1
|
Hall MG, Cashmore M, Cho HM, Ittermann B, Keenan KE, Kolbitsch C, Lee C, Li C, Ntata A, Obee K, Pu Z, Russek SE, Stupic KF, Winter L, Zilberti L, Steckner M. Metrology for MRI: the field you've never heard of. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01238-2. [PMID: 40106079 DOI: 10.1007/s10334-025-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Quantitative MRI has been an active area of research for decades and has produced a huge range of approaches with enormous potential for patient benefit. In many cases, however, there are challenges with reproducibility which have hampered clinical translation. Quantitative MRI is a form of measurement and like any other form of measurement it requires a supporting metrological framework to be fully consistent and compatible with the international system of units. This means not just expressing results in terms of seconds, meters, etc., but demonstrating consistency to their internationally recognized definitions. Such a framework for MRI is not yet complete, but a considerable amount of work has been done internationally towards building one. This article describes the current state of the art for MRI metrology, including a detailed description of metrological principles and how they are relevant to fully quantitative MRI. It also undertakes a gap analysis of where we are versus where we need to be to support reproducibility in MRI. It focusses particularly on the role and activities of national measurement institutes across the globe, illustrating the genuinely international and collaborative nature of the field.
Collapse
Affiliation(s)
- Matt G Hall
- National Physical Laboratory, Teddington, UK.
| | | | - Hyo-Min Cho
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | | | - Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, CO, USA
| | | | - Changwoo Lee
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Chengwei Li
- National Institute of Measurement, Beijing, People's Republic of China
| | | | - Katie Obee
- National Physical Laboratory, Teddington, UK
| | - Zhang Pu
- National Institute of Measurement, Beijing, People's Republic of China
| | - Stephen E Russek
- National Institute of Standards and Technology, Boulder, CO, USA
| | - Karl F Stupic
- National Institute of Standards and Technology, Boulder, CO, USA
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Luca Zilberti
- Istituto Nazionale Di Ricerca Metrologica, Turin, Italy
| | | |
Collapse
|
2
|
Bottauscio O, Zanovello U, Arduino A, Zilberti L. Polynomial chaos expansion of SAR and temperature increase variability in 3 T MRI due to stochastic input data. Phys Med Biol 2024; 69:125005. [PMID: 38788726 DOI: 10.1088/1361-6560/ad5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective.Numerical simulations are largely adopted to estimate dosimetric quantities, e.g. specific absorption rate (SAR) and temperature increase, in tissues to assess the patient exposure to the radiofrequency (RF) field generated during magnetic resonance imaging (MRI). Simulations rely on reference anatomical human models and tabulated data of electromagnetic and thermal properties of biological tissues. However, concerns may arise about the applicability of the computed results to any phenotype, introducing a significant degree of freedom in the simulation input data. In addition, simulation input data can be affected by uncertainty in relative positioning of the anatomical model with respect to the RF coil. The objective of this work is the to estimate the variability of SAR and temperature increase at 3 T head MRI due to different sources of variability in input data, with the final aim to associate a global uncertainty to the dosimetric outcomes.Approach.A stochastic approach based on arbitrary Polynomial Chaos Expansion is used to evaluate the effects of several input variability's (anatomy, tissue properties, body position) on dosimetric outputs, referring to head imaging with a 3 T MRI scanner.Main results.It is found that head anatomy is the prevailing source of variability for the considered dosimetric quantities, rather than the variability due to tissue properties and head positioning. From knowledge of the variability of the dosimetric quantities, an uncertainty can be attributed to the results obtained using a generic anatomical head model when SAR and temperature increase values are compared with safety exposure limits.Significance.This work associates a global uncertainty to SAR and temperature increase predictions, to be considered when comparing the numerically evaluated dosimetric quantities with reference exposure limits. The adopted methodology can be extended to other exposure scenarios for MRI safety purposes.
Collapse
Affiliation(s)
| | | | | | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| |
Collapse
|
3
|
Abstract
This study evaluated the effect of the 1.5 T magnetic field of the magnetic resonance-guided linear accelerator (MR-Linac) on the radiation leakage doses penetrating the bunker radiation shielding wall. The evaluated 1.5 T MR-Linac Unity system has a bunker of the minimum recommended size. Unlike a conventional Linac, both primary beam transmission and secondary beam leakage were considered independently in the design and defined at the machine boundary away from the isocenter. Moreover, additional shielding was designed considering the numerous ducts between the treatment room and other rooms. The Linac shielding was evaluated by measuring the leakage doses at several locations. The intrinsic vibration and magnetic field were inspected at the proposed isocenter of the system. For verification, leakage doses were measured before and after applying the magnetic field. The intrinsic vibration and magnetic field readings were below the permitted limit. The leakage dose (0.05–12.2 µSv/week) also complied with internationally stipulated limits. The special shielding achieved a five-fold reduction in leakage dose. Applying the magnetic field increased the leakage dose by 0.12 to 4.56 µSv/week in several measurement points, although these values fall within experimental uncertainty. Thus, the effect of the magnetic field on the leakage dose could not be ascertained.
Collapse
|
4
|
Rubia-Rodríguez I, Zilberti L, Arduino A, Bottauscio O, Chiampi M, Ortega D. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments. Int J Hyperthermia 2021; 38:846-861. [PMID: 34074196 DOI: 10.1080/02656736.2021.1909758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Bearing partially or fully metallic passive implants represents an exclusion criterion for patients undergoing a magnetic hyperthermia procedure, but there are no specific studies backing this restrictive decision. This work assesses how the secondary magnetic field generated at the surface of two common types of prostheses affects the safety and efficiency of magnetic hyperthermia treatments of localized tumors. The paper also proposes the combination of a multi-criteria decision analysis and a graphical representation of calculated data as an initial screening during the preclinical risk assessment for each patient.Materials and methods: Heating of a hip joint and a dental implant during the treatment of prostate, colorectal and head and neck tumors have been assessed considering different external field conditions and exposure times. The Maxwell equations including the secondary field produced by metallic prostheses have been solved numerically in a discretized computable human model. The heat exchange problem has been solved through a modified version of the Pennes' bioheat equation assuming a temperature dependency of blood perfusion and metabolic heat, i.e. thermorregulation. The degree of risk has been assessed using a risk index with parameters coming from custom graphs plotting the specific absorption rate (SAR) vs temperature increase, and coefficients derived from a multi-criteria decision analysis performed following the MACBETH approach.Results: The comparison of two common biomaterials for passive implants - Ti6Al4V and CoCrMo - shows that both specific absorption rate (SAR) and local temperature increase are found to be higher for the hip prosthesis made by Ti6Al4V despite its lower electrical and thermal conductivity. By tracking the time evolution of temperature upon field application, it has been established that there is a 30 s delay between the time point for which the thermal equilibrium is reached at prostheses and tissues. Likewise, damage may appear in those tissues adjacent to the prostheses at initial stages of treatment, since recommended thermal thresholds are soon surpassed for higher field intensities. However, it has also been found that under some operational conditions the typical safety rule of staying below or attain a maximum temperature increase or SAR value is met.Conclusion: The current exclusion criterion for implant-bearing patients in magnetic hyperthermia should be revised, since it may be too restrictive for a range of the typical field conditions used. Systematic in silico treatment planning using the proposed methodology after a well-focused diagnostic procedure can aid the clinical staff to find the appropriate limits for a safe treatment window.
Collapse
Affiliation(s)
| | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica (INRIM), Turin, Italy
| | | | | | - Mario Chiampi
- Istituto Nazionale di Ricerca Metrologica (INRIM), Turin, Italy
| | - Daniel Ortega
- IMDEA Nanoscience, Madrid, Spain.,Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cádiz, Spain.,Condensed Matter Physics department, University of Cádiz, Cádiz, Spain
| |
Collapse
|
5
|
Delcey M, Bour P, Ozenne V, Ben Hassen W, Quesson B. A fast MR-thermometry method for quantitative assessment of temperature increase near an implanted wire. PLoS One 2021; 16:e0250636. [PMID: 33983935 PMCID: PMC8118538 DOI: 10.1371/journal.pone.0250636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To propose a MR-thermometry method and associated data processing technique to predict the maximal RF-induced temperature increase near an implanted wire for any other MRI sequence. METHODS A dynamic single shot echo planar imaging sequence was implemented that interleaves acquisition of several slices every second and an energy deposition module with adjustable parameters. Temperature images were processed in real time and compared to invasive fiber-optic measurements to assess accuracy of the method. The standard deviation of temperature was measured in gel and in vivo in the human brain of a volunteer. Temperature increases were measured for different RF exposure levels in a phantom containing an inserted wire and then a MR-conditional pacemaker lead. These calibration data set were fitted to a semi-empirical model allowing estimation of temperature increase of other acquisition sequences. RESULTS The precision of the measurement obtained after filtering with a 1.6x1.6 mm2 in plane resolution was 0.2°C in gel, as well as in the human brain. A high correspondence was observed with invasive temperature measurements during RF-induced heating (0.5°C RMSE for a 11.5°C temperature increase). Temperature rises of 32.4°C and 6.5°C were reached at the tip of a wire and of a pacemaker lead, respectively. After successful fitting of temperature curves of the calibration data set, temperature rise predicted by the model was in good agreement (around 5% difference) with measured temperature by a fiber optic probe, for three other MRI sequences. CONCLUSION This method proposes a rapid and reliable quantification of the temperature rise near an implanted wire. Calibration data set and resulting fitting coefficients can be used to estimate temperature increase for any MRI sequence as function of its power and duration.
Collapse
Affiliation(s)
- Marylène Delcey
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Univ. Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Siemens Healthcare, Saint-Denis, France
| | - Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Univ. Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Univ. Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | | | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Univ. Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
6
|
Fagan AJ, Bitz AK, Björkman-Burtscher IM, Collins CM, Kimbrell V, Raaijmakers AJ, ISMRM Safety Committee. 7T MR Safety. J Magn Reson Imaging 2021; 53:333-346. [PMID: 32830900 PMCID: PMC8170917 DOI: 10.1002/jmri.27319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.
Collapse
Affiliation(s)
- Andrew J. Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas K. Bitz
- Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Isabella M. Björkman-Burtscher
- Department of Radiology, University of Gothenburg, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher M. Collins
- Center for Advanced Imaging Innovation and Research, NYU Langone Medical Center, New York, New York, USA
| | - Vera Kimbrell
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
7
|
Park JS. Neuroman: Voxel Phantoms from Surface Models of 300 Head Structures Including 12 Pairs of Cranial Nerves. HEALTH PHYSICS 2020; 119:192-205. [PMID: 31855595 DOI: 10.1097/hp.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For a precise simulation of electromagnetic radiation effects, voxel phantoms require detailed structures to approximate humans. The phantoms currently used still do not have sophisticated structures. This paper presents voxel and surface models of 300 head structures with cranial nerves and reports on a technique for voxel reconstruction of the cranial nerves having very thin and small structures. In real-color sectioned images of the head (voxel size: 0.1 mm), 300 structures were segmented using Photoshop. A surface reconstruction was performed automatically on Mimics. Voxel conversion was run on Voxel Studio. The abnormal shapes of the voxel models were found and classified into three types: thin cord, thin layers, and thin parts in the structures. The abnormal voxel models were amended using extended, filled, and manual voxelization methods devised for this study. Surface models in STL format and as PDF files of the 300 head structures were produced. The STL format has good scalability, so it can be used in most three-dimensional surface model software. The PDF file is very user friendly for students and researchers who want to learn the head anatomy. Voxel models of 300 head structures were produced (TXT format), and their voxel quantity and weight were measured. A voxel model is difficult to handle, and the surface model cannot use the radiation simulation. Consequently, the best method for making precise phantoms is one in which the flaws of the voxel and surface models complement each other, as in the present study.
Collapse
Affiliation(s)
- Jin Seo Park
- Department of Anatomy, Dongguk University School of Medicine, Republic of Korea
| |
Collapse
|
8
|
Arduino A, Bottauscio O, Brühl R, Chiampi M, Zilberti L. In silico evaluation of the thermal stress induced by MRI switched gradient fields in patients with metallic hip implant. ACTA ACUST UNITED AC 2019; 64:245006. [DOI: 10.1088/1361-6560/ab5428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Destruel A, Fuentes M, Weber E, O'Brien K, Jin J, Liu F, Barth M, Crozier S. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T. Magn Reson Med 2019; 81:3826-3839. [PMID: 30803001 DOI: 10.1002/mrm.27688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Parallel transmission techniques in MRI have the potential to improve the image quality near metal implants at 3 T. However, current testing of implants only evaluates the risk of radiofrequency (RF) heating in phantoms in circularly polarized mode. We investigate the influence of changing the transmission settings in a 2-channel body coil on the peak temperature near 2 CoCrMo hip prostheses, using adaptive specific absorption rate (SAR) as an estimate of RF heating. METHODS Adaptive SAR is a SAR averaging method that is optimized to correlate with thermal simulations and limit the temperature to 39°C near hip implants. The simulated peak temperature was compared when using whole-body SAR, SAR10g , and adaptive SAR as a constraint for the maximum allowed input power. Adaptive SAR was used as a fast estimate of temperature to evaluate the trade-off between good image quality and low heating near the hip implants. Electromagnetic simulations were validated by simulating and measuring B1 maps and electric fields in a phantom at 3 T. RESULTS Simulations and measurements showed excellent agreement. Limiting whole-body SAR to 2 W/kg and SAR10g to 10 W/kg resulted in temperatures up to 49.3°C and 40.7°C near the hip implants after 30 minutes of RF exposure, respectively. Predictions based on adaptive SAR limited the temperature to 39°C, and allowed to improve the B1 field distribution while preventing peak temperatures near the hip implants. CONCLUSION Significant RF heating can occur at 3 T near hip implants when parallel transmission is used. Adaptive SAR can be integrated in RF shimming algorithms to improve the uniformity and reduce heating.
Collapse
Affiliation(s)
- Aurelien Destruel
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Australia.,Centre for Advanced Imaging, University of Queensland, St. Lucia, Australia
| | - Miguel Fuentes
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Australia.,Population Health Research on Electromagnetic Energy, School of Public Health and Preventive Medicine, Monash University, Clayton, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Australia
| | - Kieran O'Brien
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Australia.,Siemens Healthcare, Brisbane, Australia
| | - Jin Jin
- Siemens Healthineers USA, Los Angeles, California
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Australia
| | - Markus Barth
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Australia
| |
Collapse
|
10
|
Occupational exposure to electromagnetic fields in magnetic resonance environment: basic aspects and review of exposure assessment approaches. Med Biol Eng Comput 2018; 56:531-545. [PMID: 29344902 DOI: 10.1007/s11517-017-1779-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
The purpose of this review is to make a contribution to build a comprehensive knowledge of the main aspects related to the occupational exposure to electromagnetic fields (EMFs) in magnetic resonance imaging (MRI) environments. Information has been obtained from original research papers published in international peer-reviewed journals in the English language and from documents published by governmental bodies and authorities. An overview of the occupational exposure scenarios to static magnetic fields, motion-induced, time-varying magnetic fields, and gradient and radiofrequency fields is provided, together with a summary of the relevant regulation for limiting exposure. A particular emphasis is on reviewing the main EMF exposure assessment approaches found in the literature. Exposure assessment is carried out either by measuring the unperturbed magnetic fields in the MRI rooms, or by personal monitoring campaigns, or by the use of numerical methods. A general lack of standardization of the procedures and technologies adopted for exposure assessment has emerged, which makes it difficult to perform a direct comparison of results from different studies carried out by applying different assessment strategies. In conclusion, exposure assessment approaches based on data collection and numerical models need to be better defined in order to respond to specific research questions. That would provide for a more complete characterization of the exposure patterns and for identification of the factors determining the exposure variability. Graphical abstract Main approaches adopted in the literature to perform occupational exposure assessment to electromagnetic fields (EMFs) in magnetic resonance imaging (MRI) environments. SMF: static magnetic field; GMF: gradient magnetic fields; RF: radio-frequencies.
Collapse
|
11
|
Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2017; 168:33-58. [PMID: 28336426 DOI: 10.1016/j.neuroimage.2017.03.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023] Open
Abstract
At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany
| |
Collapse
|
12
|
Kabil J, Belguerras L, Trattnig S, Pasquier C, Felblinger J, Missoffe A. A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI. Yearb Med Inform 2016:152-158. [PMID: 27830244 DOI: 10.15265/iy-2016-016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. METHODS A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. RESULTS Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. CONCLUSIONS Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges.
Collapse
Affiliation(s)
| | | | | | | | - J Felblinger
- Jacques Felblinger, Ph.D, Prof., Laboratoire IADI (UL-INSERM U947), CHRU Nancy Brabois, Rue du Morvan, 54511 Vandoeuvre Cedex, France, Tel: + 33 3 83 15 49 76, E-Mail:
| | | |
Collapse
|