1
|
Effect of ultrasonic parameters on gene transfection efficiency and cell viability of the multifunctional microbubble in vitro. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Cen J, Ye X, Liu X, Pan W, Zhang L, Zhang G, He N, Shen A, Hu J, Liu S. Fluorinated Copolypeptide‐Stabilized Microbubbles with Maleimide‐Decorated Surfaces as Long‐Term Ultrasound Contrast Agents. Angew Chem Int Ed Engl 2022; 61:e202209610. [DOI: 10.1002/anie.202209610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Cen
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Xianjun Ye
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Xiao Liu
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Wenhao Pan
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Lei Zhang
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Nianan He
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Aizong Shen
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| |
Collapse
|
3
|
Cen J, Ye X, Liu X, Pan W, Zhang L, Zhang G, He N, Shen A, Hu J, Liu S. Fluorinated Copolypeptide‐Stabilized Microbubbles with Maleimide‐Decorated Surfaces as Long‐Term Ultrasound Contrast Agents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Cen
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Xianjun Ye
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Xiao Liu
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Wenhao Pan
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Lei Zhang
- China University of Science and Technology Department of Pharmacy CHINA
| | - Guoying Zhang
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Nianan He
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Aizong Shen
- China University of Science and Technology Department of Pharmacy CHINA
| | - Jinming Hu
- China University of Science and Technology Department of Polymer Science and Engineering 96 Jinzhai RoadDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China 230026 Hefei CHINA
| | - Shiyong Liu
- University of Science and Technology of China Department of Polymer Science and Engineering 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
4
|
Waqar H, Riaz R, Ahmed NM, Majeed AI, Abbas SR. Monodisperse magnetic lecithin-PFP submicron bubbles as dual imaging contrast agents for ultrasound (US) and MRI. RSC Adv 2022; 12:10504-10513. [PMID: 35425014 PMCID: PMC8981111 DOI: 10.1039/d2ra01542k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 12/23/2022] Open
Abstract
Multimodal imaging is a recent idea of combining two or more imaging methods synergistically to overcome the weakness of individual imaging modalities and utilizing complementary benefits. Ultrasound (US) and magnetic resonance imaging (MRI) are widely used imaging techniques in healthcare and to fully utilize the potential of fusion imaging, dual-modal contrast agents are necessary to improve disease diagnosis by enhancing contrast resolution and reducing health risks associated with the dual dosage of contrast agents. In this study, magnetic microbubbles were synthesized by incorporating oleic acid stabilized superparamagnetic iron oxide nanoparticles (OA-SPIONs) into lecithin microbubbles, encapsulating the perfluoropentane (PFP) core. The magnetic microbubbles were characterized by FTIR, SEM, MFM, zeta potential, in vitro MRI, and ultrasound. Upon in vitro MRI, magnetic microbubbles showed a negative contrast effect by producing darker T2 weighted images. Magnetic microbubbles showed concentration-dependent response with a decrease in signal intensity with an increase in the concentration of OA-IONP in microbubbles. However, a decrease in acoustic enhancement was also observed with an increase in OA-IONP concentration, therefore concentration was optimized to achieve the best effect on both modalities. The magnetic lecithin microbubble with 10 mg SPIONs provided the best contrast on both US and MR imaging. The hemocompatibility testing resulted in hemolysis less than 7% with plasma recalcification time and thrombin time of 240 s and 6 s corresponding to excellent hemocompatibility. Thus the magnetic microbubbles with a phase convertible PFP core encapsulated by a lecithin shell loaded with OA-SPIONs can serve as a potential bimodal contrast agent for both US and MRI imaging.
Collapse
Affiliation(s)
- Hira Waqar
- Department of Industrial Biotechnology, ASAB-NUST Pakistan
| | - Ramish Riaz
- Department of Industrial Biotechnology, ASAB-NUST Pakistan .,Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES)-NUST Pakistan
| | - Nasir M Ahmed
- Department of Material Engineering, SCME-NUST Pakistan
| | | | - Shah Rukh Abbas
- Department of Industrial Biotechnology, ASAB-NUST Pakistan .,Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES)-NUST Pakistan
| |
Collapse
|
5
|
Tu J, Yu ACH. Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME FRONTIERS 2022; 2022:9807347. [PMID: 37850169 PMCID: PMC10521752 DOI: 10.34133/2022/9807347] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2023] Open
Abstract
Sonoporation, or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation, is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells. Nevertheless, this emerging drug delivery paradigm has not yet reached widespread clinical use, because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms. Here, we summarize the current observational evidence available on the notion of sonoporation, and we discuss the prevailing understanding of the physical and biological processes related to sonoporation. To facilitate systematic understanding, we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters (ultrasound frequency, pressure, cavitation dose, exposure time), microbubble parameters (size, concentration, bubble-to-cell distance, shell composition), and cellular properties (cell type, cell cycle, biochemical contents). By adopting a science-backed approach to the realization of sonoporation, ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency. This drug delivery approach, when coupled with concurrent advances in ultrasound imaging, has potential to become an effective therapeutic paradigm.
Collapse
Affiliation(s)
- Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Alfred C. H. Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
6
|
Lin CW, Fan CH, Yeh CK. The Impact of Surface Drug Distribution on the Acoustic Behavior of DOX-Loaded Microbubbles. Pharmaceutics 2021; 13:pharmaceutics13122080. [PMID: 34959362 PMCID: PMC8703561 DOI: 10.3390/pharmaceutics13122080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Previous studies have reported substantial improvement of microbubble (MB)-mediated drug delivery with ultrasound when drugs are loaded onto the MB shell compared with a physical mixture. However, drug loading may affect shell properties that determine the acoustic responsiveness of MBs, producing unpredictable outcomes. The aim of this study is to reveal how the surface loaded drug (doxorubicin, DOX) affects the acoustic properties of MBs. A suitable formulation of MBs for DOX loading was first identified by regulating the proportion of two lipid materials (1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phospho-rac-glycerol sodium salt (DSPG)) with distinct electrostatic properties. We found that the DOX loading capacity of MBs was determined by the proportion of DSPG, since there was an electrostatic interaction with DOX. The DOX payload reduced the lipid fluidity of MBs, although this effect was dependent on the spatial uniformity of DOX on the MB shell surface. Loading DOX onto MBs enhanced acoustic stability 1.5-fold, decreased the resonance frequency from 12–14 MHz to 5–7 MHz, and reduced stable cavitation dose by 1.5-fold, but did not affect the stable cavitation threshold (300 kPa). Our study demonstrated that the DOX reduces lipid fluidity and decreases the elasticity of the MB shell, thereby influencing the acoustic properties of MBs.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
7
|
Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. ULTRASONICS SONOCHEMISTRY 2020; 67:105096. [PMID: 32278246 DOI: 10.1016/j.ultsonch.2020.105096] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
The past several decades have witnessed great progress in "smart drug delivery", an advance technology that can deliver genes or drugs into specific locations of patients' body with enhanced delivery efficiency. Ultrasound-activated mechanical force induced by the interactions between microbubbles and cells, which can stimulate so-called "sonoporation" process, has been regarded as one of the most promising candidates to realize spatiotemporal-controllable drug delivery to selected regions. Both experimental and numerical studies were performed to get in-depth understanding on how the microbubbles interact with cells during sonoporation processes, under different impact parameters. The current work gives an overview of the general mechanism underlying microbubble-mediated sonoporation, and the possible impact factors (e.g., the properties of cavitation agents and cells, acoustical driving parameters and bubble/cell micro-environment) that could affect sonoporation outcomes. Finally, current progress and considerations of sonoporation in clinical applications are reviewed also.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qunying Li
- Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| |
Collapse
|
8
|
Kefeni KK, Msagati TAM, Nkambule TT, Mamba BB. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110314. [PMID: 31761184 DOI: 10.1016/j.msec.2019.110314] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/18/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
This review focuses on the biomedical applications and toxicity of spinel ferrite nanoparticles (SFNPs) with more emphasis on the recently published work. A critical review is provided on recent advances of SFNPs applications in biomedical areas. The novelty of SFNPs in addressing the bottleneck problems encountered in the areas of health; in particular, for diagnosis and treatment of tumour cells are well reviewed. Furthermore, research gaps, toxicity of SFNPs and areas which still need more attention are highlighted. Based on the result of this review, the SFNPs have unlimited capacity in cancer treatment, disease diagnosis, magnetic resonance imaging, drug delivery and release. Overall, stepping out of the conventional way of treatment is difficult but also essential in bringing long lasting solution for cancer and other diseases treatment. In fact, the toxicity study and commercialisation of the SFNPs based cancer treatment options are the main challenges and need further study, in order to reduce unforeseen consequences.
Collapse
Affiliation(s)
- Kebede K Kefeni
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Titus A M Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Thabo Ti Nkambule
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa; State Key Laboratory of Separation Membranes and Membrane Processes, National Centre for International Joint Research on Membrane Science and Technology, Tianjin, 300387, PR China.
| |
Collapse
|
9
|
Abou-Saleh RH, McLaughlan JR, Bushby RJ, Johnson BR, Freear S, Evans SD, Thomson NH. Molecular Effects of Glycerol on Lipid Monolayers at the Gas-Liquid Interface: Impact on Microbubble Physical and Mechanical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10097-10105. [PMID: 30901226 DOI: 10.1021/acs.langmuir.8b04130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The production and stability of microbubbles (MBs) is enhanced by increasing the viscosity of both the formation and storage solution, respectively. Glycerol is a good candidate for biomedical applications of MBs, since it is biocompatible, although the exact molecular mechanisms of its action is not fully understood. Here, we investigate the influence glycerol has on lipid-shelled MB properties, using a range of techniques. Population lifetime and single bubble stability were studied using optical microscopy. Bubble stiffness measured by AFM compression is compared with lipid monolayer behavior in a Langmuir-Blodgett trough. We deduce that increasing glycerol concentrations enhances stability of MB populations through a 3-fold mechanism. First, binding of glycerol to lipid headgroups in the interfacial monolayer up to 10% glycerol increases MB stiffness but has limited impact on shell resistance to gas permeation and corresponding MB lifetime. Second, increased solution viscosity above 10% glycerol slows down the kinetics of gas transfer, markedly increasing MB stability. Third, above 10%, glycerol induces water structuring around the lipid monolayer, forming a glassy layer which also increases MB stiffness and resistance to gas loss. At 30% glycerol, the glassy layer is ablated, lowering the MB stiffness, but MB stability is further augmented. Although the molecular interactions of glycerol with the lipid monolayer modulate the MB lipid shell properties, MB lifetime continually increases from 0 to 30% glycerol, indicating that its viscosity is the dominant effect on MB solution stability. This three-fold action and biocompatibility makes glycerol ideal for therapeutic MB formation and storage and gives new insight into the action of glycerol on lipid monolayers at the gas-liquid interface.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Biophysics Group, Department of Physics, Faculty of Science , Mansoura University , Mansoura , Egypt
| | - James R McLaughlan
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
- Leeds Institute of Medical Research , University of Leeds, St. James's University Hospital , Leeds LS9 7TF , United Kingdom
| | - Richard J Bushby
- School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Benjamin R Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Neil H Thomson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Division of Oral Biology, School of Dentistry , University of Leeds , Leeds LS2 9LU , United Kingdom
| |
Collapse
|
10
|
Fan CH, Wang TW, Hsieh YK, Wang CF, Gao Z, Kim A, Nagasaki Y, Yeh CK. Enhancing Boron Uptake in Brain Glioma by a Boron-Polymer/Microbubble Complex with Focused Ultrasound. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11144-11156. [PMID: 30883079 DOI: 10.1021/acsami.8b22468] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising radiotherapy for treating glioblastoma multiforme (GBM). However, the penetration of drugs (e.g., sodium borocaptate and BSH) for BNCT into brain tumors is limited by cerebral vesicular protective structures, the blood-brain barrier, and the blood-brain tumor barrier (BTB). Although BSH has been reported to be selectively taken up by tumors, it is rapidly excreted from the body and cannot achieve a high tumor-to-normal brain ratio (T/N ratio) and tumor-to-blood ratio (T/B ratio). Despite the development of large-molecular weight boron compounds, such as polymers and nanoparticles, to enhance the permeation and retention effect, their effects remain insufficient for clinical use. To improve the efficiency of boron delivery to the tumor site, we propose combinations of self-assembled boron-containing polyanion [polyethylene glycol- b-poly(( closo-dodecaboranyl)thiomethylstyrene) (PEG- b-PMBSH)] nanoparticles (295 ± 2.3 nm in aqueous media) coupled with cationic microbubble (B-MB)-assisted focused ultrasound (FUS) treatment. Upon FUS sonication (frequency = 1 MHz, pressure = 0.3-0.7 MPa, duty cycle = 0.5%, sonication = 1 min), B-MBs can simultaneously achieve safe BTB opening and boron drug delivery into tumor tissue. Compared with the MBs of the PEG- b-PMBSH mixture group (B + MBs), B-MBs showed 3- and 2.3-fold improvements in the T/N (4.4 ± 1.4 vs 1.3 ± 0.1) and T/B ratios (1.4 ± 0.6 vs 0.1 ± 0.1), respectively, after 4 min of FUS sonication. The spatial distribution of PEG- b-PMBSH was also improved by the complex of PEG- b-PMBSH with MBs. The findings presented herein, in combination with the expanding clinical application of FUS, may improve BNCT and treatment of GBM.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Ta-Wei Wang
- Institute of Nuclear Engineering and Science , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Yi-Kong Hsieh
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Chu-Fang Wang
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | | | | | | | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
- Institute of Nuclear Engineering and Science , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
11
|
Yang D, Ni Z, Yang Y, Xu G, Tu J, Guo X, Huang P, Zhang D. The enhanced HIFU-induced thermal effect via magnetic ultrasound contrast agent microbubbles. ULTRASONICS SONOCHEMISTRY 2018; 49:111-117. [PMID: 30057178 DOI: 10.1016/j.ultsonch.2018.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
High intensity focused ultrasound (HIFU) has been regarded as a promising technology for treating cancer and other severe diseases noninvasively. In the present study, dual modality magnetic ultrasound contrast agent microbubbles (MBs) were synthesized by loading the super paramagnetic iron oxide nanoparticles (SPIOs) into the albumin-shelled MBs (referred as SPIO-albumin MBs). Then, both experimental measurements and numerical simulations were performed to evaluate the ability of SPIO-albumin MBs of enhancing HIFU-induced thermal effect. The results indicated that, comparing with regular albumin-shelled MBs, the SPIO-albumin MBs would lead to quicker temperature elevation rate and higher peak temperature. This phenomenon could be explained by the changes in MBs' physical and thermal properties induced by the integration of SPIOs into MB shell materials. In addition, more experimental results demonstrated that the enhancement effect on HIFU-induced temperature elevation could be further strengthened with more SPIOs combined with albumin-shell MBs. These observations suggested that more violent cavitation behaviors might be activated by ultrasound exposures with the presence of SPIOs, which in turn amplified ultrasound-stimulated thermal effect. Based on the present studies, it is reasonable to expect that, with the help of properly designed dual-modality magnetic MBs, the efficiency of HIFU-induced thermal effect could be further improved to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
- Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Zhengyang Ni
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guangyao Xu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Pintong Huang
- Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
12
|
Zhang S, Cui Z, Xu T, Liu P, Li D, Shang S, Xu R, Zong Y, Niu G, Wang S, He X, Wan M. Inverse effects of flowing phase-shift nanodroplets and lipid-shelled microbubbles on subsequent cavitation during focused ultrasound exposures. ULTRASONICS SONOCHEMISTRY 2017; 34:400-409. [PMID: 27773262 DOI: 10.1016/j.ultsonch.2016.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
This paper compared the effects of flowing phase-shift nanodroplets (NDs) and lipid-shelled microbubbles (MBs) on subsequent cavitation during focused ultrasound (FUS) exposures. The cavitation activity was monitored using a passive cavitation detection method as solutions of either phase-shift NDs or lipid-shelled MBs flowed at varying velocities through a 5-mm diameter wall-less vessel in a transparent tissue-mimicking phantom when exposed to FUS. The intensity of cavitation for the phase-shift NDs showed an upward trend with time and cavitation for the lipid-shelled MBs grew to a maximum at the outset of the FUS exposure followed by a trend of decreases when they were static in the vessel. Meanwhile, the increase of cavitation for the phase-shift NDs and decrease of cavitation for the lipid-shelled MBs had slowed down when they flowed through the vessel. During two discrete identical FUS exposures, while the normalized inertial cavitation dose (ICD) value for the lipid-shelled MB solution was higher than that for the saline in the first exposure (p-value <0.05), it decreased to almost the same level in the second exposure. For the phase-shift NDs, the normalized ICD was 0.71 in the first exposure and increased to 0.97 in the second exposure. At a low acoustic power, the normalized ICD values for the lipid-shelled MBs tended to increase with increasing velocities from 5 to 30cm/s (r>0.95). Meanwhile, the normalized ICD value for the phase-shift NDs was 0.182 at a flow velocity of 5cm/s and increased to 0.188 at a flow velocity of 15cm/s. As the flow velocity increased to 20cm/s, the normalized ICD was 0.185 and decreased to 0.178 at a flow velocity of 30cm/s. At high acoustic power, the normalized ICD values for both the lipid-shelled MBs and the phase-shift NDs increased with increasing flow velocities from 5 to 30cm/s (r>0.95). The effects of the flowing phase-shift NDs vaporized into gas bubbles as cavitation nuclei on the subsequent cavitation were inverse to those of the flowing lipid-shelled MBs destroyed after focused ultrasound exposures.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhiwei Cui
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tianqi Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Pan Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Dapeng Li
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shaoqiang Shang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ranxiang Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Gang Niu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
13
|
Chen C, Gu Y, Tu J, Guo X, Zhang D. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study. ULTRASONICS 2016; 66:54-64. [PMID: 26651263 DOI: 10.1016/j.ultras.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
Understanding the dynamics of coated-microbubble oscillating in an elastic microvessel is important for effective and safe applications of ultrasound contrast agents (UCAs) in imaging and therapy. Numerical simulations are performed based on a two-dimensional (2D) asymmetric finite element model to investigate the influences of both acoustic driving parameters (e.g., pressure and frequency) and material properties (vessel size, microbubble shell visco-elastic parameters and fluid viscosity) on the dynamic interactions in the bubble-blood-vessel system. The results show that, the constrained effect of the blood vessel along the radial direction will induce the asymmetric bubble oscillation and vessel deformation, as well as shifting the bubble resonance frequency toward the higher frequency range. For a bubble (1.5-μm radius) activated by 1-MHz ultrasound pulses in a microvessel with a radius varying between 2 and 6.5 μm, up to 26.95 kPa shear stress could be generated on the vessel wall at a driving pressure of 0.2 MPa, which should be high enough to damage the vascular endothelial cells. The asymmetrical oscillation ratio of the bubble can be aggravated from 0.12% to 79.94% with the increasing acoustic driving pressure and blood viscosity, or the decreasing vessel size and microbubble shell visco-elastic properties. The maximum compression velocity on the bubble shell will be enhanced from 0.19 to 22.79 m/s by the increasing vessel size and acoustic pressure, or the decreasing microbubble shell visco-elasticity and blood viscosity. As the results, the peak values of microstreaming-induced shear stress on the vessel wall increases from 0.003 to 26.95 kPa and the deformation degree of vessel is raised from 1.01 to 1.49, due to the enhanced acoustic amplitude, or the decreasing vessel size, blood viscosity and microbubble shell visco-elasticity. Moreover, it also suggests that, among above impact parameters, microbubble resonance frequency and UCA shell elasticity might play more dominant roles in dynamic interactions of the bubble-blood-vessel system.
Collapse
Affiliation(s)
- Chuyi Chen
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yuyang Gu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
14
|
Gu Y, Chen C, Tu J, Guo X, Wu H, Zhang D. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles. ULTRASONICS SONOCHEMISTRY 2016; 29:309-316. [PMID: 26585011 DOI: 10.1016/j.ultsonch.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Encapsulated microbubbles coupled with magnetic nanoparticles, one kind of hybrid agents that can integrate both ultrasound and magnetic resonance imaging/therapy functions, have attracted increasing interests in both research and clinic communities. However, there is a lack of comprehensive understanding of their dynamic behaviors generated in diagnostic and therapeutic applications. In the present work, a hybrid agent was synthesized by integrating superparamagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles (named as SPIO-albumin microbubbles). Then, both the stable and inertial cavitation thresholds of this hybrid agent were measured at varied SPIO concentrations and ultrasound parameters (e.g., frequency, pressure amplitude, and pulse length). The results show that, at a fixed acoustic driving frequency, both the stable and inertial cavitation thresholds of SPIO-albumin microbubble should decrease with the increasing SPIO concentration and acoustic driving pulse length. The inertial cavitation threshold of SPIO-albumin microbubbles also decreases with the raised driving frequency, while the minimum sub- and ultra-harmonic thresholds appear at twice and two thirds resonance frequency, respectively. It is also noticed that both the stable and inertial cavitation thresholds of SonoVue microbubbles are similar to those measured for hybrid microbubbles with a SPIO concentration of 114.7 μg/ml. The current work could provide better understanding on the impact of the integrated SPIOs on the dynamic responses (especially the cavitation activities) of hybrid microbubbles, and suggest the shell composition of hybrid agents should be appropriately designed to improve their clinical diagnostic and therapeutic performances of hybrid microbubble agents.
Collapse
Affiliation(s)
- Yuyang Gu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Chuyi Chen
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Hongyi Wu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
15
|
Guo G, Tu J, Guo X, Huang P, Wu J, Zhang D. Characterization of mechanical properties of hybrid contrast agents by combining atomic force microscopy with acoustic/optic assessments. J Biomech 2016; 49:319-25. [DOI: 10.1016/j.jbiomech.2015.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023]
|
16
|
Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, Pöttler M, Dürr S, Alexiou C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 2015; 468:463-70. [DOI: 10.1016/j.bbrc.2015.08.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023]
|
17
|
Mahalingam S, Xu Z, Edirisinghe M. Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9771-9780. [PMID: 26307462 DOI: 10.1021/acs.langmuir.5b02005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 μm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles.
Collapse
Affiliation(s)
| | - Zewen Xu
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
18
|
Ma J, Martin KH, Li Y, Dayton PA, Shung KK, Zhou Q, Jiang X. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys Med Biol 2015; 60:3441-3457. [PMID: 25856384 PMCID: PMC4427901 DOI: 10.1088/0031-9155/60/9/3441] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.
Collapse
Affiliation(s)
- Jianguo Ma
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - K. Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Yang Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|