1
|
Soroko SS, Skamnitskiy DV, Gorshkova EN, Kutova OM, Seriev IR, Maslennikova AV, Guryev EL, Gudkov SV, Vodeneev VA, Balalaeva IV, Shilyagina NY. The Dose Rate of Corpuscular Ionizing Radiation Strongly Influences the Severity of DNA Damage, Cell Cycle Progression and Cellular Senescence in Human Epidermoid Carcinoma Cells. Curr Issues Mol Biol 2024; 46:13860-13880. [PMID: 39727956 PMCID: PMC11726848 DOI: 10.3390/cimb46120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Modern radiotherapy utilizes a broad range of sources of ionizing radiation, both low-dose-rate (LDR) and high-dose-rate (HDR). However, the mechanisms underlying specific dose-rate effects remain unclear, especially for corpuscular radiation. To address this issue, we have irradiated human epidermoid carcinoma A431 cells under LDR and HDR regimes. Reducing the dose rate has lower lethality at equal doses with HDR irradiation. The half-lethal dose after HDR irradiation was three times less than after LDR irradiation. The study of mechanisms showed that under HDR irradiation, the radiation-induced halt of mitosis with the accompanying emergence of giant cells was recorded. No such changes were recorded after LDR irradiation. The level of DNA damage is significantly greater after HDR irradiation, which may be the main reason for the different mechanisms of action of HDR and LDR irradiations. Comparing the mechanisms of cell response to LDR and HDR irradiations may shed light on the mechanisms of tumor cell response to ionizing radiation and answer the question of whether different dose rates within the same dose range can cause different clinical effects.
Collapse
Affiliation(s)
- Sergey S. Soroko
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Dmitry V. Skamnitskiy
- Nizhniy Novgorod Regional Oncology Hospital, St. Rodionova, 190, 603950 Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Olga M. Kutova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Ismail R. Seriev
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Anna V. Maslennikova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
- Nizhniy Novgorod Regional Oncology Hospital, St. Rodionova, 190, 603950 Nizhny Novgorod, Russia
- Department of Oncology, Radiation Therapy and Radiation Diagnostics, Privolzhsky Research Medical University, Minin and Pozharsky Sq., 10/1, 603950 Nizhny Novgorod, Russia
| | - Evgeniy L. Guryev
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Sergey V. Gudkov
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, 119991 Moscow, Russia
- Federal Scientific Agronomic and Engineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Vladimir A. Vodeneev
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Irina V. Balalaeva
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| | - Natalia Yu Shilyagina
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (S.S.S.); (E.N.G.); (O.M.K.); (I.R.S.); (S.V.G.); (V.A.V.); (I.V.B.)
| |
Collapse
|
2
|
Qu P, Shao Z, Zhang Y, He J, Lu D, Wei W, Hua J, Wang W, Wang J, Ding N. Primary cilium participates in radiation-induced bystander effects through TGF-β1 signaling. J Cell Physiol 2024; 239:e31163. [PMID: 38009273 DOI: 10.1002/jcp.31163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Many studies have indicated that tumor growth factor-beta (TGF-β) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-β signaling to regulate diverse cellular processes. But whether the PC participates in TGF-β induced RIBEs remains unclear. The cellular levels of TGF-β1 were detected by western blot analysis and the secretion of TGF-β1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G0 /G1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-β1 signaling was interfered by LY2109761, a TGF-β receptor 1 (TβR1) inhibitor, or TGF-β1 neutral antibody. The DNA damages were induced by TGF-β1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-β1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-β1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-β signaling by TβR1 inhibitor or TGF-β1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-β1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G0 /G1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-β1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.
Collapse
Affiliation(s)
- Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urological Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Nasehi L, Rezaeejam H, Danafar H, Mirzaghavami P, Mohammadi A, Delshad M, Vosough M. Efficient Induction of Apoptosis in Lung Cancer Cells Using Bismuth Sulfide Nanoparticles. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3629. [PMID: 38827339 PMCID: PMC11139445 DOI: 10.30498/ijb.2024.385844.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 06/04/2024]
Abstract
Background The use of nanomaterial-based radiosensitizers to improve the therapeutic ratio has gained attraction in radiotherapy. Increased radiotoxicity applied to the tumor region may result in adverse impact on the unexposed normal cells to the radiation, a phenomenon known as radiation-induced bystander effect (RIBE). Objectives This study aimed to investigate the effect of Bi2S3@BSA nanoparticles (NPs) as radiosensitizers on the enhancement of bystander response in non-irradiated cells. Materials and Methods Lung carcinoma epithelial cells were exposed to 6 MV x-ray photons at different doses of 2 and 8 Gy, with and without Bi2S3@BSA NPs. The irradiated-cell's conditioned medium (ICCM) was collected and incubated with MCR-5 human fetal lung fibroblasts. Results This study showed that ICCM collected from 2-Gy-irradiated A549 cells in the presence of Bi2S3@BSA NPs reduced the cell viability of MCR-5 bystander cells more than ICCM collected from irradiated cells without NPs (P<0.05), whereas such a difference was not observed after 8-Gy radiation. The mRNA expression of the BAX and XPA genes, as well as the cell death rate in MCR-5 bystander cells, revealed that the Bi2S3@BSA NPs significantly improved bystander response at 2-Gy (P<0.05), but the efficacy was not statistically significant after 8-Gy Irradiation. Conclusion The results indicated that the presence of NPs did not affect bystander response enhancement at higher concentrations. These findings highlighted the potential use of radiation-enhancing agents and their benefits in radiotherapy techniques with high doses per fraction.
Collapse
Affiliation(s)
- Leila Nasehi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Laboratory, School paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Zanjan pharmaceutical Biotechnology Research center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Mirzaghavami
- Department of Radiology, School paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Mohammadi
- Zanjan pharmaceutical Biotechnology Research center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahda Delshad
- Department of Medical Laboratory, School paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 PMCID: PMC12054971 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
5
|
Mukherjee S, Dutta A, Chakraborty A. The interaction of oxidative stress with MAPK, PI3/AKT, NF-κB, and DNA damage kinases influences the fate of γ-radiation-induced bystander cells. Arch Biochem Biophys 2022; 725:109302. [DOI: 10.1016/j.abb.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
6
|
Mukherjee S, Dutta A, Chakraborty A. The cross-talk between Bax, Bcl2, caspases, and DNA damage in bystander HepG2 cells is regulated by γ-radiation dose and time of conditioned media transfer. Apoptosis 2022; 27:184-205. [PMID: 35076828 DOI: 10.1007/s10495-022-01713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/25/2023]
Abstract
Although radiation-induced bystander effects have been broadly explored in various biological systems, the molecular mechanisms and the consequences of different regulatory factors (dose, time, cell type) on bystander responses are not clearly understood. This study investigates the effects of irradiated cell-conditioned media (ICCM) collected at different times post-irradiation on bystander cancer cells regarding DNA damage and apoptosis induction. Human hepatocellular carcinoma HepG2 cells were exposed to γ-ray doses of 2 Gy, 5 Gy, and 8 Gy. In the early and late stages (1 h, 2 h, and 24 h) after irradiation, the ICCM was collected and transferred to unirradiated cells. Compared to control, bystander cells showed an increased level of H2AX phosphorylation, mitochondrial membrane depolarization, and elevation of intrinsic apoptotic pathway mediators such as p53, Bax, cas9, cas-3, and PARP cleavage. These results were confirmed by phosphatidylserine (PS) externalization and scanning electron microscopic observations, suggesting a rise in bystander HepG2 cell apoptosis. Anti-apoptotic Bcl2-level and viability were lower in bystander cells compared to control. The highest effects were observed in 8 Gy γ radiation-induced bystander cells. Even though the bystander effect was persistent at all time points of the study, ICCM at the early time points (1 or 2 h) had the most significant impact on the apoptosis markers in bystander cells. Nevertheless, 24 h ICCM induced the highest increase in H2AX and p53 phosphorylation and Bax levels. The effects of ICCM of irradiated HepG2 cells were additionally studied in normal liver cells BRL-3A to simulate actual radiotherapy conditions. The outcomes suggest that the expression of the signaling mediators in bystander cells is highly dynamic. A cross-talk between those signaling mediators regulates bystander responses depending on the radiation dose and time of incubation post-irradiation.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India.
| | - Anindita Dutta
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| |
Collapse
|
7
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
8
|
Laskowski L, Williams D, Seymour C, Mothersill C. Environmental and industrial developments in radiation cataractogenesis. Int J Radiat Biol 2020; 98:1074-1082. [PMID: 32396040 DOI: 10.1080/09553002.2020.1767820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This review discusses recent developments in our understanding of biological and physiological mechanisms underlying radiation cataractogenesis. The areas discussed include effects of low-dose exposures to the lens including potential relevance of non-targeted effects, the development of new personal-protective equipment (PPE) and standards in clinical and nuclear settings motivated by the updated ICRP recommendations to mitigate exposures to the lens of the eye. The review also looks at evidence from the field linking cataracts in birds and mammals to low dose exposures.Conclusions: The review suggests that there is evidence that cataractogenesis is not a tissue reaction (deterministic effect) but rather is a low dose effect which shows a saturable dose response relationship similar to that seen for non-targeted effects in general. The review concludes that new research is needed to determine the dose response relationship in environmental studies where field data are contradictory and lab studies confined to rodent models for human exposure studies.
Collapse
Affiliation(s)
- Lukasz Laskowski
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - David Williams
- Department of Veterinary Medicine, University of Cambridge, Cambrige, UK
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
9
|
Vo NTK, Shahid M, Seymour CB, Mothersill CE. Effects of Dose Rate on the Reproductive Cell Death and Early Mitochondrial Membrane Potential in Different Human Epithelium-Derived Cells Exposed to Gamma Rays. Dose Response 2019; 17:1559325819852508. [PMID: 31210757 PMCID: PMC6545662 DOI: 10.1177/1559325819852508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Dose rate is one of the most varied experimental parameters in radiation biology research. In this study, effects of dose rates on the radiation responses of 2 different types of human epithelium-derived cells, immortalized keratinocytes (HaCaT), and colorectal cancer cells (HCT116 p53+/+ and HCT116 p53-/-) were systematically studied. Cells were γ-irradiated at one of the 4 dose rates (24.6, 109, 564, and 1168 mGy/min) to a total dose of 0.5 to 2 Gy. Clonogenic survival and mitochondrial membrane potential (MMP) were measured to assess the levels of reproductive cell death and damage to mitochondrial physiology, respectively. It was found that clonogenic survival was similar at all 4 tested dose rates in the 3 cell lines. The loss of MMP occurred at all tested dose rates in all 3 cell lines except for one case where the MMP increased in HCT116 p53+/+cells after exposure to 0.5 Gy at 24.6 mGy/min. In HCT116 cells, the loss of MMP was the most severe at high dose/dose rate combination exposure and when p53 was expressed. In contrast, no effect in dose rate was observed with HaCaT cells as the reduction level of MMP was similar at the tested dose rates.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marwan Shahid
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
10
|
Mukherjee S, Chakraborty A. Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol 2019; 95:243-263. [PMID: 30496010 DOI: 10.1080/09553002.2019.1547440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sharmi Mukherjee
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| | - Anindita Chakraborty
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
12
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
13
|
Vo NTK, Seymour CB, Mothersill CE. Dose rate effects of low-LET ionizing radiation on fish cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:433-441. [PMID: 28780694 DOI: 10.1007/s00411-017-0706-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D o, and D q values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada.
| | - Colin B Seymour
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Carmel E Mothersill
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Bahreyni Toossi MT, Khademi S, Azimian H, Mohebbi S, Soleymanifard S. Assessment of The Dose-Response Relationship of Radiation-Induced Bystander Effect in Two Cell Lines Exposed to High Doses of Ionizing Radiation (6 and 8 Gy). CELL JOURNAL 2017; 19:434-442. [PMID: 28836405 DOI: 10.22074/cellj.2017.4343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/11/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at high dose levels. The aim of the present study is to assess RIBE at high dose levels by examination of different endpoints. MATERIALS AND METHODS This experimental study used the medium transfer technique to induce RIBE. The cells were divided into two main groups: QU-DB cells which received medium from autologous irradiated cells and MRC5 cells which received medium from irradiated QU-DB cells. Colony, MTT, and micronucleus assays were performed to quantify bystander responses. The medium was diluted and transferred to bystander cells to investigate whether medium dilution could revive the RIBE response that disappeared at a high dose. RESULTS The RIBE level in QU-DB bystander cells increased in the dose range of 0.5 to 4 Gy, but decreased at 6 and 8 Gy. The Micronucleated cells per 1000 binucleated cells (MNBN) frequency of QU-DB bystander cells which received the most diluted medium from 6 and 8 Gy QU-DB irradiated cells reached the maximum level compared to the MNBN frequency of the cells that received complete medium (P<0.0001). MNBN frequency of MRC5 cells which received the most diluted medium from 4 Gy QU-DB irradiated cells reached the maximum level compared to MNBN frequency of cells that received complete medium (P<0.0001). CONCLUSIONS Our results showed that RIBE levels decreased at doses above 4 Gy; however, RIBE increased when diluted conditioned medium was transferred to bystander cells. This finding confirmed that a negative feedback mechanism was responsible for the decrease in RIBE response at high doses. Decrease of RIBE at high doses might be used to predict that in radiosurgery, brachytherapy and grid therapy, in which high dose per fraction is applied, normal tissue damage owing to RIBE may decrease.
Collapse
Affiliation(s)
- Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Azimian
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physics, Omid Hospital, Mashhad, Iran.
| |
Collapse
|
15
|
Najafi M, Salajegheh A, Rezaeyan A. Bystander Effect and Second Primary Cancers following Radiotherapy: What are its Significances? J Med Phys 2017; 42:55-56. [PMID: 28405109 PMCID: PMC5370339 DOI: 10.4103/jmp.jmp_124_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Soleymanifard S, Bahreyni Toossi MT, Kamran Samani R, Mohebbi S. Comparison of Radiation-Induced Bystander Effect in QU-DB Cells after Acute and Fractionated Irradiation: An In Vitro Study. CELL JOURNAL 2016; 18:346-52. [PMID: 27602316 PMCID: PMC5011322 DOI: 10.22074/cellj.2016.4562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/04/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Radiation effects induced in non-irradiated cells are termed radiation-induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. MATERIALS AND METHODS This experimental study irradiated three groups of target cells for one, two and three times with(60)Co gamma rays. One hour after irradiation, we transferred their culture media to non-irradiated (bystander) cells. We used the cytokinesis block micronucleus assay to evaluate RIBE response in the bystander cells. The numbers of micronuclei generated in bystander cells were determined. RESULTS RIBE response to single acute doses increased up to 4 Gy, then decreased, and finally at the 8 Gy dose disappeared. The second and third fractions induced RIBE in bystander cells, except when RIBE reached to the maximum level at the first fraction. We split the 4 Gy acute dose into two fractions, which decreased the RIBE response. However, fractionation of 6 Gy (into two fractions of 3 Gy or three fractions of 2 Gy) had no effect on RIBE response. When we split the 8 Gy acute dose into two fractions we observed RIBE, which had disappeared following the single 8 Gy dose. CONCLUSION The impact of dose fractionation on RIBE induced in QU-DB cells de- pended on the RIBE dose-response relationship. Where RIBE increased proportion- ally with the dose, fractionation reduced the RIBE response. In contrast, at high dos- es where RIBE decreased proportionally with the dose, fractionation either did not change RIBE (at 6 Gy) or increased it (at 8 Gy).
Collapse
Affiliation(s)
- Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Omid Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Kumar C, Shetake N, Desai S, Kumar A, Samuel G, Pandey BN. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol 2016; 92:173-86. [PMID: 26917443 DOI: 10.3109/09553002.2016.1144944] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Radionuclide therapy (RNT) is a rapidly growing area of clinical nuclear medicine, wherein radionuclides are employed to deliver cytotoxic dose of radiation to the diseased cells/tissues. During RNT, radionuclides are either directly administered or delivered through biomolecules targeting the diseased site. RNT has been clinically used for diverse range of diseases including cancer, which is the focus of the review. CONCLUSIONS The major emphasis in RNT has so far been given towards developing peptides/antibodies and other molecules to conjugate a variety of therapeutic radioisotopes for improved targeting/delivery of radiation dose to the tumor cells. Despite that, many of the RNT approaches have not achieved their desired therapeutic success probably due to poor knowledge about complex and dynamic (i) fate of radiolabeled molecules; (ii) radiation dose delivered; (iii) cellular heterogeneity in tumor mass; and (iv) cellular radiobiological response. Based on understanding gathered during recent years, it may be stated that besides the absorbed dose, the net radiobiological response of tumor/normal cells also determines the clinical response of radiotherapeutic modalities including RNT. The radiosensitivity of tumor/normal cells is governed by radiobiological phenomenon such as radiation-induced bystander effect, genomic instability, adaptive response and low dose hyper-radiosensitivity. These concepts have been well investigated in the context of external beam radiotherapy, but their clinical implications during RNT have received meagre attention. In this direction, a few studies performed using in vitro and in vivo models envisage the possibilities of exploiting the radiobiological knowledge for improved therapeutic outcome of RNT.
Collapse
Affiliation(s)
- Chandan Kumar
- a Radiopharmaceutical Chemistry Section , Bhabha Atomic Research Centre , Mumbai
| | - Neena Shetake
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai
| | - Sejal Desai
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Amit Kumar
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Grace Samuel
- c Isotope Production and Applications Division , Bhabha Atomic Research Centre , Mumbai
| | - Badri N Pandey
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| |
Collapse
|
18
|
Furlong H, Smith R, Wang J, Seymour C, Mothersill C, Howe O. Identification of Key Proteins in Human Epithelial Cells Responding to Bystander Signals From Irradiated Trout Skin. Dose Response 2015; 13:1559325815597669. [PMID: 26673684 PMCID: PMC4674182 DOI: 10.1177/1559325815597669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Radiation-induced bystander signaling has been found to occur in live rainbow trout fish (Oncorhynchus mykiss). This article reports identification of key proteomic changes in a bystander reporter cell line (HaCaT) grown in low-dose irradiated tissue-conditioned media (ITCM) from rainbow trout fish. In vitro explant cultures were generated from the skin of fish previously exposed to low doses (0.1 and 0.5 Gy) of X-ray radiation in vivo. The ITCM was harvested from all donor explant cultures and placed on recipient HaCaT cells to observe any change in protein expression caused by the bystander signals. Proteomic methods using 2-dimensional (2D) gel electrophoresis and mass spectroscopy were employed to screen for novel proteins expressed. The proteomic changes measured in HaCaT cells receiving the ITCM revealed that exposure to 0.5 Gy induced an upregulation of annexin A2 and cingulin and a downregulation of Rho-GDI2, F-actin-capping protein subunit beta, microtubule-associated protein RP/EB family member, and 14-3-3 proteins. The 0.1 Gy dose also induced a downregulation of Rho-GDI2, hMMS19, F-actin-capping protein subunit beta, and microtubule-associated protein RP/EB family member proteins. The proteins reported may influence apoptotic signaling, as the results were suggestive of an induction of cell communication, repair mechanisms, and dysregulation of growth signals.
Collapse
Affiliation(s)
- Hayley Furlong
- DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Richard Smith
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Jiaxi Wang
- Queen’s Mass Spectrometry and Proteomics Unit, Department of Chemistry, Queen’s University, Bader Lane, Kingston, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, Nuclear Research Building, Hamilton, Canada
| | - Orla Howe
- DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
19
|
Soleymanifard S, Toossi MTB, Samani RK, Mohebbi S. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro. J Med Phys 2014; 39:93-7. [PMID: 24872606 PMCID: PMC4035621 DOI: 10.4103/0971-6203.131282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/26/2013] [Accepted: 12/27/2013] [Indexed: 11/26/2022] Open
Abstract
Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.
Collapse
Affiliation(s)
- Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation. PLoS One 2014; 9:e84991. [PMID: 24465461 PMCID: PMC3898915 DOI: 10.1371/journal.pone.0084991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Novel radiotherapy techniques increasingly use very large dose fractions. It has been argued that the biological effect of large dose fractions may differ from that of conventional fraction sizes. The purpose was to study the biological effect of large single doses. MATERIAL AND METHODS Clonogenic cell survival of MCF7 and MDA-MB-231 cells was determined after direct X-ray irradiation, irradiation of feeder cells, or transfer of conditioned medium (CM). Cell-cycle distributions and the apoptotic sub-G1 fraction were measured by flow cytometry. Cytokines in CM were quantified by a cytokine antibody array. γH2AX foci were detected by immunofluorescence microscopy. RESULTS The surviving fraction of MCF7 cells irradiated in vitro with 12 Gy showed an 8.5-fold decrease (95% c.i.: 4.4-16.3; P<0.0001) when the density of irradiated cells was increased from 10 to 50×10(3) cells per flask. Part of this effect was due to a dose-dependent transferrable factor as shown in CM experiments in the dose range 5-15 Gy. While no effect on apoptosis and cell cycle distribution was observed, and no differentially expressed cytokine could be identified, the transferable factor induced prolonged expression of γH2AX DNA repair foci at 1-12 h. CONCLUSIONS A dose-dependent non-targeted effect on clonogenic cell survival was found in the dose range 5-15 Gy. The dependence of SF on cell numbers at high doses would represent a "cohort effect" in vivo. These results support the hypothesis that non-targeted effects may contribute to the efficacy of very large dose fractions in radiotherapy.
Collapse
|
21
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
22
|
Mothersill C, Seymour C. Uncomfortable issues in radiation protection posed by low-dose radiobiology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:293-298. [PMID: 23673925 DOI: 10.1007/s00411-013-0472-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
This paper aims to stimulate discussion about the relevance for radiation protection of recent findings in low-dose radiobiology. Issues are raised which suggest that low-dose effects are much more complex than has been previously assumed. These include genomic instability, bystander effects, multiple stressor exposures and chronic exposures. To date, these have been accepted as being relevant issues, but there is no clear way to integrate knowledge about these effects into the existing radiation protection framework. A further issue which might actually lead to some fruitful approaches for human radiation protection is the need to develop a new framework for protecting non-human biota. The brainstorming that is being applied to develop effective and practical ways to protect ecosystems widens the debate from the narrow focus of human protection which is currently about protecting humans from radiation-induced cancers.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | | |
Collapse
|
23
|
Gow MD, Seymour CB, Boyd M, Mairs RJ, Prestiwch WV, Mothersill CE. Dose calculations for [(131)i] meta-iodobenzylguanidine-induced bystander effects. Dose Response 2013; 12:1-23. [PMID: 24659931 DOI: 10.2203/dose-response.13-001.mothersill] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
UNLABELLED Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. METHODS Using the Vynckier - Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [(131)I]MIBG. RESULTS The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [(131)I]MIBG-treated cells, to 25 - 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [(131)I]MIBG treatment were 0.09 - 0.75 Gy/h for UVW/NAT and 0.07 - 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [(131)I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 - 0.23 Gy for UVW and 0.03 - 0.32 Gy for EJ138. CONCLUSION [(131)I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death.
Collapse
Affiliation(s)
- M D Gow
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - C B Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - M Boyd
- Targeted Therapy Group, Division of Cancer Science and Molecular Pathology, Glasgow University, Cancer Research United Kingdom Beatson Laboratories, Glasgow, United Kingdom
| | - R J Mairs
- Targeted Therapy Group, Division of Cancer Science and Molecular Pathology, Glasgow University, Cancer Research United Kingdom Beatson Laboratories, Glasgow, United Kingdom; ; Department of Child Health, Yorkhill Hospital, Glasgow, United Kingdom
| | - W V Prestiwch
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - C E Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
24
|
Choi VWY, Konishi T, Oikawa M, Cheng SH, Yu KN. The threshold number of protons to induce an adaptive response in zebrafish embryos. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:91-100. [PMID: 23295938 DOI: 10.1088/0952-4746/33/1/91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, microbeam protons were used to provide the priming dose to induce an in vivo radioadaptive response (RAR) in the embryos of zebrafish, Danio rerio, against subsequent challenging doses provided by x-ray photons. The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed. The embryos were dechorionated at 4 h post fertilisation (hpf) and irradiated at 5 hpf by microbeam protons. For each embryo, one irradiation point was chosen, to which 5, 10, 20, 30, 40, 50, 100, 200, 300 and 500 protons each with an energy of 3.4 MeV were delivered. The embryos were returned to the incubator until 10 hpf to further receive the challenging exposure, which was achieved using 2 Gy of x-ray irradiation, and then again returned to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labelling (TUNEL) assay. The results revealed that at least 200 protons (with average radiation doses of about 300 and 650 mGy absorbed by an irradiated epithelial and deep cell, respectively) would be required to induce RAR in the zebrafish embryos in vivo. Our previous investigation showed that 5 protons delivered at 10 points on an embryo would already be sufficient to induce RAR in the zebrafish embryos. The difference was explained in terms of the radiation-induced bystander effect as well as the rescue effect.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | | | | | | | |
Collapse
|
25
|
King RB, Hyland WB, Cole AJ, Butterworth KT, McMahon SJ, Redmond KM, Trainer C, Prise KM, McGarry CK, Hounsell AR. Anin vitrostudy of the radiobiological effects of flattening filter free radiotherapy treatments. Phys Med Biol 2013; 58:N83-94. [DOI: 10.1088/0031-9155/58/5/n83] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Sjostedt S, Bezak E. Experimental investigation of the cytotoxicity of medium-borne signals in human prostate cancer cell line. Acta Oncol 2012; 51:1086-94. [PMID: 22524215 DOI: 10.3109/0284186x.2012.670264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Evidence exists that exposure of non-irradiated cells to Irradiated Cell Conditioned Medium (ICCM) can cause effects similar to those resulting from direct radiation damage. This study attempts to validate the stochastic model, relating absorbed dose to the emission and processing of cell death signals by non-irradiated cells, in vitro in PC3 human prostate cancer cell line. METHODS The recipient cell survival was measured after exposure of cells to ICMM derived from donor cells: a) exposed to radiation doses from 2 Gy to 8 Gy and b) of concentrations varying from 2 × 10(2) to 6 × 10(6) irradiated with 2 Gy. RESULTS Exposure to ICCM, irradiated with doses between 2-8 Gy, resulted in a significant (p < 0.001) decrease in clonogenic survival of non-irradiated recipient cells compared to the control group. However, dose dependency above 2 Gy was not observed, indicating that any dose threshold was below 2 Gy. A significant (p < 0.001) decrease in survival was found in recipient cells exposed to the ICCM, derived from different concentrations of donor cells exposed to 2 Gy, compared to the control group. The recipient cell survival following exposure to ICCM derived from 2 × 10(2) cells was significantly higher (p < 0.5) compared to the rest of donor cell concentrations, indicating that the toxicity of ICCM depends on the cellular concentration of donor cells. Non-linear regression data fitting provided reasonable agreement with the microdosimetric model for the induction of cell killing through medium-borne signals. CONCLUSION For the given cell line and given experimental conditions, significant decreases in cell survival were observed in non-irradiated cells exposed to ICCM derived from donor cells of various concentrations and irradiated with different doses.
Collapse
Affiliation(s)
- Svetlana Sjostedt
- Medical Physics Department, Radiation Oncology, Royal Adelaide Hospital, South Australian Department of Health, South Australia, Australia.
| | | |
Collapse
|
27
|
Asur RS, Sharma S, Chang CW, Penagaricano J, Kommuru IM, Moros EG, Corry PM, Griffin RJ. Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells. Radiat Res 2012; 177:751-65. [PMID: 22559204 DOI: 10.1667/rr2780.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing.
Collapse
Affiliation(s)
- Rajalakshmi S Asur
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Claridge Mackonis E, Suchowerska N, Naseri P, McKenzie DR. Optimisation of exposure conditions for in vitro radiobiology experiments. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2012; 35:151-7. [PMID: 22454298 DOI: 10.1007/s13246-012-0132-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/28/2012] [Indexed: 11/27/2022]
Abstract
Despite the long history of using cell cultures in vitro for radiobiological studies, there is to date no study specifically addressing the dosimetric implications of flask selection and exposure environment in clonogenic assays. The consequent variability in dosimetry between laboratories impedes the comparison of results. In this study we compare the dose to cells adherent to the base of three types of commonly used culture flasks or plates. The cells are exposed to a 6MV clinical photon beam using either an open or a half blocked field. The depth of medium in each flask is varied with the medium surrounding the flask either water or air. The results show that the dose to the cells is more affected by the scattering conditions surrounding the flasks than by the level of filling within the flask. It is recommended that water or a water equivalent phantom material is used to surround the flasks or plates to approximate full scatter conditions at the cell layer. However for modulated fields, surrounding the 24 well plates with water-equivalent material is inadequate because of the large volume of air surrounding individual wells. Our results stress the importance of measuring the dose for new experimental configurations.
Collapse
|
29
|
Smith RW, Mothersill C, Hinton T, Seymour CB. Exposure to low level chronic radiation leads to adaptation to a subsequent acute X-ray dose and communication of modified acute X-ray induced bystander signals in medaka (Japanese rice fish, Oryzias latipes). Int J Radiat Biol 2011; 87:1011-22. [DOI: 10.3109/09553002.2011.587861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Richard W. Smith
- Medical Physics and Applied Radiation Sciences, McMaster University,
Hamilton, Ontario, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, McMaster University,
Hamilton, Ontario, Canada
| | - Thomas Hinton
- Laboratoire de Radioécologie et d'Ecotoxicologie IRSN/DEI/SECRE (Bâtiment 159) Institut de Radioprotection et de Sûreté Nucléaire (IRSN) Centre de Cadarache Saint Paul-lez-Durance, France
| | - Colin B. Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University,
Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Zhizhina GP. The effects of low doses of low-intensity ionizing radiation on DNA structure and function. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Yao Y, Bilichak A, Golubov A, Kovalchuk I. Local infection with oilseed rape mosaic virus promotes genetic rearrangements in systemic Arabidopsis tissue. Mutat Res 2011; 709-710:7-14. [PMID: 21376739 DOI: 10.1016/j.mrfmmm.2011.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 05/24/2023]
Abstract
We have previously shown that local infection of tobacco plants with tobacco mosaic virus (TMV) or oilseed rape mosaic virus (ORMV) results in a systemic increase in the homologous recombination frequency (HRF). Here, we analyzed what other changes in the genome are triggered by pathogen infection. For the analysis of HRF, mutation frequency (MF) and microsatellite instability (MI), we used three different transgenic Arabidopsis lines carrying β-glucuronidase (GUS)-based substrates in their genome. We found that local infection of Arabidopsis with ORMV resulted in an increase of all three frequencies, albeit to differing degrees. The most prominent increase was observed in microsatellite instability. The increase in HRF was the lowest, although still statistically significant. The analysis of methylation of the 35S promoter and transgene expression showed that the greater instability of the transgene was not attributed to these changes. Strand breaks brought about a significant increase in non-treated tissues of infected plants. The expression of genes associated with various repair processes, such as KU70, RAD51, MSH2, DNA POL α and DNA POL δ, was also increased. To summarize, our data demonstrate that local ORMV infection destabilizes the genome in systemic tissues of Arabidopsis plants in various ways resulting in large rearrangements, point mutations and microsatellite instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, T1K 3M4, Alberta, Canada.
| | | | | | | |
Collapse
|
32
|
Sjostedt S, Bezak E. Non-targeted effects of ionising radiation and radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2010; 33:219-31. [PMID: 20857259 DOI: 10.1007/s13246-010-0030-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Modern radiobiology is undergoing rapid change due to new discoveries contradicting the target concept which is currently used to predict dose-response relationships. Thus relatively recently discovered radiation-induced bystander effects (RIBEs), that include additional death, mutation and radio-adaptation in non-irradiated cells, change our understanding of the target concept and broadens its boundaries. This can be significant from a radioprotection point of view and also has the potential to reassess radiation damage models currently used in radiotherapy. This article reviews briefly the general concepts of RIBEs such as the proposed underlying mechanisms of signal induction and propagation, experimental approaches and biological end points used to investigate these phenomena. It also summarises several mathematical models currently proposed in an attempt to quantify RIBE. The main emphasis of this article is to review and highlight the potential impact of the bystander phenomena in radiotherapy.
Collapse
Affiliation(s)
- Svetlana Sjostedt
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, 5000, Australia.
| | | |
Collapse
|
33
|
Gow MD, Seymour CB, Ryan LA, Mothersill CE. Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res 2010; 173:769-78. [PMID: 20518656 DOI: 10.1667/rr1895.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined bystander cell death produced in T98G cells by exposure to irradiated cell conditioned medium (ICCM) produced by high-energy 20 MeV electrons at a dose rate of 10 Gy min(-1) and doses up to 20 Gy. ICCM induced a bystander response in T98G glioma cells, reducing recipient cell survival by more than 25% below controls at 5 and 10 Gy. Higher doses increased survival to near control levels. ICCM was analyzed for the presence of transforming growth factor alpha (TGF-alpha) and transforming growth factor beta1 (TGF-beta1). Monoclonal antibodies for TGF-alpha (mAb TGF-alpha) and TGF-beta1 (mAb TGF-beta1) were added to the ICCM to neutralize any potential effect of the cytokines. The results indicate that TGF-alpha was not present in the ICCM and addition of mAb TGF-alpha to the ICCM had no effect on bystander cell survival. No active TGF-beta1 was present in the ICCM; however, addition of mAb TGF-beta1 completely abolished bystander death of reporter cells at all doses. These results indicate that bystander cell death can be induced in T98G glioma if a large enough radiation stress is applied and that TGF-beta1 plays a downstream role in this response.
Collapse
Affiliation(s)
- M D Gow
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
34
|
Brehwens K, Staaf E, Haghdoost S, González AJ, Wojcik A. Cytogenetic damage in cells exposed to ionizing radiation under conditions of a changing dose rate. Radiat Res 2010; 173:283-9. [PMID: 20199213 DOI: 10.1667/rr2012.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current international paradigm on the biological effects of radiation is based mainly on the effects of dose with some consideration for the dose rate. No allowance has been made for the potential influence of a changing dose rate (second derivative of dose), and the biological effects of exposing cells to changing dose rates have never been analyzed. This paper provides evidence that radiation effects in cells may depend on temporal changes in the dose rate. In these experiments, cells were moved toward or away from an X-ray source. The speed of movement, the time of irradiation, and the temperature during exposure were controlled. Here we report the results of the first experiments with TK6 cells that were exposed at a constant dose rate, at an increasing dose rate, or at a decreasing dose rate. The average dose rate and the total dose were same for all samples. Micronuclei were scored as the end point. The results show that the level of cytogenetic damage was higher in cells exposed to a decreasing dose rate compared to both an increasing and a constant dose rate. This finding may suggest that the second derivative of dose may influence radiation risk estimates, and the results should trigger further studies on this issue.
Collapse
Affiliation(s)
- Karl Brehwens
- Centre for Radiation Protection Research, GMT Department, Stockholm University, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Abstract
Our understanding of how radiation kills normal and tumour cells has been based on an intimate knowledge of the direct induction of DNA damage and its cellular consequences. What has become clear is that, as well as responses to direct DNA damage, cell-cell signalling -- known as the bystander effect -- mediated through gap junctions and inflammatory responses may have an important role in the response of cells and tissues to radiation exposure and also chemotherapy agents. This Review outlines the key aspects of radiation-induced intercellular signalling and assesses its relevance for existing and future radiation-based therapies.
Collapse
Affiliation(s)
- Kevin M Prise
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
36
|
Leonard BE. The range of the bystander effect signal in three-dimensional tissue and estimation of the range in human lung tissue at low radon levels. Radiat Res 2009; 171:374-8. [PMID: 19267565 DOI: 10.1667/rr1374.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is shown in the measurements of Belyakov et al. (Proc. Natl. Acad. Sci. USA 102, 14203-14208, 2005) that the distribution of microbeam-irradiated cells represents a finite line source distribution for the emission of bystander effect signals. By assuming a plane source configuration for the propagation of the bystander effect deleterious signal, in the modeling analysis of Shuryak et al. (Radiat. Res. 168, 741-749, 2007) there is an overestimate of the range to effectiveness. A correction is provided to this analysis to estimate the bystander signal propagation distance in the case of low domestic radon levels where single isolated cells are "hit" by alpha particles and emit the bystander signals as a "point" source to neighboring bystander effect receptor cells. The result is an estimate, but it shows that with the spatial correction the deleterious propagation range would be of the order of 210 microm, a factor of about 5 less than prior predictions.
Collapse
|
37
|
Asur RS, Thomas RA, Tucker JD. Chemical induction of the bystander effect in normal human lymphoblastoid cells. Mutat Res 2009; 676:11-6. [PMID: 19486859 DOI: 10.1016/j.mrgentox.2009.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
Many studies investigating the bystander effect have used ionizing radiation to evaluate this phenomenon, whereas very few have determined whether genotoxic chemicals are also capable of inducing this effect. Here, we show that two such chemicals, mitomycin C, a bifunctional alkylating agent and phleomycin, a glycopeptide antibiotic of the bleomycin family, cause normal human B lymphoblastoid cells to produce media soluble factors that induce a bystander effect in unexposed cells. Ionizing radiation was used in parallel experiments to verify the existence of the bystander effect in these cells. Micronuclei in Cytochalasin B-blocked binucleated cells were used as the endpoint. Conditioned media obtained from cells exposed to mitomycin C induced a 1.5-3 fold increase, while conditioned media from phleomycin induced a 1.5-4 fold increase, and conditioned media from irradiated cells induced a 2-8 fold increase in micronuclei. We conclude that the bystander effect is not restricted to ionizing radiation, suggesting it may be a part of a general cellular stress response.
Collapse
Affiliation(s)
- Rajalakshmi S Asur
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202-3917, USA
| | | | | |
Collapse
|
38
|
Bromley R, Oliver L, Davey R, Harvie R, Baldock C. Predicting the clonogenic survival of A549 cells after modulated x-ray irradiation using the linear quadratic model. Phys Med Biol 2008; 54:187-206. [PMID: 19088388 DOI: 10.1088/0031-9155/54/2/002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study we present two prediction methods, mean dose and summed dose, for predicting the number of A549 cells that will survive after modulated x-ray irradiation. The prediction methods incorporate the dose profile from the modulated x-ray fluence map applied across the cell sample and the linear quadratic (LQ) model. We investigated the clonogenic survival of A549 cells when irradiated using two different modulated x-ray fluence maps. Differences between the measured and predicted surviving fraction were observed for modulated x-ray irradiation. When the x-ray fluence map produced a steep dose gradient across the sample, fewer cells survived in the unirradiated region than expected. When the x-ray fluence map produced a less steep dose gradient across the sample, more cells survived in the unirradiated region than expected. Regardless of the steepness of the dose gradient, more cells survived in the irradiated region than expected for the reference dose range of 1-10 Gy. The change in the cell survival for the unirradiated regions of the two different dose gradients may be an important factor to consider when predicting the number of cells that will survive at the edge of modulated x-ray fields. This investigation provides an improved method of predicting cell survival for modulated x-ray radiation treatment. It highlights the limitations of the LQ model, particularly in its ability to describe the biological response of cells irradiated under these conditions.
Collapse
Affiliation(s)
- Regina Bromley
- Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | | | | | | | | |
Collapse
|