1
|
A Mohymen A, Farag HI, Reda SM, Monem AS, Ali SA. Impact of reconstruction algorithms at different sphere-to-background ratios on PET quantification: A phantom study. Appl Radiat Isot 2025; 220:111761. [PMID: 40043519 DOI: 10.1016/j.apradiso.2025.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Using National Electrical Manufacturers Association (NEMA) phantom, the behavior of four distinct Positron Emission Tomography/Computed Tomography (PET/CT) reconstruction algorithms was investigated. These reconstruction algorithms were (Ordered Subset Expectation Maximization (OSEM), OSEM+ (Point Spread Function) PSF, OSEM + Time of Flight (TOF), and OSEM + TOF + PSF), and the focus was on sphere sizes and SBRs using recovery coefficients as a quantitation method. The obtained results demonstrated the significant effect of TOF on Gibbs artifact and Partial Volume Effect (PVE) at various Sphere-to-Background Ratios (SBRs). TOF-based algorithms improved quantification accuracy and mitigated the influence of Gibbs artifact, particularly at higher SBRs. Compared to PSF algorithm, TOF- based algorithms effectively mitigated the impact of PVE on small-sized spheres and less dependent on SBRs. In terms of Standardized Uptake Value (SUV) quantification, SUVmean was better when utilizing TOF-based algorithms at lower SBRs, whereas SUVmax at higher SBRs. The combination of TOF and PSF produced a promising outcomes in quantifying and detecting a small-sized spheres across various SBRs, ultimately resulting in a more reliable and precise diagnostic information.
Collapse
Affiliation(s)
- Ahmed A Mohymen
- Nuclear Medicine and Radiation Therapy Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hamed I Farag
- Nuclear Medicine and Radiation Therapy Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sameh M Reda
- Radiometry Department, National Institute of Standards, Giza, Egypt
| | - Ahmed S Monem
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Said A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Ko GB, Kwak D, Lee JS. Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:6520. [PMID: 39460003 PMCID: PMC11511292 DOI: 10.3390/s24206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.
Collapse
Affiliation(s)
| | | | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul 04782, Republic of Korea; (G.B.K.); (D.K.)
| |
Collapse
|
3
|
Dong Q, Ullah MN, Innes D, Watkins RD, Chang CM, Zou SJ, Groll A, Sacco I, Chinn G, Levin CS. PETcoil: first results from a second-generation RF-penetrable TOF-PET brain insert for simultaneous PET/MRI. Phys Med Biol 2024; 69:185007. [PMID: 39168156 DOI: 10.1088/1361-6560/ad7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Simultaneous positron emission tomography (PET)/magnetic resonance imaging provides concurrent information about anatomic, functional, and molecular changes in disease. We are developing a second generation MR-compatible RF-penetrable TOF-PET insert. The insert has a smaller scintillation crystal size and ring diameter compared to clinical whole-body PET scanners, resulting in higher spatial resolution and sensitivity. This paper reports the initial system performance of this full-ring PET insert. The global photopeak energy resolution and global coincidence time resolution, 11.74 ± 0.03 % FWHM and 238.1 ± 0.5 ps FWHM, respectively, are preserved as we scaled up the system to a full ring comprising 12, 288 LYSO-SiPM channels (crystal size: 3.2 × 3.2 × 20 mm3). Throughout a ten-hour experiment, the system performance remained stable, exhibiting a less than 1% change in all measured parameters. In a resolution phantom study, the system successfully resolved all 2.8 mm diameter rods, achieving an average VPR of 0.28 ± 0.08 without TOF and 0.24 ± 0.07 with TOF applied. Moreover, the implementation of TOF in the Hoffman phantom study also enhanced image quality. Initial MR compatibility studies of the full PET ring were performed with it unpowered as a milestone to focus on looking for material and geometry-related artifacts. During all MR studies, the MR body coil functioned as both the transmit and receive coil, and no observable artifacts were detected. As expected, using the body coil also as the RF receiver, MR image signal-to-noise ratio exhibited degradation (∼30%), so we are developing a high quality receive-only coil that resides inside the PET ring.
Collapse
Affiliation(s)
- Qian Dong
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Muhammad Nasir Ullah
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Derek Innes
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ronald D Watkins
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Chen-Ming Chang
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Sarah J Zou
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Andrew Groll
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ilaria Sacco
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Garry Chinn
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Craig S Levin
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
4
|
Li A, Zhang X, Zhou X, Fang L, Hu J, Li B, Zhang B, Xie Q, Li F, Xiao P. Timing offset calibration for TOF PET using stationary line source scans at multiple positions. Phys Med Biol 2024; 69:175018. [PMID: 39137804 DOI: 10.1088/1361-6560/ad6edb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Background. Accurate timing offset calibration is crucial for time-of-flight (TOF) positron emission tomography (PET) to mitigate image artifacts and improve quantitative accuracy. However, existing methods are often time-consuming, complex, or costly.Objective. This paper presents a method for TOF PET timing offset calibration that eliminates the need for costly equipment, phantoms, short-half-life sources, and precise source positioning.Approach. We estimate channel timing offsets using stationary scans of a68Ge line source, typically used for routine quality control, at a minimum of three non-coplanar positions, with each position scanned for two minutes. The line source positions are accurately determined by applying a simple algorithm to their reconstructed images, allowing precise calculation of arrival time differences. Channel timing offsets are estimated by solving a least squares problem. This method is assessed through analyses of phantoms and patient images using a RAYSOLUTION DigitMI 930 scanner.Main results. The estimated timing offsets ranged from -500 ps to 500 ps across all channels. Calibration with a minimum of three scanned positions was sufficient to correct these offsets, achieving less than a 1% discrepancy across various metrics of the image quality (IQ) phantom compared to 12 positions. This calibration significantly reduced edge artifacts in TOF reconstruction of both phantoms and patients. Furthermore, the IQ phantom displayed a 14% increase in average contrast recovery, a 61% reduction in average background variability across all spheres, and a 90% reduction in average residual error. Consistent with the phantom results, patient data revealed enhancements in maximum standardized uptake values (SUVmax) from 14% to 55% for lesions measuring 6 mm to 14 mm. The calibration also improved lesion-to-background contrast and eliminated artifacts caused by the spillover effect of the kidneys and bladder.Significance. The proposed method is fast, user-friendly, and cost-effective, effectively improving lesion detection and diagnostic accuracy.
Collapse
Affiliation(s)
- Ang Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuan Zhang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyun Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Fang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Junpeng Hu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| | - Fei Li
- Department of Nuclear Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Peng Xiao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| |
Collapse
|
5
|
Li G, Ma W, Li X, Yang W, Quan Z, Ma T, Wang J, Wang Y, Kang F, Wang J. Performance Evaluation of the uMI Panorama PET/CT System in Accordance with the National Electrical Manufacturers Association NU 2-2018 Standard. J Nucl Med 2024:jnumed.123.265929. [PMID: 38388513 DOI: 10.2967/jnumed.123.265929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
The uMI Panorama is a novel PET/CT system using silicon photomultiplier and application-specific integrated circuit technologies and providing exceptional spatial and time-of-flight (TOF) resolutions. The objective of this study was to assess the physical performance of the uMI Panorama in accordance with the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard. Methods: Spatial resolution, sensitivity, count rate performance, accuracy, image quality, and TOF resolution were evaluated in accordance with the guidelines outlined in the NEMA NU 2-2018 standard. Energy resolution was determined using the same dataset acquired for the count rate performance evaluation. Images from a Hoffman brain phantom, a mini-Derenzo phantom, and 3 patient studies were evaluated to demonstrate system performance. Results: The transaxial spatial resolution at full width at half maximum was measured as 2.88 mm with a 1-cm offset from the center axial field of view. The sensitivity at the center axial field of view was 20.1 kcps/MBq. At an activity concentration of 73.0 kBq/mL, the peak noise-equivalent count rate (NECR) reached 576 kcps with a scatter fraction of approximately 33.2%. For activity concentrations at or below the peak NECR, the maximum relative count rate error among all slices remained consistently below 3%. When assessed using the NEMA image quality phantom, overall image contrast recovery ranged from 63.2% to 88.4%, whereas background variability ranged from 4.2% to 1.1%. TOF resolution was 189 ps at 5.3 kBq/mL and was consistently lower than 200 ps for activity concentrations at or below the peak NECR. The patient studies demonstrated that scans at 2 min/bed produced images characterized by low noise and high contrast. Clear delineation of nuclei, spinal cords, and other substructures of the brain was observed in the brain PET images. Conclusion: uMI Panorama, the world's first commercial PET system with sub-200-ps TOF resolution, demonstrated fine spatial and fast TOF resolutions, robust count rate performance, and high quantification accuracy across a wide range of activity levels. This advanced technology offers enhanced diagnostic capability for detecting small and low-contrast lesions while showing promising potential under high-count-rate imaging scenarios.
Collapse
Affiliation(s)
- Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Taoqi Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junling Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunya Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Bebbington NA, Christensen KB, Østergård LL, Holdgaard PC. Ultra-low-dose CT for attenuation correction: dose savings and effect on PET quantification for protocols with and without tin filter. EJNMMI Phys 2023; 10:66. [PMID: 37861887 PMCID: PMC10589162 DOI: 10.1186/s40658-023-00585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Ultra-low-dose (ULD) computed tomography (CT) scans should be used when CT is performed only for attenuation correction (AC) of positron emission tomography (PET) data. A tin filter can be used in addition to the standard aluminium bowtie filter to reduce CT radiation dose to patients. The aim was to determine how low CT doses can be, when utilised for PET AC, with and without the tin filter, whilst providing adequate PET quantification. METHODS A water-filled NEMA image quality phantom was imaged in three configurations with 18F-FDG: (1) water only (0HU); (2) with cylindrical insert containing homogenous mix of sand, flour and water (SFW, approximately 475HU); (3) with cylindrical insert containing sand (approximately 1100HU). Each underwent one-bed-position (26.3 cm) PET-CT comprising 1 PET and 13 CT acquisitions. CT acquisitions with tube current modulation were performed at 120 kV/50 mAs-ref (reference standard), 100 kV/7 mAs-ref (standard ULDCT for PET AC protocol), Sn140kV (mAs range 7-50-ref) and Sn100kV (mAs range 12-400-ref). PET data were reconstructed with μ-maps provided by each CT dataset, and PET activity concentration measured in each reconstruction. Differences in CT dose length product (DLP) and PET quantification were determined relative to the reference standard. RESULTS At each tube voltage, changes in PET quantification were greater with increasing density and reducing mAs. Compared with the reference standard, differences in PET quantification for the standard ULDCT protocol for the three phantoms were ≤ 1.7%, with the water phantom providing a DLP of 7mGy.cm. With tin filter at Sn100kV, differences in PET quantification were negligible (≤ 1.2%) for all phantoms down to 50mAs-ref, proving a DLP of 2.8mGy.cm, at 60% dose reduction compared with standard ULDCT protocol. Below 50mAs-ref, differences in PET quantification were > 2% for at least one phantom (2.3% at 25mAs-ref in SFW; 6.4% at 12mAs-ref in sand). At Sn140kV/7mAs-ref, quantification differences were ≤ 0.6% in water, giving 3.8mGy.cm DLP, but increased to > 2% at bone-equivalent densities. CONCLUSIONS CT protocols for PET AC can provide ultra-low doses with adequate PET quantification. The tin filter can allow 60-87% lower dose than the standard ULDCT protocol for PET AC, depending on tissue density and accepted change in PET quantification.
Collapse
Affiliation(s)
| | - Kenneth Boye Christensen
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Lone Lange Østergård
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Paw Christian Holdgaard
- Department of Nuclear Medicine, Lillebaelt Hospital - University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| |
Collapse
|
7
|
Sanaat A, Akhavanalaf A, Shiri I, Salimi Y, Arabi H, Zaidi H. Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains. Hum Brain Mapp 2022; 43:5032-5043. [PMID: 36087092 PMCID: PMC9582376 DOI: 10.1002/hbm.26068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
We aim to synthesize brain time-of-flight (TOF) PET images/sinograms from their corresponding non-TOF information in the image space (IS) and sinogram space (SS) to increase the signal-to-noise ratio (SNR) and contrast of abnormalities, and decrease the bias in tracer uptake quantification. One hundred forty clinical brain 18 F-FDG PET/CT scans were collected to generate TOF and non-TOF sinograms. The TOF sinograms were split into seven time bins (0, ±1, ±2, ±3). The predicted TOF sinogram was reconstructed and the performance of both models (IS and SS) compared with reference TOF and non-TOF. Wide-ranging quantitative and statistical analysis metrics, including structural similarity index metric (SSIM), root mean square error (RMSE), as well as 28 radiomic features for 83 brain regions were extracted to evaluate the performance of the CycleGAN model. SSIM and RMSE of 0.99 ± 0.03, 0.98 ± 0.02 and 0.12 ± 0.09, 0.16 ± 0.04 were achieved for the generated TOF-PET images in IS and SS, respectively. They were 0.97 ± 0.03 and 0.22 ± 0.12, respectively, for non-TOF-PET images. The Bland & Altman analysis revealed that the lowest tracer uptake value bias (-0.02%) and minimum variance (95% CI: -0.17%, +0.21%) were achieved for TOF-PET images generated in IS. For malignant lesions, the contrast in the test dataset was enhanced from 3.22 ± 2.51 for non-TOF to 3.34 ± 0.41 and 3.65 ± 3.10 for TOF PET in SS and IS, respectively. The implemented CycleGAN is capable of generating TOF from non-TOF PET images to achieve better image quality.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Azadeh Akhavanalaf
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
- Geneva University Neurocenter, Geneva UniversityGenevaSwitzerland
- Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenNetherlands
- Department of Nuclear MedicineUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
8
|
Mehranian A, Wollenweber SD, Walker MD, Bradley KM, Fielding PA, Huellner M, Kotasidis F, Su KH, Johnsen R, Jansen FP, McGowan DR. Deep learning-based time-of-flight (ToF) image enhancement of non-ToF PET scans. Eur J Nucl Med Mol Imaging 2022; 49:3740-3749. [PMID: 35507059 PMCID: PMC9399038 DOI: 10.1007/s00259-022-05824-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/26/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE To improve the quantitative accuracy and diagnostic confidence of PET images reconstructed without time-of-flight (ToF) using deep learning models trained for ToF image enhancement (DL-ToF). METHODS A total of 273 [18F]-FDG PET scans were used, including data from 6 centres equipped with GE Discovery MI ToF scanners. PET data were reconstructed using the block-sequential-regularised-expectation-maximisation (BSREM) algorithm with and without ToF. The images were then split into training (n = 208), validation (n = 15), and testing (n = 50) sets. Three DL-ToF models were trained to transform non-ToF BSREM images to their target ToF images with different levels of DL-ToF strength (low, medium, high). The models were objectively evaluated using the testing set based on standardised uptake value (SUV) in 139 identified lesions, and in normal regions of liver and lungs. Three radiologists subjectively rated the models using testing sets based on lesion detectability, diagnostic confidence, and image noise/quality. RESULTS The non-ToF, DL-ToF low, medium, and high methods resulted in - 28 ± 18, - 28 ± 19, - 8 ± 22, and 1.7 ± 24% differences (mean; SD) in the SUVmax for the lesions in testing set, compared to ToF-BSREM image. In background lung VOIs, the SUVmean differences were 7 ± 15, 0.6 ± 12, 1 ± 13, and 1 ± 11% respectively. In normal liver, SUVmean differences were 4 ± 5, 0.7 ± 4, 0.8 ± 4, and 0.1 ± 4%. Visual inspection showed that our DL-ToF improved feature sharpness and convergence towards ToF reconstruction. Blinded clinical readings of testing sets for diagnostic confidence (scale 0-5) showed that non-ToF, DL-ToF low, medium, and high, and ToF images scored 3.0, 3.0, 4.1, 3.8, and 3.5 respectively. For this set of images, DL-ToF medium therefore scored highest for diagnostic confidence. CONCLUSION Deep learning-based image enhancement models may provide converged ToF-equivalent image quality without ToF reconstruction. In clinical scoring DL-ToF-enhanced non-ToF images (medium and high) on average scored as high as, or higher than, ToF images. The model is generalisable and hence, could be applied to non-ToF images from BGO-based PET/CT scanners.
Collapse
Affiliation(s)
| | | | - Matthew D Walker
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS FT, Oxford, UK
| | - Kevin M Bradley
- Wales Research and Diagnostic PET Imaging Centre, University Hospital of Wales, Cardiff, UK
| | | | | | | | | | | | | | - Daniel R McGowan
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS FT, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Sari H, Teimoorisichani M, Mingels C, Alberts I, Panin V, Bharkhada D, Xue S, Prenosil G, Shi K, Conti M, Rominger A. Quantitative evaluation of a deep learning-based framework to generate whole-body attenuation maps using LSO background radiation in long axial FOV PET scanners. Eur J Nucl Med Mol Imaging 2022; 49:4490-4502. [PMID: 35852557 PMCID: PMC9606046 DOI: 10.1007/s00259-022-05909-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Purpose Attenuation correction is a critically important step in data correction in positron emission tomography (PET) image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view (LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators. Methods Data from 18 subjects were used to train convolutional neural networks to enhance initial µ-maps generated using joint activity and attenuation reconstruction algorithm (MLACF) with transmission data from LSO background radiation acquired before and after the administration of 18F-fluorodeoxyglucose (18F-FDG) (µ-mapMLACF-PRE and µ-mapMLACF-POST respectively). The deep learning-enhanced µ-maps (µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST) were compared against MLACF-derived and CT-based maps (µ-mapCT). The performance of the method was also evaluated by assessing PET images reconstructed using each µ-map and computing volume-of-interest based standard uptake value measurements and percentage relative mean error (rME) and relative mean absolute error (rMAE) relative to CT-based method. Results No statistically significant difference was observed in rME values for µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST both in fat-based and water-based soft tissue as well as bones, suggesting that presence of the radiopharmaceutical activity in the body had negligible effects on the resulting µ-maps. The rMAE values µ-mapDL-MLACF-POST were reduced by a factor of 3.3 in average compared to the rMAE of µ-mapMLACF-POST. Similarly, the average rMAE values of PET images reconstructed using µ-mapDL-MLACF-POST (PETDL-MLACF-POST) were 2.6 times smaller than the average rMAE values of PET images reconstructed using µ-mapMLACF-POST. The mean absolute errors in SUV values of PETDL-MLACF-POST compared to PETCT were less than 5% in healthy organs, less than 7% in brain grey matter and 4.3% for all tumours combined. Conclusion We describe a deep learning-based method to accurately generate µ-maps from PET emission data and LSO background radiation, enabling CT-free attenuation and scatter correction in LAFOV PET scanners. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05909-3.
Collapse
Affiliation(s)
- Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.
| | | | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | | | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - George Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
10
|
Tomita Y, Ichikawa Y, Sakuma H. Shine-through artifact due to high-radioactivity bladder and bowel gas in 18F-FDG PET/CT: impact of time-of-flight algorithm and radioactivity concentration of urine in the bladder on the occurrence of the artifacts. Ann Nucl Med 2022; 36:736-745. [PMID: 35635608 DOI: 10.1007/s12149-022-01756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Shine-though artifact can appear as regions with falsely increased uptake in the immediate vicinity of large hot sources in 18F-FDG PET/CT. This artifact may adversely affect the assessment of tumor involvement in the regions adjacent to the bladder. The purpose of this study was to evaluate the prevalence of shine-through artifacts in clinical 18F-FDG PET/CT examinations and the factors that can influence their occurrence and extent. METHODS PET/CT images were acquired with Discovery PET/CT 690. One hundred six patients who underwent 18F-FDG PET/CT for clinical purposes were retrospectively reviewed. PET images were reconstructed using 3-dimensional ordered-subset expectation maximization with and without time-of-flight (TOF). The shine-through artifact was defined as an erroneous accumulation of 18F-FDG between the bladder and the air region in the intestine without attenuation correction (AC) errors. The maximum standardized uptake value (SUVmax) of the artifact was measured, and the effect of TOF on this artifact was evaluated. The SUVmax in the bladder was compared in patients with and without the artifacts. A phantom containing two spheres simulating bladder and rectal gas was imaged while changing the radioactivity of 18F-FDG solution in the bladder sphere. The relationship between the bladder sphere radioactivity and the SUVmax of the shine-through artifacts was evaluated. RESULTS The shine-through artifact was more frequently observed on PET images reconstructed without TOF (12/106, 11.3%) as compared to PET images with TOF (8/106, 7.5%, p = 0.046). The SUVmax of the shine-through artifacts was significantly decreased by TOF reconstruction compared to non-TOF reconstruction (4.7 ± 1.7 vs 7.6 ± 3.1, p = 0.0078). The mean SUVmax of urinary bladders in patients with the artifacts was significantly higher than those without the artifacts on non-TOF images (74.9 ± 61.1 vs 46.3 ± 35.2, p = 0.038). In the phantom study, the SUVmax of the shine-through artifact increased as the radioactivity in the bladder-simulating sphere increased. CONCLUSION Shine-through artifacts were observed in approximately 10% of clinical 18F-FDG PET/CT examinations. Their magnitude is significantly associated with the radioactivity in the bladder and can be reduced by employing TOF. Recognizing this artifact allows for a more accurate interpretation of 18F-FDG pelvic studies.
Collapse
Affiliation(s)
- Yoya Tomita
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yasutaka Ichikawa
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
11
|
Are Quantitative Errors Reduced with Time-of-Flight Reconstruction When Using Imperfect MR-Based Attenuation Maps for 18F-FDG PET/MR Neuroimaging? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We studied whether TOF reduces error propagation from attenuation correction to PET image reconstruction in PET/MR neuroimaging, by using imperfect attenuation maps in a clinical PET/MR system with 525 ps timing resolution. Ten subjects who had undergone 18F-FDG PET neuroimaging were included. Attenuation maps using a single value (0.100 cm−1) with and without air, and a 3-class attenuation map with soft tissue (0.096 cm−1), air and bone (0.151 cm−1) were used. CT-based attenuation correction was used as a reference. Volume-of-interest (VOI) analysis was conducted. Mean bias and standard deviation across the brain was studied. Regional correlations and concordance were evaluated. Statistical testing was conducted. Average bias and standard deviation were slightly reduced in the majority (23–26 out of 35) of the VOI with TOF. Bias was reduced near the cortex, nasal sinuses, and in the mid-brain with TOF. Bland–Altman and regression analysis showed small improvements with TOF. However, the overall effect of TOF to quantitative accuracy was small (3% at maximum) and significant only for two attenuation maps out of three at 525 ps timing resolution. In conclusion, TOF might reduce the quantitative errors due to attenuation correction in PET/MR neuroimaging, but this effect needs to be further investigated on systems with better timing resolution.
Collapse
|
12
|
Lindén J, Teuho J, Teräs M, Klén R. Evaluation of three methods for delineation and attenuation estimation of the sinus region in MR-based attenuation correction for brain PET-MR imaging. BMC Med Imaging 2022; 22:48. [PMID: 35300592 PMCID: PMC8928695 DOI: 10.1186/s12880-022-00770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background Attenuation correction is crucial in quantitative positron emission tomography-magnetic resonance (PET-MRI) imaging. We evaluated three methods to improve the segmentation and modelling of the attenuation coefficients in the nasal sinus region. Two methods (cuboid and template method) included a MRI-CT conversion model for assigning the attenuation coefficients in the nasal sinus region, whereas one used fixed attenuation coefficient assignment (bulk method). Methods The study population consisted of data of 10 subjects which had undergone PET-CT and PET-MRI. PET images were reconstructed with and without time-of-flight (TOF) using CT-based attenuation correction (CTAC) as reference. Comparison was done visually, using DICE coefficients, correlation, analyzing attenuation coefficients, and quantitative analysis of PET and bias atlas images. Results The median DICE coefficients were 0.824, 0.853, 0.849 for the bulk, cuboid and template method, respectively. The median attenuation coefficients were 0.0841 cm−1, 0.0876 cm−1, 0.0861 cm−1 and 0.0852 cm−1, for CTAC, bulk, cuboid and template method, respectively. The cuboid and template methods showed error of less than 2.5% in attenuation coefficients. An increased correlation to CTAC was shown with the cuboid and template methods. In the regional analysis, improvement in at least 49% and 80% of VOI was seen with non-TOF and TOF imaging. All methods showed errors less than 2.5% in non-TOF and less than 2% in TOF reconstructions. Conclusions We evaluated two proof-of-concept methods for improving quantitative accuracy in PET/MRI imaging and showed that bias can be further reduced by inclusion of TOF. Largest improvements were seen in the regions of olfactory bulb, Heschl's gyri, lingual gyrus and cerebellar vermis. However, the overall effect of inclusion of the sinus region as separate class in MRAC to PET quantification in the brain was considered modest. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-022-00770-0.
Collapse
Affiliation(s)
- Jani Lindén
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland. .,Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| | - Jarmo Teuho
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland
| | - Mika Teräs
- Department of Medical Physics, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland.,Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| |
Collapse
|
13
|
Presotto L. The long fight against motion artifacts in cardiac PET. J Nucl Cardiol 2022; 29:69-71. [PMID: 32557239 DOI: 10.1007/s12350-020-02232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Presotto
- Nuclear Medicine Unit, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
14
|
Teimoorisichani M, Panin V, Rothfuss H, Sari H, Rominger A, Conti M. A CT-less approach to quantitative PET imaging using the LSO intrinsic radiation for long-axial FOV PET scanners. Med Phys 2021; 49:309-323. [PMID: 34818446 PMCID: PMC9299938 DOI: 10.1002/mp.15376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/11/2022] Open
Abstract
Purpose Long‐axial field‐of‐view (FOV) positron emission tomography (PET) scanners have gained a lot of interest in the recent years. Such scanners provide increased sensitivity and enable unique imaging opportunities that were not previously feasible. Benefiting from the high sensitivity of a long‐axial FOV PET scanner, we studied a computed tomography (CT)–less reconstruction algorithm for the Siemens Biograph Vision Quadra with an axial FOV of 106 cm. Methods In this work, the background radiation from radioisotope lutetium‐176 in the scintillators was used to create an initial estimate of the attenuation maps. Then, joint activity and attenuation reconstruction algorithms were used to create an improved attenuation map of the object. The final attenuation maps were then used to reconstruct quantitative PET images, which were compared against CT‐based PET images. The proposed method was evaluated on data from three patients who underwent a flurodeoxyglucouse PET scan. Results Segmentation of the PET images of the three studied patients showed an average quantitative error of 6.5%–8.3% across all studied organs when using attenuation maps from maximum likelihood estimation of attenuation and activity and 5.3%–6.6% when using attenuation maps from maximum likelihood estimation of activity and attenuation correction coefficients. Conclusions Benefiting from the background radiation of lutetium‐based scintillators, a quantitative CT‐less PET imaging technique was evaluated in this work.
Collapse
Affiliation(s)
| | - Vladimir Panin
- Siemens Medical Solutions USA, Inc., Knoxville, Tennessee, USA
| | - Harold Rothfuss
- Siemens Medical Solutions USA, Inc., Knoxville, Tennessee, USA
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Giovagnoli D, Bousse A, Beaupere N, Canot C, Cussonneau JP, Diglio S, Iborra Carreres A, Masbou J, Merlin T, Morteau E, Xing Y, Zhu Y, Thers D, Visvikis D. A Pseudo-TOF Image Reconstruction Approach for Three-Gamma Small Animal Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3046409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Schaart DR, Schramm G, Nuyts J, Surti S. Time of Flight in Perspective: Instrumental and Computational Aspects of Time Resolution in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:598-618. [PMID: 34553105 PMCID: PMC8454900 DOI: 10.1109/trpms.2021.3084539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first time-of-flight positron emission tomography (TOF-PET) scanners were developed as early as in the 1980s. However, the poor light output and low detection efficiency of TOF-capable detectors available at the time limited any gain in image quality achieved with these TOF-PET scanners over the traditional non-TOF PET scanners. The discovery of LSO and other Lu-based scintillators revived interest in TOF-PET and led to the development of a second generation of scanners with high sensitivity and spatial resolution in the mid-2000s. The introduction of the silicon photomultiplier (SiPM) has recently yielded a third generation of TOF-PET systems with unprecedented imaging performance. Parallel to these instrumentation developments, much progress has been made in the development of image reconstruction algorithms that better utilize the additional information provided by TOF. Overall, the benefits range from a reduction in image variance (SNR increase), through allowing joint estimation of activity and attenuation, to better reconstructing data from limited angle systems. In this work, we review these developments, focusing on three broad areas: 1) timing theory and factors affecting the time resolution of a TOF-PET system; 2) utilization of TOF information for improved image reconstruction; and 3) quantification of the benefits of TOF compared to non-TOF PET. Finally, we offer a brief outlook on the TOF-PET developments anticipated in the short and longer term. Throughout this work, we aim to maintain a clinically driven perspective, treating TOF as one of multiple (and sometimes competitive) factors that can aid in the optimization of PET imaging performance.
Collapse
Affiliation(s)
- Dennis R Schaart
- Section Medical Physics & Technology, Radiation Science and Technology Department, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, 3000 Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, 3000 Leuven, Belgium
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
17
|
Toussaint M, Lecomte R, Dussault JP. Improvement of Spatial Resolution with Iterative PET Reconstruction using UltraFast TOF. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:729-737. [PMID: 35059544 PMCID: PMC8765719 DOI: 10.1109/trpms.2020.3033561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The impact of Time-of-Flight (TOF) on positron emission tomography (PET) spatial resolution is generally considered negligible. In this work, a two-step approach based on simulations of two-dimensional scanner configurations is taken to show that ultra-fast TOF has the potential to overcome the limitation induced by the physical size of detectors on spatial resolution. An estimation of the lower bound on spatial resolution using point sources is provided, followed by a qualitative assessment of the resolution obtained using a Hot Spot phantom. The impact of detector width, TOF resolution and TOF binning on the achieved spatial resolution is also studied. While gain beyond the expected blur due to detector size is demonstrated, the detector size remains one limiting factor albeit less prominent. The dependence on acquisition statistics to reach the full potential of TOF-induced gain in spatial resolution is demonstrated. A simulated brain phantom acquired with a fictive three-dimensional PET scanner was qualitatively analyzed and structures smaller than the typical limit are clearly made visible by reconstructing the images with a ∼13-ps TOF resolution. A potential application of this feature of ultra-fast TOF would be the design of clinical PET scanners achieving spatial resolution beyond the current state-of-the-art.
Collapse
Affiliation(s)
- Maxime Toussaint
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center of CRCHUS and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Dussault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Lee MS, Cates JW, Gonzalez-Montoro A, Levin CS. High-resolution time-of-flight PET detector with 100 ps coincidence time resolution using a side-coupled phoswich configuration. Phys Med Biol 2021; 66. [PMID: 34106089 DOI: 10.1088/1361-6560/ac01b5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/14/2021] [Indexed: 12/23/2022]
Abstract
Photon time-of-flight (TOF) capability in positron emission tomography (PET) enables reconstructed image signal-to-noise ratio (SNR) improvement. With the coincidence time resolution (CTR) of 100 picosecond (ps), a five-fold SNR improvement can be achieved with a 40 cm diameter imaging subject, relative to a system without TOF capability. This 100 ps CTR can be achieved for aclinically relevantdetector design (crystal element length ≥20 mm with reasonably high crystal packing fraction) using a side-readout PET detector configuration that enables 511 keV photon interaction depth-independent light collection efficiency and lower variance in scintillation photon transit time to the silicon photomultiplier (SiPM). In this study, we propose a new concept of TOF-PET detector to achieve high (<2 mm) resolution, using a 'side-coupled phoswich' configuration, where two crystals with different decay times (τd) are coupled in a side-readout configuration to a common row of photosensors. The proposed design was validated and optimized with GATE Monte Carlo simulation studies to determine an efficient detector design. Based on the simulation results, a proof-of-concept side-coupled phoswich detector design was developed comprising two LSO crystals with the size of 1.9 × 1.9 × 10 mm3with decay times of 34.39 and 43.07 ns, respectively. The phoswich crystals were side-coupled to the same three 4 × 4 mm2SiPMs and detector performances were evaluated. As a result of the experimental evaluation, the side-coupled phoswich configuration achieved CTR of 107 ± 3 ps, energy resolution of 10.5% ± 1.21% at 511 keV and >95% accuracy in identifying interactions in the two adjacent 1.9 × 1.9 × 10 mm3crystal elements using the time-over-threshold technique. Based on our results, we can achieve excellent spatial and energy resolution in addition to ∼100 ps CTR with this novel detector design.
Collapse
Affiliation(s)
- Min Sun Lee
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, CA, United States of America.,Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Joshua W Cates
- Applied Nuclear Physics Program, Lawrence Berkeley National Laboratory, CA, United States of America
| | - Andrea Gonzalez-Montoro
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, CA, United States of America
| | - Craig S Levin
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, CA, United States of America.,Department of Physics, Stanford University, CA, United States of America.,Department of Electrical Engineering, Stanford University, CA, United States of America.,Department of Bioengineering, Stanford University, CA, United States of America
| |
Collapse
|
19
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
20
|
Abstract
This article describes aspects of PET scanner design for long axial field-of-view systems and how these choices have an impact on scanner performance.
Collapse
Affiliation(s)
- Margaret E Daube-Witherspoon
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Room 156H, Philadelphia, PA 19104, USA.
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
21
|
Li Y, Matej S, Karp JS. Practical joint reconstruction of activity and attenuation with autonomous scaling for time-of-flight PET. Phys Med Biol 2020; 65:235037. [PMID: 32340014 PMCID: PMC8383745 DOI: 10.1088/1361-6560/ab8d75] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent research has showed that attenuation images can be determined from emission data, jointly with activity images, up to a scaling constant when utilizing the time-of-flight (TOF) information. We aim to develop practical CT-less joint reconstruction for clinical TOF PET scanners to obtain quantitatively accurate activity and attenuation images. In this work, we present a joint reconstruction of activity and attenuation based on MLAA (maximum likelihood reconstruction of attenuation and activity) with autonomous scaling determination and joint TOF scatter estimation from TOF PET data. Our idea for scaling is to use a selected volume of interest (VOI) in a reconstructed attenuation image with known attenuation, e.g. a liver in patient imaging. First, we construct a unit attenuation medium which has a similar, though not necessarily the same, support to the imaged emission object. All detectable LORs intersecting the unit medium have an attenuation factor of e -1≈ 0.3679, i.e. the line integral of linear attenuation coefficients is one. The scaling factor can then be determined from the difference between the reconstructed attenuation image and the known attenuation within the selected VOI normalized by the unit attenuation medium. A four-step iterative joint reconstruction algorithm is developed. In each iteration, (1) first the activity is updated using TOF OSEM from TOF list-mode data; (2) then the attenuation image is updated using XMLTR-a extended MLTR from non-TOF LOR sinograms; (3) a scaling factor is determined based on the selected VOI and both activity and attenuation images are updated using the estimated scaling; and (4) scatter is estimated using TOF single scatter simulation with the jointly reconstructed activity and attenuation images. The performance of joint reconstruction is studied using simulated data from a generic whole-body clinical TOF PET scanner and a long axial FOV research PET scanner as well as 3D experimental data from the PennPET Explorer scanner. We show that the proposed joint reconstruction with proper autonomous scaling provides low bias results comparable to the reference reconstruction with known attenuation.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Samuel Matej
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
22
|
Wang G. PET-enabled dual-energy CT: image reconstruction and a proof-of-concept computer simulation study. Phys Med Biol 2020; 65:245028. [PMID: 33120376 DOI: 10.1088/1361-6560/abc5ca] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Standard dual-energy computed tomography (CT) uses two different x-ray energies to obtain energy-dependent tissue attenuation information to allow quantitative material decomposition. The combined use of dual-energy CT and positron emission tomography (PET) may provide a more comprehensive characterization of disease states in cancer and other diseases. However, the integration of dual-energy CT with PET is not trivial, either requiring costly hardware upgrades or increasing radiation exposure. This paper proposes a different dual-energy CT imaging method that is enabled by PET. Instead of using a second x-ray CT scan with a different energy, this method exploits time-of-flight PET image reconstruction via the maximum likelihood attenuation and activity (MLAA) algorithm to obtain a 511 keV gamma-ray attenuation image from PET emission data. The high-energy gamma-ray attenuation image is then combined with the low-energy x-ray CT of PET/CT to provide a pair of dual-energy CT images. A major challenge with the standard MLAA reconstruction is the high noise present in the reconstructed 511 keV attenuation map, which would not compromise the PET activity reconstruction too much but may significantly affect the performance of the gamma-ray attenuation image for material decomposition. To overcome the problem, we further propose a kernel MLAA algorithm to exploit the prior information from the available x-ray CT image. We conducted a computer simulation to test the concept and algorithm for the task of material decomposition. The simulation results demonstrate that this PET-enabled dual-energy CT method is promising for quantitative material decomposition. The proposed method can be readily implemented on time-of-flight PET/CT scanners to enable simultaneous PET and dual-energy CT imaging.
Collapse
Affiliation(s)
- Guobao Wang
- Department of Radiology, University of California, Davis, CA, United States of America
| |
Collapse
|
23
|
Daube-Witherspoon ME, Viswanath V, Werner ME, Karp JS. Performance Characteristics of Long Axial Field-of-View PET Scanners with Axial Gaps. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 5:322-330. [PMID: 34179595 DOI: 10.1109/trpms.2020.3027257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The introduction of long (>60 cm) axial field-of-view (LAFOV) PET systems has shown their potential for clinical and research applications. LAFOV scanners are expensive, so there is interest in designing systems with longer axial coverage while mitigating cost by introducing detector gaps. We used measurements on the PennPET Explorer (64-cm AFOV prototype) and simulations of scanners up to 143-cm long to assess scanner performance with axial gaps introduced by varying the number of detector rows in each ring. Removing detectors reduces the total sensitivity and results in a non-uniform axial noise profile. Axial resolution shows small (<0.5 mm) loss from the edge of the AFOV to the center, even for a 143-cm AFOV scanner with an unrestricted acceptance angle. The presence of large axial gaps increases the variability in axial resolution and contrast recovery across the AFOV compared to a system without gaps. More modest axial gaps show less variable behavior. The results suggest that designs where the gap is no larger than one-half of the width of a detector ring may be preferred, although the optimal choice of scanner design with the trade-offs of performance and AFOV will depend on its intended usage.
Collapse
Affiliation(s)
| | - Varsha Viswanath
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew E Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
24
|
From a PMT-based to a SiPM-based PET system: a study to define matched acquisition/reconstruction parameters and NEMA performance of the Biograph Vision 450. EJNMMI Phys 2020; 7:55. [PMID: 32880792 PMCID: PMC7471223 DOI: 10.1186/s40658-020-00323-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this work was to propose an approach based on noise measurement to adapt present clinical acquisition and reconstruction parameters adapted to a PMT-based system (Biograph mCT) to a SiPM-based system (Biograph Vision 450) sharing identical geometrical properties. The NEMA performance (NEMA) of the recently released Biograph Vision 450 PET/CT (Vision) was also derived. Methods All measurements were conducted on Vision and Biograph mCT with TrueV (mCT). A full NEMA-based performance was derived for Vision only. The adaptation of acquisition and reconstruction parameters from mCT to Vision was done using the NEMA image quality phantom. The noise level reached using mCT was set as the reference value for six different numbers of net true coincidences. The noise level computed using Vision was matched to the reference noise level (within 0.01%) using a different reconstruction set-up to determine the potential reduction of count numbers for the same noise level. Results Vision sensitivity was 9.1 kcps/MBq for a timing resolution of 213 ps at 5.3 kBq/mL. The NEMA-based CR for the 10-mm sphere was better than 75% regardless the reconstruction set-up studied. The mCT reference noise properties could be achieved using Vision with a scan time reduction (STR) of 1.34 with four iterations and a 440 × 440 matrix size (or STR = 1.89 with a 220 × 220 matrix size) together with a 3D CR improvement of 53% for the 10-mm sphere (24% using 220 × 220). Conclusion The Vision exhibited improved NEMA performances compared to mCT. Using the proposed approach, the time acquisition could be divided by almost two, while keeping the same noise properties as that of mCT with a marked improvement of contrast recovery.
Collapse
|
25
|
Spangler-Bickell MG, Deller TW, Bettinardi V, Jansen F. Ultra-Fast List-Mode Reconstruction of Short PET Frames and Example Applications. J Nucl Med 2020; 62:287-292. [PMID: 32646873 DOI: 10.2967/jnumed.120.245597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Standard clinical reconstructions usually require several minutes to complete, and this time is mostly independent of the duration of the data being reconstructed. Applications such as data-driven motion estimation, which require many short frames over the duration of the scan, become unfeasible with such long reconstruction times. In this work, we present an infrastructure whereby ultra-fast list-mode reconstructions of very short frames (≤1 s) are performed. With this infrastructure, it is possible to have a dynamic series of frames that can be used for various applications, such as data-driven motion estimation, whole-body surveys, quick reconstructions of gated data to select the optimal gate for a given attenuation map, and, if the infrastructure runs simultaneously with the scan, real-time display of the reconstructed data during the scan and automated alerts for patient motion. Methods: A fast ray-tracing time-of-flight projector was implemented and parallelized. The reconstruction parameters were optimized to allow for fast performance: only a few iterations are performed, without point-spread-function modeling, and scatter correction is not used. The resulting reconstructions are thus not quantitative but are acceptable for motion estimation and visualization purposes. Data-driven motion can be estimated using image registration, with the resultant motion data being used in a fully motion-corrected list-mode reconstruction. Results: The infrastructure provided images that can be used for visualization and gating purposes and for motion estimation using image registration. Several case studies are presented, including data-driven motion estimation and correction for brain studies, abdominal studies in which respiratory and cardiac motion is visible, and a whole-body survey. Conclusion: The presented infrastructure provides the capability to quickly create a series of very short frames for PET data that can be used in a variety of applications.
Collapse
Affiliation(s)
| | | | | | - Floris Jansen
- PET/MR Engineering, GE Healthcare, Waukesha, Wisconsin; and
| |
Collapse
|
26
|
Mackewn JE, Stirling J, Jeljeli S, Gould SM, Johnstone RI, Merida I, Pike LC, McGinnity CJ, Beck K, Howes O, Hammers A, Marsden PK. Practical issues and limitations of brain attenuation correction on a simultaneous PET-MR scanner. EJNMMI Phys 2020; 7:24. [PMID: 32372135 PMCID: PMC7200964 DOI: 10.1186/s40658-020-00295-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite the advent of clinical PET-MR imaging for routine use in 2011 and the development of several methods to address the problem of attenuation correction, some challenges remain. We have identified and investigated several issues that might affect the reliability and accuracy of current attenuation correction methods when these are implemented for clinical and research studies of the brain. These are (1) the accuracy of converting CT Hounsfield units, obtained from an independently acquired CT scan, to 511 keV linear attenuation coefficients; (2) the effect of padding used in the MR head coil; (3) the presence of close-packed hair; (4) the effect of headphones. For each of these, we have examined the effect on reconstructed PET images and evaluated practical mitigating measures. RESULTS Our major findings were (1) for both Siemens and GE PET-MR systems, CT data from either a Siemens or a GE PET-CT scanner may be used, provided the conversion to 511 keV μ-map is performed by the PET-MR vendor's own method, as implemented on their PET-CT scanner; (2) the effect of the head coil pads is minimal; (3) the effect of dense hair in the field of view is marked (> 10% error in reconstructed PET images); and (4) using headphones and not including them in the attenuation map causes significant errors in reconstructed PET images, but the risk of scanning without them may be acceptable following sound level measurements. CONCLUSIONS It is important that the limitations of attenuation correction in PET-MR are considered when designing research and clinical PET-MR protocols in order to enable accurate quantification of brain PET scans. Whilst the effect of pads is not significant, dense hair, the use of headphones and the use of an independently acquired CT-scan can all lead to non-negligible effects on PET quantification. Although seemingly trivial, these effects add complications to setting up protocols for clinical and research PET-MR studies that do not occur with PET-CT. In the absence of more sophisticated PET-MR brain attenuation correction, the effect of all of the issues above can be minimised if the pragmatic approaches presented in this work are followed.
Collapse
Affiliation(s)
- J. E. Mackewn
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - J. Stirling
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - S. Jeljeli
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - S-M. Gould
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - R. I. Johnstone
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - I. Merida
- CERMEP-Imagerie du vivant, Lyon, France
| | - L. C. Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - C. J. McGinnity
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - K. Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - O. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - A. Hammers
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - P. K. Marsden
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
27
|
Emond EC, Bousse A, Machado M, Porter J, Groves AM, Hutton BF, Thielemans K. Effect of attenuation mismatches in time of flight PET reconstruction. Phys Med Biol 2020; 65:085009. [PMID: 32101801 DOI: 10.1088/1361-6560/ab7a6f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While the pursuit of better time resolution in positron emission tomography (PET) is rapidly evolving, little work has been performed on time of flight (TOF) image quality at high time resolution in the presence of modelling inconsistencies. This works focuses on the effect of using the wrong attenuation map in the system model, causing perturbations in the reconstructed radioactivity image. Previous work has usually considered the effects to be local to the area where there is attenuation mismatch, and has shown that the quantification errors in this area tend to reduce with improved time resolution. This publication shows however that errors in the PET image at a distance from the mismatch increase with time resolution. The errors depend on the reconstruction algorithm used. We quantify the errors in the hypothetical case of perfect time resolution for maximum likelihood reconstructions. In addition, we perform reconstructions on simulated and patient data. In particular, for respiratory-gated reconstructions from a wrong attenuation map, increased errors are observed with improved time resolutions in areas close to the lungs (e.g. from 13.3% in non-TOF to up to 20.9% at 200 ps in the left ventricle).
Collapse
Affiliation(s)
- Elise C Emond
- Institute of Nuclear Medicine, University College London, London NW1 2BU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Rezaei A, Schramm G, Van Laere K, Nuyts J. Estimation of Crystal Timing Properties and Efficiencies for the Improvement of (Joint) Maximum-Likelihood Reconstructions in TOF-PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:952-963. [PMID: 31478844 PMCID: PMC7212322 DOI: 10.1109/tmi.2019.2938028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With increasing improvements in the time of flight (TOF) resolution of positron emission tomography (PET) scanners, an accurate model of the TOF measurements is becoming increasingly important. This work considers two parameters of the TOF kernel; the relative positioning of the timing data-bins and the timing resolution along each line of response (LOR). Similar to an existing data-driven method, we assume that any shifts of data-bins along lines of response can be modelled as differences between crystal timing offsets. Inspired by this, timing resolutions of all LORs are modelled as the hypotenuse of timing resolutions of the crystal-pairs in coincidence. Furthermore, in order to mitigate the influence of potential inaccuracies of detector-pair sensitivities on crystal timing resolutions, relative LOR sensitivities are modelled as the product of efficiency factors for the two crystals in coincidence. We validate estimating maps of crystal timing offsets, timing resolutions and efficiencies from the emission data using noisy simulations of a brain phantom. Results are shown for phantom and patient data scanned on clinically available TOF-PET scanners. We find that the estimation of crystal timing resolutions is more sensitive to the data statistics than the estimation of crystal timing offsets. As a result, estimation of crystal timing properties could either be limited to high count emission data, or be obtained utilizing additional regularizations on the estimates. Using a more accurate model of the TOF acquisition, improvements are observed in standard activity reconstructions as well as joint reconstructions of activity and attenuation.
Collapse
|
29
|
Cheng L, Ma T, Zhang X, Peng Q, Liu Y, Qi J. Maximum likelihood activity and attenuation estimation using both emission and transmission data with application to utilization of Lu‐176 background radiation in TOF PET. Med Phys 2020; 47:1067-1082. [DOI: 10.1002/mp.13989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Li Cheng
- Department of Biomedical Engineering University of California‐Davis Davis CA 95616USA
- Department of Engineering Physics Tsinghua University Beijing 100084China
| | - Tianyu Ma
- Department of Engineering Physics Tsinghua University Beijing 100084China
| | - Xuezhu Zhang
- Department of Biomedical Engineering University of California‐Davis Davis CA 95616USA
| | - Qiyu Peng
- Structural Biology and Imaging Department Lawrence Berkeley National Laboratory Berkeley CA 94720USA
| | - Yaqiang Liu
- Department of Engineering Physics Tsinghua University Beijing 100084China
| | - Jinyi Qi
- Department of Biomedical Engineering University of California‐Davis Davis CA 95616USA
| |
Collapse
|
30
|
Armstrong IS, Memmott MJ. A tale of two phases: Can the worst of scans become the best of scans with motion correction? J Nucl Cardiol 2019; 26:1930-1933. [PMID: 29777483 DOI: 10.1007/s12350-018-1305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Ian S Armstrong
- Nuclear Medicine Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK.
| | - Matthew J Memmott
- Nuclear Medicine Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| |
Collapse
|
31
|
Schramm G, Ladefoged CN. Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. BJR Open 2019; 1:20190033. [PMID: 33178954 PMCID: PMC7592486 DOI: 10.1259/bjro.20190033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/27/2019] [Accepted: 10/20/2019] [Indexed: 12/31/2022] Open
Abstract
In hybrid positron emission tomography (PET) and MRI systems, attenuation correction for PET image reconstruction is commonly based on processing of dedicated MR images. The image quality of the latter is strongly affected by metallic objects inside the body, such as e.g. dental implants, endoprostheses, or surgical clips which all lead to substantial artifacts that propagate into MRI-based attenuation images. In this work, we review publications about metal artifact correction strategies in MRI-based attenuation correction in PET/MRI. Moreover, we also give an overview about publications investigating the impact of MRI-based attenuation correction metal artifacts on the reconstructed PET image quality and quantification.
Collapse
Affiliation(s)
- Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, Leuven, Belgium
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
32
|
Ji X, Zhu YM, Zhang B, Andreyev A. Fast PET Preview Image Reconstruction, Streaming, and Visualization During Data Acquisition: A Preliminary Study. J Nucl Med Technol 2019; 47:243-248. [DOI: 10.2967/jnmt.118.218511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/24/2018] [Indexed: 11/16/2022] Open
|
33
|
Pang L, Zhu W, Dong Y, Lv Y, Shi H. Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation. Mol Imaging Biol 2019; 21:149-158. [PMID: 29740741 DOI: 10.1007/s11307-018-1205-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Delayed positron emission tomography (PET) imaging may improve sensitivity and specificity in lesion detection. We proposed a PET data-driven method to estimate the attenuation map (AM) for the delayed scan without an additional x-ray computed tomography (CT). PROCEDURES An emission-attenuation-scatter joint estimation framework was developed. Several practical issues for clinical datasets were addressed. Particularly, the unknown scatter correction was incorporated in the joint estimation algorithm. The scaling problem was solved using prior information from the early CT scan. Fourteen patient datasets were added to evaluate the method. These patients went through two separate PET/CT scans. The delayed CT-based AM served as ground truth for the delayed scan. Standard uptake values (SUVmean and SUVmax) of lesion and normal tissue regions of interests (ROIs) in the early and delayed phase and the respective %DSUV (percentage change of SUVmean at two different time points) were analyzed, all with estimated and the true AM. Three radiologists participated in lesion detection tasks with images reconstructed with both AMs and rated scores for detectability. RESULTS The mean relative difference of SUVmean in lesion and normal liver tissue were 3.30 and 6.69 %. The average lesion-to-background contrast (detectability) with delayed PET images using CT AM was 60 % higher than that of the earlier PET image, and was 64 % higher when using the data-based AM. %DSUV for lesions and liver backgrounds with CT-based AM were - 0.058 ± 0.25 and - 0.33 ± 0.08 while with data-based AM were - 0.00 ± 0.26 and - 0.28 ± 0.08. Only slight significance difference was found between using CT-based AM and using the data-based AM reconstruction delay phase on %DSUV of lesion. The scores associated with the two AMs matched well consistently. CONCLUSIONS Our method may be used in delayed PET imaging, which allows no secondary CT radiation in delayed phase. The quantitative analysis for lesion detection purpose could be ensured.
Collapse
Affiliation(s)
- Lifang Pang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China
| | - Wentao Zhu
- UIH America, Inc, 9230 Kirby Dr, Suite 600, Houston, TX, 77054, USA
| | - Yun Dong
- Shanghai United Imaging Healthcare Co., Ltd, 2258 Chengbei Rd, Jiading District, Shanghai, 201807, China
| | - Yang Lv
- Shanghai United Imaging Healthcare Co., Ltd, 2258 Chengbei Rd, Jiading District, Shanghai, 201807, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, People's Republic of China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Diffusion-weighted imaging as a part of PET/MR for small lesion detection in patients with primary abdominal and pelvic cancer, with or without TOF reconstruction technique. Abdom Radiol (NY) 2019; 44:2639-2647. [PMID: 30863998 DOI: 10.1007/s00261-019-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To investigate the value of diffusion-weighted imaging (DWI) in detection of small lesions (≤ 10 mm) in patients with primary abdominal and pelvic cancer in hybrid PET/MR with or without time-of-flight (TOF) technique. MATERIALS AND METHODS Twenty patients (11 females and 9 males, mean age 67.23 ± 12.90 years) with histologically confirmed primary abdominal and pelvic cancer underwent hybrid PET/MR examination. A total of 64 small lesions were included in this study, which were divided into two groups (≤ 10 mm and 10-30 mm). Visual scores of small lesion detection ability were rated by five-point ordinal scale. The visual scores and detectability of small lesions on TOF PET image, noTOF PET image, and DWI sequences of hybrid PET/MR examination with or without TOF technique were analyzed. Logistic regression model was established for analysis in the value of DWI in hybrid PET/MR examination with or without TOF technique in detection of the small lesions between two groups. RESULTS The visual evaluation revealed the small lesion (≤ 10 mm) visual scores of DWI (mean ± SD: 4.23 ± 1.41), TOF PET image (mean ± SD: 4.14 ± 0.89), and noTOF PET image (mean ± SD: 2.68 ± 1.13);.and the visual scores of small lesions (10-30 mm) on DWI (mean ± SD: 4.98 ± 0.15), TOF PET image (mean ± SD: 4.57 ± 0.59), and noTOF PET image (mean ± SD: 3.98 ± 1.05). The visual scores of all small lesions on DWI were higher than that on TOF PET data and noTOF PET data in both two groups (**P < 0.01). The missed diagnosis rates of small FDG avid lesions (≤ 10 mm) of DWI and noTOF PET image were 9.1% and 9.1%, respectively. However, the TOF PET-based clinical diagnosis detected all small lesions (≤ 30 mm). DWI was of great importance in detection of small lesions (≤ 10 mm) in the absence of TOF technique in PET/MR examination (**P < 0.01). DWI's effect on detection of small lesions(10-30 mm) has shown no difference between PET/MR examinations with TOF and without TOF techniques (P > 0.05). CONCLUSION DWI has significant value in the detection of small lesions (≤ 10 mm) in hybrid PET/MR examination without TOF technique for patients with primary abdominal and pelvic cancer. However, it had less detection benefits in the small lesions (≤ 10 mm) in hybrid PET/MR examination with TOF PET image.
Collapse
|
35
|
Ko GB, Lee JS. Time-based signal sampling using sawtooth-shaped threshold. ACTA ACUST UNITED AC 2019; 64:125020. [DOI: 10.1088/1361-6560/ab1f23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Lee JS, Kovalski G, Sharir T, Lee DS. Advances in imaging instrumentation for nuclear cardiology. J Nucl Cardiol 2019; 26:543-556. [PMID: 28718074 DOI: 10.1007/s12350-017-0979-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
Advances in imaging instrumentation and technology have greatly contributed to nuclear cardiology. Dedicated cardiac SPECT cameras incorporating novel, highly efficient detector, collimator, and system designs have emerged with the expansion of nuclear cardiology. Solid-state radiation detectors incorporating cadmium zinc telluride, which directly convert radiation to electrical signals and yield improved energy resolution and spatial resolution and enhanced count sensitivity geometries, are increasingly gaining favor as the detector of choice for application in dedicated cardiac SPECT systems. Additionally, hybrid imaging systems in which SPECT and PET are combined with X-ray CT are currently widely used, with PET/MRI hybrid systems having also been recently introduced. The improved quantitative SPECT/CT has the potential to measure the absolute quantification of myocardial blood flow and flow reserve. Rapid development of silicon photomultipliers leads to enhancement in PET image quality and count rates. In addition, the reduction of emission-transmission mismatch artifacts via application of accurate time-of-flight information, and cardiac motion de-blurring aided by anatomical images, are emerging techniques for further improvement of cardiac PET. This article reviews recent advances such as these in nuclear cardiology imaging instrumentation and technology, and the corresponding diagnostic benefits.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | | | - Tali Sharir
- Department of Nuclear Cardiology, Assuta Medical Centers, 96 Igal Alon, C Building, 67891, Tel Aviv, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea.
| |
Collapse
|
37
|
Nikulin P, Maus J, Hofheinz F, Lougovski A, van den Hoff J. Time efficient scatter correction for time-of-flight PET: the immediate scatter approximation. Phys Med Biol 2019; 64:075005. [PMID: 30856617 DOI: 10.1088/1361-6560/ab0e9b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Utilization of time-of-flight (TOF) information allows us to improve image quality and convergence rate in iterative PET image reconstruction. In order to obtain quantitatively correct images accurate scatter correction (SC) is required that accounts for the non-uniform distribution of scatter events over the TOF bins. However, existing simplified TOF-SC algorithms frequently exhibit limited accuracy while the currently accepted reference method-the TOF extension of the single scatter simulation approach (TOF-SSS)-is computationally demanding and can substantially slow down the reconstruction. In this paper we propose and evaluate a new accelerated TOF-SC algorithm in order to improve this situation. The key idea of the algorithm is the use of an immediate scatter approximation (ISA) for scatter time distribution calculation which speeds up estimation of the required TOF scatter by a factor of up to five in comparison to TOF-SSS. The proposed approach was evaluated in dedicated phantom measurements providing challenging high activity contrast conditions as well as in representative clinical patient data sets. Our results show that ISA is a viable alternative to TOF-SSS. The reconstructed images are in excellent quantitative agreement with those obtained with TOF-SSS while overall reconstruction time can be reduced by a factor of two in whole-body studies, even when using a listmode reconstruction not optimized for speed.
Collapse
Affiliation(s)
- Pavel Nikulin
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | |
Collapse
|
38
|
No significant difference found in PET/MRI CBF values reconstructed with CT-atlas-based and ZTE MR attenuation correction. EJNMMI Res 2019; 9:26. [PMID: 30888559 PMCID: PMC6424990 DOI: 10.1186/s13550-019-0494-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 01/31/2023] Open
Abstract
Background Accurate attenuation correction (AC) is one of the most important issues to be addressed in quantitative brain PET/MRI imaging. Atlas-based MRI AC (AB-MRAC), one of the representative MRAC methods, has been used to estimate the skull attenuation in brain scans. The zero echo time (ZTE) pulse sequence is also expected to provide a better MRAC estimation in brain PET scans. The difference in quantitative measurements of cerebral blood flow (CBF) using H215O-PET/MRI was compared between the two MRAC methods, AB and ZTE. Method Twelve patients with cerebrovascular disease (4 males, 43.2 ± 11.7 years) underwent H215O-PET/MRI studies with a 3-min PET scan and MRI scans including the ZTE sequence. Eleven of them were also studied under the conditions of baseline and 10 min after acetazolamide administration, and 2 of them were followed up after several months interval. A total of 25 PET images were reconstructed as dynamic data using 2 sets of reconstruction parameters to obtain the image-derived input function (IDIF), the time-activity curves of the major cerebral artery extracted from images, and CBF images. The CBF images from AB- and ZTE-MRAC were then compared for global and regional differences. Results The mean differences of IDIF curves at each point obtained from AB- and ZTE-MRAC dynamic data were less than 5%, and the differences in time-activity curves were very small. The means of CBF from AB- and ZTE-MRAC reconstructions calculated using each IDIF showed differences of less than 5% for all cortical regions. CBF images from AB-MRAC tended to show greater values in the parietal region and smaller values in the skull base region. Conclusion The CBF images from AB- and ZTE-MRAC reconstruction showed no significant differences in regional values, although the parietal region tended to show greater values in AB-MRAC reconstruction. Quantitative values in the skull base region were very close, and almost the same IDIFs were obtained.
Collapse
|
39
|
|
40
|
Dasari PKR, Jones JP, Casey ME, Liang Y, Dilsizian V, Smith MF. The effect of time-of-flight and point spread function modeling on 82Rb myocardial perfusion imaging of obese patients. J Nucl Cardiol 2018; 25:1521-1545. [PMID: 29907933 DOI: 10.1007/s12350-018-1311-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The effect of time-of-flight (TOF) and point spread function (PSF) modeling in image reconstruction has not been well studied for cardiac PET. This study assesses their separate and combined influence on 82Rb myocardial perfusion imaging in obese patients. METHODS Thirty-six obese patients underwent rest-stress 82Rb cardiac PET. Images were reconstructed with and without TOF and PSF modeling. Perfusion was quantitatively compared using the AHA 17-segment model for patients grouped by BMI, cross-sectional body area in the scanner field of view, gender, and left ventricular myocardial volume. Summed rest scores (SRS), summed stress scores (SSS), and summed difference scores (SDS) were compared. RESULTS TOF improved polar map visual uniformity and increased septal wall perfusion by up to 10%. This increase was greater for larger patients, more evident for patients grouped by cross-sectional area than by BMI, and more prominent for females. PSF modeling increased perfusion by about 1.5% in all cardiac segments. TOF modeling generally decreased SRS and SSS with significant decreases between 2.4 and 3.0 (P < .05), which could affect risk stratification; SDS remained about the same. With PSF modeling, SRS, SSS, and SDS were largely unchanged. CONCLUSION TOF and PSF modeling affect regional and global perfusion, SRS, and SSS. Clinicians should consider these effects and gender-dependent differences when interpreting 82Rb perfusion studies.
Collapse
Affiliation(s)
- Paul K R Dasari
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene St., Baltimore, MD, 21201, USA
| | | | | | - Yuanyuan Liang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene St., Baltimore, MD, 21201, USA
| | - Mark F Smith
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene St., Baltimore, MD, 21201, USA.
| |
Collapse
|
41
|
Matheoud R, Lecchi M. Time-of-flight in cardiac PET/TC: What do we know and what we should know? J Nucl Cardiol 2018; 25:1550-1553. [PMID: 29931500 DOI: 10.1007/s12350-018-1336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Roberta Matheoud
- Department of Medical Physics, University Hospital Maggiore della Carità, C.so Mazzini, 18, 28100, Novara, Italy.
| | - Michela Lecchi
- Health Physics, San Paolo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Delso G, Kemp B, Kaushik S, Wiesinger F, Sekine T. Improving PET/MR brain quantitation with template-enhanced ZTE. Neuroimage 2018; 181:403-413. [PMID: 30010010 DOI: 10.1016/j.neuroimage.2018.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE The impact of MR-based attenuation correction on PET quantitation accuracy is an ongoing cause of concern for advanced brain research with PET/MR. The purpose of this study was to evaluate a new, template-enhanced zero-echo-time attenuation correction method for PET/MR scanners. METHODS 30 subjects underwent a clinically-indicated 18F-FDG-PET/CT, followed by PET/MR on a GE SIGNA PET/MR. For each patient, a 42-s zero echo time (ZTE) sequence was used to generate two attenuation maps: one with the standard ZTE segmentation-based method; and another with a modification of the method, wherein pre-registered anatomical templates and CT data were used to enhance the segmentation. CT data, was used as gold standard. Reconstructed PET images were qualified visually and quantified in 68 volumes-of-interest using a standardized brain atlas. RESULTS Attenuation maps were successfully generated in all cases, without manual intervention or parameter tuning. One patient was excluded from the quantitative analysis due to the presence of multiple brain metastases. The PET bias with template-enhanced ZTE attenuation correction was measured to be -0.9% ± 0.9%, compared with -1.4% ± 1.1% with regular ZTE attenuation correction. In terms of absolute bias, the new method yielded 1.1% ± 0.7%, compared with 1.6% ± 0.9% with regular ZTE. Statistically significant bias reduction was obtained in the frontal region (from -2.0% to -1.0%), temporal (from -1.2% to -0.2%), parietal (from -1.9% to -1.1%), occipital (from -2.0% to -1.1%) and insula (from -1.4% to -1.1%). CONCLUSION These results indicate that the co-registration of pre-recorded anatomical templates to ZTE data is feasible in clinical practice and can be effectively used to improve the performance of segmentation-based attenuation correction.
Collapse
Affiliation(s)
| | - Bradley Kemp
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
43
|
Nuyts J, Rezaei A, Defrise M. The Validation Problem of Joint Emission/Transmission Reconstruction From TOF-PET Projections. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2821798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Reconstruction/segmentation of attenuation map in TOF-PET based on mixture models. Ann Nucl Med 2018; 32:474-484. [PMID: 29931622 DOI: 10.1007/s12149-018-1270-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Attenuation correction is known as a necessary step in positron emission tomography (PET) system to have accurate and quantitative activity images. Emission-based method is known as a promising approach for attenuation map estimation on TOF-PET scanners. The proposed method in this study imposes additional histogram-based information as a mixture model prior on the emission-based approach using maximum a posteriori (MAP) framework to improve its performance and make such a nearly segmented attenuation map. To eliminate misclassification of histogram modeling, a Median root prior is incorporated on the proposed approach to reduce the noise between neighbor voxels and encourage spatial smoothness in the reconstructed attenuation map. The joint-MAP optimization is carried out as an iterative approach wherein an alteration of the activity and attenuation updates is followed by a mixture decomposition of the attenuation map histogram. Also, the proposed method can segment attenuation map during the reconstruction. The evaluation of the proposed method on the numerical, simulation and real contexts indicate that the presented method has the potential to be used as a stand-alone method or even combined with other methods for attenuation correction on PET/MR systems.
Collapse
|
45
|
Muehlematter UJ, Nagel HW, Becker A, Mueller J, Vokinger KN, de Galiza Barbosa F, Ter Voert EEGT, Veit-Haibach P, Burger IA. Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer. EJNMMI Res 2018; 8:41. [PMID: 29855728 PMCID: PMC5981153 DOI: 10.1186/s13550-018-0390-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. RESULTS Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). CONCLUSION TOF reconstruction for 18F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.
Collapse
Affiliation(s)
- Urs J Muehlematter
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| | - Hannes W Nagel
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Anton Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Julian Mueller
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Edwin E G T Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department Joint Medical Imaging, Toronto General Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Irene A Burger
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
47
|
Walrand S, Hesse M, Jamar F, Lhommel R. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization. Phys Med Biol 2018. [PMID: 29513273 DOI: 10.1088/1361-6560/aab4e9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing of the spurious extrahepatic counts was theoretically explained by a better robustness against emission-transmission inconsistency. A novel random correction method was proposed to overcome the issue in non-TOF PET. Further studies are needed to assess the novel random correction method robustness.
Collapse
|
48
|
Ahn S, Cheng L, Shanbhag DD, Qian H, Kaushik SS, Jansen FP, Wiesinger F. Joint estimation of activity and attenuation for PET using pragmatic MR-based prior: application to clinical TOF PET/MR whole-body data for FDG and non-FDG tracers. Phys Med Biol 2018; 63:045006. [PMID: 29345242 DOI: 10.1088/1361-6560/aaa8a6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.
Collapse
Affiliation(s)
- Sangtae Ahn
- GE Global Research, Niskayuna, NY, United States of America
- Author to whom any correspondence should be addressed
| | - Lishui Cheng
- GE Global Research, Niskayuna, NY, United States of America
| | | | - Hua Qian
- GE Global Research, Niskayuna, NY, United States of America
| | | | | | | |
Collapse
|
49
|
Hutton BF, Erlandsson K, Thielemans K. Advances in clinical molecular imaging instrumentation. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0264-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Zaidi H, Karakatsanis N. Towards enhanced PET quantification in clinical oncology. Br J Radiol 2017; 91:20170508. [PMID: 29164924 DOI: 10.1259/bjr.20170508] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Positron emission tomography (PET) has, since its inception, established itself as the imaging modality of choice for the in vivo quantitative assessment of molecular targets in a wide range of biochemical processes underlying tumour physiology. PET image quantification enables to ascertain a direct link between the time-varying activity concentration in organs/tissues and the fundamental parameters portraying the biological processes at the cellular level being assessed. However, the quantitative potential of PET may be affected by a number of factors related to physical effects, hardware and software system specifications, tracer kinetics, motion, scan protocol design and limitations in current image-derived PET metrics. Given the relatively large number of PET metrics reported in the literature, the selection of the best metric for fulfilling a specific task in a particular application is still a matter of debate. Quantitative PET has advanced elegantly during the last two decades and is now reaching the maturity required for clinical exploitation, particularly in oncology where it has the capability to open many avenues for clinical diagnosis, assessment of response to treatment and therapy planning. Therefore, the preservation and further enhancement of the quantitative features of PET imaging is crucial to ensure that the full clinical value of PET imaging modality is utilized in clinical oncology. Recent advancements in PET technology and methodology have paved the way for faster PET acquisitions of enhanced sensitivity to support the clinical translation of highly quantitative four-dimensional (4D) parametric imaging methods in clinical oncology. In this report, we provide an overview of recent advances and future trends in quantitative PET imaging in the context of clinical oncology. The pros/cons of the various image-derived PET metrics will be discussed and the promise of novel methodologies will be highlighted.
Collapse
Affiliation(s)
- Habib Zaidi
- 1 Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital , Geneva , Switzerland.,2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen , Groningen , Netherlands.,3 Geneva Neuroscience Centre, University of Geneva , Geneva , Switzerland.,4 Department of Nuclear Medicine, Universityof Southern Denmark , Odense , Denmark
| | - Nicolas Karakatsanis
- 5 Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College of Cornell Univercity , New york, NY , USA.,6 Department of Radiology, Translational and Molecular Imaging Institute, ICAHN School of Medicine at Mount Sinai , New york, NY , USA
| |
Collapse
|