on cyclic rhythms, often entrained by predictable, small-scale changes in their natural environment. Recording and understanding these rhythms can detangle the effect of human induced shifts in the climate state from natural fluctuations. In this study, we assess long-term patterns of reproductive investment in the Antarctic sea urchin, Sterechinus neumayeri, in relation to changes in the environment to identify drivers of reproductive processes. Polar marine biota are sensitive to small changes in their environment and so serve as a barometer whose responses likely mirror effects that will be seen on a wider global scale in future climate change scenarios. Our results indicate that seasonal reproductive periodicity in the urchin is underpinned by a multiyear trend in reproductive investment beyond and in addition to, the previously reported 18-24 month gametogenic cycle. Our model provides evidence that annual reproductive investment could be regulated by an endogenous rhythm since environmental factors only accounted for a small proportion of the residual variation in gonad index. This research highlights a need for multiyear datasets and the combination of biological time series data with large-scale climate metrics that encapsulate multi-factorial climate state shifts, rather than using single explanatory variables to inform changes in biological processes.
Collapse
|
12
|
Sun Z, Hamel JF, Parrish CC, Mercier A. Complex offspring size effects: variations across life stages and between species. Ecol Evol 2015; 5:1117-29. [PMID: 25798228 PMCID: PMC4364825 DOI: 10.1002/ece3.1320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022] Open
Abstract
Classical optimality models of offspring size and number assume a monotonically increasing relationship between offspring size and performance. In aquatic organisms with complex life cycles, the size-performance function is particularly hard to grasp because measures of performance are varied and their relationships with size may not be consistent throughout early ontogeny. Here, we examine size effects in premetamorphic (larval) and postmetamorphic (juvenile) stages of brooding marine animals and show that they vary contextually in strength and direction during ontogeny and among species. Larger offspring of the sea anemone Urticina felina generally outperformed small siblings at the larval stage (i.e., greater settlement and survival rates under suboptimal conditions). However, results differed when analyses were conducted at the intrabrood versus across-brood levels, suggesting that the relationship between larval size and performance is mediated by parentage. At the juvenile stage (15 months), small offspring were less susceptible than large ones to predation by subadult nudibranchs and both sizes performed similarly when facing adult nudibranchs. In a sympatric species with a different life history (Aulactinia stella), all juveniles suffered similar predation rates by subadult nudibranchs, but smaller juveniles performed better (lower mortalities) when facing adult nudibranchs. Size differences in premetamorphic performance of U. felina were linked to total lipid contents of larvae, whereas size-specific predation of juvenile stages followed the general predictions of the optimal foraging strategy. These findings emphasize the challenge in gathering empirical support for a positive monotonic size-performance function in taxa that exhibit complex life cycles, which are dominant in the sea.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Ocean Sciences, Memorial University St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment (SEVE) 21 Phils Hill Road, Portugal Cove-St. Philips, Newfoundland and Labrador, A1M 2B7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| |
Collapse
|