1
|
Fels‐Palesandro H, Heuer S, Boztepe B, Streibel Y, Ungermann J, Pan C, Scheck JG, Fischer M, Sturm VJ, Azorín DD, Karimian‐Jazi K, Annio G, Abdollahi A, Weidenfeld I, Wick W, Venkataramani V, Heiland S, Winkler F, Bendszus M, Sinkus R, Breckwoldt MO, Schregel K. Assessment of Tumor Cell Invasion and Radiotherapy Response in Experimental Glioma by Magnetic Resonance Elastography. J Magn Reson Imaging 2025; 61:1203-1218. [PMID: 39177509 PMCID: PMC11803692 DOI: 10.1002/jmri.29567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Gliomas are highly invasive brain neoplasms. MRI is the most important tool to diagnose and monitor glioma but has shortcomings. In particular, the assessment of tumor cell invasion is insufficient. This is a clinical dilemma, as recurrence can arise from MRI-occult glioma cell invasion. HYPOTHESIS Tumor cell invasion, tumor growth and radiotherapy alter the brain parenchymal microstructure and thus are assessable by diffusion tensor imaging (DTI) and MR elastography (MRE). STUDY TYPE Experimental, animal model. ANIMAL MODEL Twenty-three male NMRI nude mice orthotopically implanted with S24 patient-derived glioma cells (experimental mice) and 9 NMRI nude mice stereotactically injected with 1 μL PBS (sham-injected mice). FIELD STRENGTH/SEQUENCE 2D and 3D T2-weighted rapid acquisition with refocused echoes (RARE), 2D echo planar imaging (EPI) DTI, 2D multi-slice multi-echo (MSME) T2 relaxometry, 3D MSME MRE at 900 Hz acquired at 9.4 T (675 mT/m gradient strength). ASSESSMENT Longitudinal 4-weekly imaging was performed for up to 4 months. Tumor volume was assessed in experimental mice (n = 10 treatment-control, n = 13 radiotherapy). The radiotherapy subgroup and 5 sham-injected mice underwent irradiation (3 × 6 Gy) 9 weeks post-implantation/sham injection. MRI-/MRE-parameters were assessed in the corpus callosum and tumor core/injection tract. Imaging data were correlated to light sheet microscopy (LSM) and histology. STATISTICAL TESTS Paired and unpaired t-tests, a P-value ≤0.05 was considered significant. RESULTS From week 4 to 8, a significant callosal stiffening (4.44 ± 0.22 vs. 5.31 ± 0.29 kPa) was detected correlating with LSM-proven tumor cell invasion. This was occult to all other imaging metrics. Histologically proven tissue destruction in the tumor core led to an increased T2 relaxation time (41.65 ± 0.34 vs. 44.83 ± 0.66 msec) and ADC (610.2 ± 12.27 vs. 711.2 ± 13.42 × 10-6 mm2/s) and a softening (5.51 ± 0.30 vs. 4.24 ± 0.29 kPa) from week 8 to 12. Radiotherapy slowed tumor progression. DATA CONCLUSION MRE is promising for the assessment of key glioma characteristics. EVIDENCE LEVEL NA TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hannah Fels‐Palesandro
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sophie Heuer
- Department of Neurology and National Center for Tumor Disease (NCT)Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Berin Boztepe
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor ImmunologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Yannik Streibel
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Johannes Ungermann
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Chenchen Pan
- Department of Neurology and National Center for Tumor Disease (NCT)Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jonas G. Scheck
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Manuel Fischer
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Volker J. Sturm
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Daniel D. Azorín
- Department of Neurology and National Center for Tumor Disease (NCT)Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | - Giacomo Annio
- INSERM UMRS1148 – Laboratory for Vascular Translational ScienceUniversity ParisParisFrance
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ina Weidenfeld
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Wolfgang Wick
- Department of Neurology and National Center for Tumor Disease (NCT)Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Varun Venkataramani
- Department of Neurology and National Center for Tumor Disease (NCT)Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sabine Heiland
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Frank Winkler
- Department of Neurology and National Center for Tumor Disease (NCT)Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Martin Bendszus
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Ralph Sinkus
- INSERM UMRS1148 – Laboratory for Vascular Translational ScienceUniversity ParisParisFrance
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Michael O. Breckwoldt
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor ImmunologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Katharina Schregel
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
2
|
Rey JA, Spanick KG, Cabral G, Rivera-Santiago IN, Nagaraja TN, Brown SL, Ewing JR, Sarntinoranont M. Heterogeneous Mechanical Stress and Interstitial Fluid Flow Predictions Derived from DCE-MRI for Rat U251N Orthotopic Gliomas. Ann Biomed Eng 2024; 52:3053-3066. [PMID: 39048699 DOI: 10.1007/s10439-024-03569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Mechanical stress and fluid flow influence glioma cell phenotype in vitro, but measuring these quantities in vivo continues to be challenging. The purpose of this study was to predict these quantities in vivo, thus providing insight into glioma physiology and potential mechanical biomarkers that may improve glioma detection, diagnosis, and treatment. Image-based finite element models of human U251N orthotopic glioma in athymic rats were developed to predict structural stress and interstitial flow in and around each animal's tumor. In addition to accounting for structural stress caused by tumor growth, our approach has the advantage of capturing fluid pressure-induced structural stress, which was informed by in vivo interstitial fluid pressure (IFP) measurements. Because gliomas and the brain are soft, elevated IFP contributed substantially to tumor structural stress, even inverting this stress from compressive to tensile in the most compliant cases. The combination of tumor growth and elevated IFP resulted in a concentration of structural stress near the tumor boundary where it has the greatest potential to influence cell proliferation and invasion. MRI-derived anatomical geometries and tissue property distributions resulted in heterogeneous interstitial fluid flow with local maxima near cerebrospinal fluid spaces, which may promote tumor invasion and hinder drug delivery. In addition, predicted structural stress and interstitial flow varied markedly between irradiated and radiation-naïve animals. Our modeling suggests that relative to tumors in stiffer tissues, gliomas experience unusual mechanical conditions with potentially important biological (e.g., proliferation and invasion) and clinical consequences (e.g., drug delivery and treatment monitoring).
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Isabel N Rivera-Santiago
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA
| | - Tavarekere N Nagaraja
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Stephen L Brown
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, 497 Wertheim, PO Box 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Janas A, Jordan J, Bertalan G, Meyer T, Bukatz J, Sack I, Senger C, Nieminen-Kelhä M, Brandenburg S, Kremenskaia I, Krantchev K, Al-Rubaiey S, Mueller S, Koch SP, Boehm-Sturm P, Reiter R, Zips D, Vajkoczy P, Acker G. In vivo characterization of brain tumor biomechanics: magnetic resonance elastography in intracranial B16 melanoma and GL261 glioma mouse models. Front Oncol 2024; 14:1402578. [PMID: 39324003 PMCID: PMC11422132 DOI: 10.3389/fonc.2024.1402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Magnetic Resonance Elastography (MRE) allows the non-invasive quantification of tumor biomechanical properties in vivo. With increasing incidence of brain metastases, there is a notable absence of appropriate preclinical models to investigate their biomechanical characteristics. Therefore, the purpose of this work was to assess the biomechanical characteristics of B16 melanoma brain metastases (MBM) and compare it to murine GL261 glioblastoma (GBM) model using multifrequency MRE with tomoelastography post processing. Methods Intracranial B16 MBM (n = 6) and GL261 GBM (n = 7) mouse models were used. Magnetic Resonance Imaging (MRI) was performed at set intervals after tumor implantation: 5, 7, 12, 14 days for MBM and 13 and 22 days for GBM. The investigations were performed using a 7T preclinical MRI with 20 mm head coil. The protocol consisted of single-shot spin echo-planar multifrequency MRE with tomoelastography post processing, contrast-enhanced T1- and T2-weighted imaging and diffusion-weighted imaging (DWI) with quantification of apparent diffusion coefficient of water (ADC). Elastography quantified shear wave speed (SWS), magnitude of complex MR signal (T2/T2*) and loss angle (φ). Immunohistological investigations were performed to assess vascularization, blood-brain-barrier integrity and extent of glucosaminoglucan coverage. Results Volumetric analyses displayed rapid growth of both tumor entities and softer tissue properties than healthy brain (healthy: 5.17 ± 0.48, MBM: 3.83 ± 0.55, GBM: 3.7 ± 0.23, [m/s]). SWS of MBM remained unchanged throughout tumor progression with decreased T2/T2* intensity and increased ADC on days 12 and 14 (p<0.0001 for both). Conversely, GBM presented reduced φ values on day 22 (p=0.0237), with no significant alterations in ADC. Histological analysis revealed substantial vascularization and elevated glycosaminoglycan content in both tumor types compared to healthy contralateral brain. Discussion Our results indicate that while both, MBM and GBM, exhibited softer properties compared to healthy brain, imaging and histological analysis revealed different underlying microstructural causes: hemorrhages in MBM and increased vascularization and glycosaminoglycan content in GBM, further corroborated by DWI and T2/T2* contrast. These findings underscore the complementary nature of MRE and its potential to enhance our understanding of tumor characteristics when used alongside established techniques. This comprehensive approach could lead to improved clinical outcomes and a deeper understanding of brain tumor pathophysiology.
Collapse
Affiliation(s)
- Anastasia Janas
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Bukatz
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Irina Kremenskaia
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kiril Krantchev
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf Reiter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
5
|
Streibel Y, Breckwoldt MO, Hunger J, Pan C, Fischer M, Turco V, Boztepe B, Fels-Palesandro H, Scheck JG, Sturm V, Karimian-Jazi K, Agardy DA, Annio G, Mustapha R, Soni SS, Alasa A, Weidenfeld I, Rodell CB, Wick W, Heiland S, Winkler F, Platten M, Bendszus M, Sinkus R, Schregel K. Tumor biomechanics as a novel imaging biomarker to assess response to immunotherapy in a murine glioma model. Sci Rep 2024; 14:15613. [PMID: 38971907 PMCID: PMC11227492 DOI: 10.1038/s41598-024-66519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Glioblastoma is the most common and aggressive primary malignant brain tumor with poor prognosis. Novel immunotherapeutic approaches are currently under investigation. Even though magnetic resonance imaging (MRI) is the most important imaging tool for treatment monitoring, response assessment is often hampered by therapy-related tissue changes. As tumor and therapy-associated tissue reactions differ structurally, we hypothesize that biomechanics could be a pertinent imaging proxy for differentiation. Longitudinal MRI and magnetic resonance elastography (MRE) were performed to monitor response to immunotherapy with a toll-like receptor 7/8 agonist in orthotopic syngeneic experimental glioma. Imaging results were correlated to histology and light sheet microscopy data. Here, we identify MRE as a promising non-invasive imaging method for immunotherapy-monitoring by quantifying changes in response-related tumor mechanics. Specifically, we show that a relative softening of treated compared to untreated tumors is linked to the inflammatory processes following therapy-induced re-education of tumor-associated myeloid cells. Mechanistically, combined effects of myeloid influx and inflammation including extracellular matrix degradation following immunotherapy form the basis of treated tumors being softer than untreated glioma. This is a very early indicator of therapy response outperforming established imaging metrics such as tumor volume. The overall anti-tumor inflammatory processes likely have similar effects on human brain tissue biomechanics, making MRE a promising tool for gauging response to immunotherapy in glioma patients early, thereby strongly impacting patient pathway.
Collapse
Affiliation(s)
- Yannik Streibel
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jessica Hunger
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chenchen Pan
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Verena Turco
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, National Center for Tumor Diseases, Heidelberg, Germany
| | - Berin Boztepe
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Hannah Fels-Palesandro
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jonas G Scheck
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Giacomo Annio
- INSERM UMRS1148-Laboratory for Vascular Translational Science, University Paris, Paris, France
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rami Mustapha
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA
| | - Abdulrahman Alasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA
| | - Ina Weidenfeld
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Ralph Sinkus
- INSERM UMRS1148-Laboratory for Vascular Translational Science, University Paris, Paris, France
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Le Y, Chen J, Rossman P, Bolster B, Kannengiesser S, Manduca A, Glaser K, Sui Y, Huston J, Yin Z, Ehman RL. Wavelet MRE: Imaging propagating broadband acoustic waves with wavelet-based motion-encoding gradients. Magn Reson Med 2024; 91:1923-1935. [PMID: 38098427 PMCID: PMC10950519 DOI: 10.1002/mrm.29972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 03/20/2024]
Abstract
PURPOSE To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform. METHODS A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel. RESULTS In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study. CONCLUSION The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.
Collapse
Affiliation(s)
- Yuan Le
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Bradley Bolster
- MR Collaborations, Siemens Medical Solutions USA, Inc., Malvern, PA, USA
| | | | | | - Kevin Glaser
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Yi Sui
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Ziying Yin
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
7
|
Ma S, Wang R, Qiu S, Li R, Yue Q, Sun Q, Chen L, Yan F, Yang GZ, Feng Y. MR Elastography With Optimization-Based Phase Unwrapping and Traveling Wave Expansion-Based Neural Network (TWENN). IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2631-2642. [PMID: 37030683 DOI: 10.1109/tmi.2023.3261346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic Resonance Elastography (MRE) can characterize biomechanical properties of soft tissue for disease diagnosis and treatment planning. However, complicated wavefields acquired from MRE coupled with noise pose challenges for accurate displacement extraction and modulus estimation. Using optimization-based displacement extraction and Traveling Wave Expansion-based Neural Network (TWENN) modulus estimation, we propose a new pipeline for processing MRE images. An objective function with Dual Data Consistency (Dual-DC) has been used to ensure accurate phase unwrapping and displacement extraction. For the estimation of complex wavenumbers, a complex-valued neural network with displacement covariance as an input has been developed. A model of traveling wave expansion is used to generate training datasets for the network with varying levels of noise. The complex shear modulus map is obtained through fusion of multifrequency and multidirectional data. Validation using brain and liver simulation images demonstrates the practical value of the proposed pipeline, which can estimate the biomechanical properties with minimal root-mean-square errors when compared to state-of-the-art methods. Applications of the proposed method for processing MRE images of phantom, brain, and liver reveal clear anatomical features, robustness to noise, and good generalizability of the pipeline.
Collapse
|
8
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
9
|
Parasaram V, Civale J, Bamber JC, Robinson SP, Jamin Y, Harris E. Preclinical Three-Dimensional Vibrational Shear Wave Elastography for Mapping of Tumour Biomechanical Properties In Vivo. Cancers (Basel) 2022; 14:4832. [PMID: 36230755 PMCID: PMC9564290 DOI: 10.3390/cancers14194832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Harris
- Division of Radiotherapy and Imaging, Centre for Cancer Imaging, Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
10
|
Wang L, Ke J, Hu X, Zhu M, Yu Y. Preliminary Findings on the Potential Use of Magnetic Resonance Elastography to Diagnose Lacunar Infarction. Neuropsychiatr Dis Treat 2022; 18:1583-1591. [PMID: 35937715 PMCID: PMC9355338 DOI: 10.2147/ndt.s371404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Lacunar infarction is usually diagnosed by conventional technologies, such as CT and diffusion weighted imaging (DWI). To improve the accuracy of diagnosis, neurocognitive screening is still needed. Therefore, additional imaging methods that can assist and provide more accurate and rapid diagnostics are urgently needed. As an initial step towards potentially using MR elastography (MRE) for such diagnostic purposes, we tested the hypothesis that the mechanical properties of tissue in the vicinity of cerebral vasculature change following lacunar infarction in a way that can be quantified using MRE. PATIENTS AND METHODS MRE and MR angiography (MRA) images from 51 patients diagnosed with lacunar infarction and 54 healthy volunteers were acquired on a 3T scanner. All diagnoses were confirmed by matching neurocognitive test results to locations of flow obstruction in MRA. ROIs of the cerebral vessels segmented on the MRA images were mapped to the MRE images. Interpolation-based inversion was applied to estimate the regional biomechanical properties of ROIs that included cerebral vessels. The effects of lacunar infarction, sex, and age were analyzed using analysis of covariance (ANOCOVA). RESULTS Shear moduli over vessel ROIs were significantly lower for the lacunar infarction group than those of the healthy control group. A positive correlation between modulus over vessel ROIs and age was observed. However, no significant correlation was found between sex and the regional biomechanical properties of the vessel ROIs. CONCLUSION Results supported the hypothesis and suggest that biomechanical properties may be of utility in diagnosis of lacunar infarction.
Collapse
Affiliation(s)
- Lingjie Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | - Xiaoyin Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| |
Collapse
|
11
|
Rey JA, Ewing JR, Sarntinoranont M. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity. Biomech Model Mechanobiol 2021; 20:1981-2000. [PMID: 34363553 DOI: 10.1007/s10237-021-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple nonlinear tissue deformation with porosity and tissue hydraulic conductivity to study the mechanical interaction of leaky vasculature and solid growth in an embedded glioma. The present model showed that leaky vasculature and elevated interstitial fluid pressure produce tensile stress within the tumor in opposition to the compressive stress produced by tumor growth. This tensile effect was more pronounced in softer tissue and resulted in a compressive stress concentration at the tumor rim that increased when tumor was softer than host. Aside from generating solid stress, fluid pressure-driven tissue deformation decreased the effective stiffness of the tumor while growth increased it, potentially leading to elevated stiffness in the tumor rim. A novel prediction of reduced porosity at the tumor rim was corroborated by direct comparison with estimates from our in vivo imaging studies. Antiangiogenic and radiation therapy were simulated by varying vascular leakiness and tissue hydraulic conductivity. These led to greater solid compression and interstitial pressure in the tumor, respectively, the former of which may promote tumor infiltration of the host. Our findings suggest that vascular leakiness has an important influence on in vivo solid stress, stiffness, and porosity fields in gliomas given their unique mechanical microenvironment.
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Fujimoto K, Shiinoki T, Yuasa Y, Tanaka H. Estimation of liver elasticity using the finite element method and four-dimensional computed tomography images as a biomarker of liver fibrosis. Med Phys 2021; 48:1286-1298. [PMID: 33449406 DOI: 10.1002/mp.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Current radiotherapy planning procedures are generally designed based on anatomical information only and use computed tomography (CT) images that do not incorporate organ-functional information. In this study, we developed a method for estimating liver elasticity using the finite element method (FEM) and four-dimensional CT (4DCT) images acquired during radiotherapy planning, and we subsequently evaluated its feasibility as a biomarker for liver fibrosis. MATERIALS AND METHODS Twenty patients who underwent 4DCT and ultrasound-based transient elastography (UTE) were enrolled. All patients had chronic liver disease or cirrhosis. Liver elasticity measurements of the UTE were performed on the right lobe of the patient's liver in 20 patients. The serum biomarkers of the aspartate aminotransferase (AST)-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) were available in 18 of the 20 total patients, which were measured within 1 week after undergoing 4DCT. The displacement between the 4DCT images obtained at the endpoints of exhalation and inspiration was determined using the actual (via deformable image registration) and simulated (via FEM) respiration-induced displacement. The elasticity of each element of the liver model was optimized by minimizing the error between the actual and simulated respiration-induced displacement. Then, each patient's estimated liver elasticity was defined as the mean Young's modulus of the liver's right lobe and that of the whole liver using the estimated elasticity map. The estimated liver elasticity was evaluated for correlations with the elasticity obtained via UTE and with two serum biomarkers (APRI and FIB-4). RESULTS The mean ± standard deviation (SD) of the errors between the actual and simulated respiration-induced displacement in the liver model was 0.54 ± 0.33 mm. The estimated liver's right lobe elasticity was statistically significantly correlated with the UTE (r = 0.87, P < 0.001). Furthermore, the estimated whole liver elasticity was statistically significantly correlated with the UTE (r = 0.84, P < 0.001), APRI score (r = 0.62, P = 0.005), and FIB-4 score (r = 0.54, P = 0.021). CONCLUSION In this study, liver elasticity was estimated through FEM-based simulation and actual respiratory-induced liver displacement obtained from 4DCT images. Furthermore, we assessed that the estimated elasticity of the liver's right lobe was strongly correlated with the UTE. Therefore, the estimated elasticity has the potential to be a feasible imaging biomarker for assessing liver fibrosis using only 4DCT images without additional inspection or equipment costs. Because our results were derived from a limited sample of 20 patients, it is necessary to evaluate the accuracy of elasticity estimation for each liver segment on larger groups of biopsied patients to utilize liver elasticity information for radiotherapy planning.
Collapse
Affiliation(s)
- Koya Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Hidekazu Tanaka
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| |
Collapse
|
13
|
Schregel K, Nowicki MO, Palotai M, Nazari N, Zane R, Sinkus R, Lawler SE, Patz S. Magnetic Resonance Elastography reveals effects of anti-angiogenic glioblastoma treatment on tumor stiffness and captures progression in an orthotopic mouse model. Cancer Imaging 2020; 20:35. [PMID: 32398076 PMCID: PMC7218549 DOI: 10.1186/s40644-020-00314-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Background Anti-angiogenic treatment of glioblastoma (GBM) complicates radiologic monitoring. We evaluated magnetic resonance elastography (MRE) as an imaging tool for monitoring the efficacy of anti-VEGF treatment of GBM. Methods Longitudinal studies were performed in an orthotopic GBM xenograft mouse model. Animals treated with B20 anti-VEGF antibody were compared to untreated controls regarding survival (n = 13), classical MRI-contrasts and biomechanics as quantified via MRE (n = 15). Imaging was performed on a 7 T small animal horizontal bore MRI scanner. MRI and MRE parameters were compared to histopathology. Results Anti-VEGF-treated animals survived longer than untreated controls (p = 0.0011) with progressively increased tumor volume in controls (p = 0.0001). MRE parameters viscoelasticity |G*| and phase angle Y significantly decreased in controls (p = 0.02 for |G*| and p = 0.0071 for Y). This indicates that untreated tumors became softer and more elastic than viscous with progression. Tumor volume in treated animals increased more slowly than in controls, indicating efficacy of the therapy, reaching significance only at the last time point (p = 0.02). Viscoelasticity and phase angle Y tended to decrease throughout therapy, similar as for control animals. However, in treated animals, the decrease in phase angle Y was significantly attenuated and reached statistical significance at the last time point (p = 0.04). Histopathologically, control tumors were larger and more heterogeneous than treated tumors. Vasculature was normalized in treated tumors compared with controls, which showed abnormal vasculature and necrosis. In treated tumors, a higher amount of myelin was observed within the tumor area (p = 0.03), likely due to increased tumor invasion. Stiffness of the contralateral hemisphere was influenced by tumor mass effect and edema. Conclusions Anti-angiogenic GBM treatment prolonged animal survival, slowed tumor growth and softening, but did not prevent progression. MRE detected treatment effects on tumor stiffness; the decrease of viscoelasticity and phase angle in GBM was attenuated in treated animals, which might be explained by normalized vasculature and greater myelin preservation within treated tumors. Thus, further investigation of MRE is warranted to understand the potential for MRE in monitoring treatment in GBM patients by complementing existing MRI techniques.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany. .,Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany.
| | - Michal O Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Miklos Palotai
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Navid Nazari
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rachel Zane
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,INSERM U1148, Laboratory for Vascular Translational Science, University Paris Diderot, University Paris 13, Paris, France
| | - Sean E Lawler
- Harvard Medical School, Boston, MA, USA. .,Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.
| | - Samuel Patz
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Eskandari F, Shafieian M, Aghdam MM, Laksari K. A knowledge map analysis of brain biomechanics: Current evidence and future directions. Clin Biomech (Bristol, Avon) 2020; 75:105000. [PMID: 32361083 DOI: 10.1016/j.clinbiomech.2020.105000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Although brain, one of the most complex organs in the mammalian body, has been subjected to many studies from physiological and pathological points of view, there remain significant gaps in the available knowledge regarding its biomechanics. This article reviews the research trends in brain biomechanics with a focus on injury. We used published scientific articles indexed by Web of Science database over the past 40 years and tried to address the gaps that still exist in this field. We analyzed the data using VOSviewer, which is a software tool designed for scientometric studies. The results of this study showed that the response of brain tissue to external forces has been one of the significant research topics among biomechanicians. These studies have addressed the effects of mechanical forces on the brain and mechanisms of traumatic brain injury, as well as characterized changes in tissue behavior under trauma and other neurological diseases to provide new diagnostic and monitoring methods. In this study, some challenges in the field of brain injury biomechanics have been identified and new directions toward understanding the gaps in this field are suggested.
Collapse
Affiliation(s)
- Faezeh Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohammad M Aghdam
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Bunevicius A, Schregel K, Sinkus R, Golby A, Patz S. REVIEW: MR elastography of brain tumors. Neuroimage Clin 2019; 25:102109. [PMID: 31809993 PMCID: PMC6909210 DOI: 10.1016/j.nicl.2019.102109] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
MR elastography allows non-invasive quantification of the shear modulus of tissue, i.e. tissue stiffness and viscosity, information that offers the potential to guide presurgical planning for brain tumor resection. Here, we review brain tumor MRE studies with particular attention to clinical applications. Studies that investigated MRE in patients with intracranial tumors, both malignant and benign as well as primary and metastatic, were queried from the Pubmed/Medline database in August 2018. Reported tumor and normal appearing white matter stiffness values were extracted and compared as a function of tumor histopathological diagnosis and MRE vibration frequencies. Because different studies used different elastography hardware, pulse sequences, reconstruction inversion algorithms, and different symmetry assumptions about the mechanical properties of tissue, effort was directed to ensure that similar quantities were used when making inter-study comparisons. In addition, because different methodologies and processing pipelines will necessarily bias the results, when pooling data from different studies, whenever possible, tumor values were compared with the same subject's contralateral normal appearing white matter to minimize any study-dependent bias. The literature search yielded 10 studies with a total of 184 primary and metastatic brain tumor patients. The group mean tumor stiffness, as measured with MRE, correlated with intra-operatively assessed stiffness of meningiomas and pituitary adenomas. Pooled data analysis showed significant overlap between shear modulus values across brain tumor types. When adjusting for the same patient normal appearing white matter shear modulus values, meningiomas were the stiffest tumor-type. MRE is increasingly being examined for potential in brain tumor imaging and might have value for surgical planning. However, significant overlap of shear modulus values between a number of different tumor types limits applicability of MRE for diagnostic purposes. Thus, further rigorous studies are needed to determine specific clinical applications of MRE for surgical planning, disease monitoring and molecular stratification of brain tumors.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States.
| | - Katharina Schregel
- Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | - Ralph Sinkus
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Samuel Patz
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Li J, Zormpas-Petridis K, Boult JKR, Reeves EL, Heindl A, Vinci M, Lopes F, Cummings C, Springer CJ, Chesler L, Jones C, Bamber JC, Yuan Y, Sinkus R, Jamin Y, Robinson SP. Investigating the Contribution of Collagen to the Tumor Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastography. Cancer Res 2019; 79:5874-5883. [PMID: 31604713 DOI: 10.1158/0008-5472.can-19-1595] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.
Collapse
Affiliation(s)
- Jin Li
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | | | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Emma L Reeves
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Andreas Heindl
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Maria Vinci
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Filipa Lopes
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Craig Cummings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Caroline J Springer
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ralph Sinkus
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
17
|
Pepin K, Grimm R, Kargar S, Howe BM, Fritchie K, Frick M, Wenger D, Okuno S, Ehman R, McGee K, James S, Laack N, Herman M, Pafundi D. Soft Tissue Sarcoma Stiffness and Perfusion Evaluation by MRE and DCE-MRI for Radiation Therapy Response Assessment: A Technical Feasibility Study. Biomed Phys Eng Express 2019; 5:10.1088/2057-1976/ab2175. [PMID: 32110433 PMCID: PMC7045581 DOI: 10.1088/2057-1976/ab2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue sarcomas are a rare and heterogeneous group of malignancies that present significant diagnostic and therapeutic challenges. Patient stratification based on tumor aggressiveness and early therapeutic response based on quantitative imaging may improve prediction of treatment response and the evaluation of new treatment strategies in clinical trials. The purpose of this pilot study was to determine the technical feasibility of magnetic resonance elastography (MRE) and dynamic contrast-enhanced (DCE) MRI for the evaluation of sarcoma stiffness and perfusion in 9 patients with histologically confirmed sarcoma. Additionally, we assessed the feasibility of utilizing MRE and DCE-MRI for the early evaluation of response to radiation therapy in 4 patients to determine the utility of further evaluation in a larger cohort study. Tumor size, stiffness, and perfusion parameters all decreased from baseline at the time of the pre-surgery or follow-up MRI, and results were compared to pathology or conventional imaging. MRE and DCE-MRI may be useful for the quantitative evaluation of tumor stiffness and perfusion, and therapy response assessment in soft tissue sarcomas.
Collapse
Affiliation(s)
- Kay Pepin
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Roger Grimm
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Soudabeh Kargar
- Mayo Clinic Graduate School of Biomedical Sciences, 200 1 Street SW, Rochester, MN 55905
| | - B Matthew Howe
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Karen Fritchie
- Department of Pathology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Matthew Frick
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Doris Wenger
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Scott Okuno
- Department of Oncology, Mayo Clinic, 200 1 St SW, Rochester MN, 55905
| | - Richard Ehman
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Kiaran McGee
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Sarah James
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Michael Herman
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Deanna Pafundi
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| |
Collapse
|
18
|
Pagé G, Tardieu M, Besret L, Blot L, Lopes J, Sinkus R, Van Beers BE, Garteiser P. Assessing Tumor Mechanics by MR Elastography at Different Strain Levels. J Magn Reson Imaging 2019; 50:1982-1989. [DOI: 10.1002/jmri.26787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| | - Marion Tardieu
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| | | | | | | | - Ralph Sinkus
- Laboratory of Vascular Translational ScienceUMR1148, INSERM‐University Paris Diderot Paris France
- Imaging Sciences and Biomedical EngineeringKing's College London London UK
| | - Bernard E. Van Beers
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
- Department of RadiologyBeaujon University Hospital Paris Nord Clichy France
| | - Philippe Garteiser
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| |
Collapse
|
19
|
Bigot M, Chauveau F, Beuf O, Lambert SA. Magnetic Resonance Elastography of Rodent Brain. Front Neurol 2018; 9:1010. [PMID: 30538670 PMCID: PMC6277573 DOI: 10.3389/fneur.2018.01010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance elastography (MRE) is a non-invasive imaging technique, using the propagation of mechanical waves as a probe to palpate biological tissues. It consists in three main steps: production of shear waves within the tissue; encoding subsequent tissue displacement in magnetic resonance images; and extraction of mechanical parameters based on dedicated reconstruction methods. These three steps require an acoustic-frequency mechanical actuator, magnetic resonance imaging acquisition, and a post-processing tool for which no turnkey technology is available. The aim of the present review is to outline the state of the art of reported set-ups to investigate rodent brain mechanical properties. The impact of experimental conditions in dimensioning the set-up (wavelength and amplitude of the propagated wave, spatial resolution, and signal-to-noise ratio of the acquisition) on the accuracy and precision of the extracted parameters is discussed, as well as the influence of different imaging sequences, scanners, electromagnetic coils, and reconstruction algorithms. Finally, the performance of MRE in demonstrating viscoelastic differences between structures constituting the physiological rodent brain, and the changes in brain parameters under pathological conditions, are summarized. The recently established link between biomechanical properties of the brain as obtained on MRE and structural factors assessed by histology is also studied. This review intends to give an accessible outline on how to conduct an elastography experiment, and on the potential of the technique in providing valuable information for neuroscientists.
Collapse
Affiliation(s)
- Mathilde Bigot
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Fabien Chauveau
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Univ. Lyon 1, Lyon, France
| | - Olivier Beuf
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Simon A Lambert
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
20
|
|
21
|
Schregel K, Nazari N, Nowicki MO, Palotai M, Lawler SE, Sinkus R, Barbone PE, Patz S. Characterization of glioblastoma in an orthotopic mouse model with magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3840. [PMID: 29193449 PMCID: PMC6538416 DOI: 10.1002/nbm.3840] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 05/12/2023]
Affiliation(s)
- Katharina Schregel
- Department of Radiology; Brigham and Women's Hospital; Boston MA USA
- Harvard Medical School; Boston MA USA
- Institute of Neuroradiology; University Medical Center Goettingen; Goettingen Germany
| | - Navid Nazari
- Department of Radiology; Brigham and Women's Hospital; Boston MA USA
- Department of Biomedical Engineering; Boston University; Boston MA USA
| | - Michal O. Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery; Brigham and Women's Hospital; Boston MA USA
| | - Miklos Palotai
- Department of Radiology; Brigham and Women's Hospital; Boston MA USA
- Harvard Medical School; Boston MA USA
| | - Sean E. Lawler
- Harvard Medical School; Boston MA USA
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery; Brigham and Women's Hospital; Boston MA USA
| | - Ralph Sinkus
- Department of Radiological Imaging, Imaging Sciences and Biomedical Engineering Division; King's College London; London UK
| | - Paul E. Barbone
- Department of Mechanical Engineering; Boston University; Boston MA USA
| | - Samuel Patz
- Department of Radiology; Brigham and Women's Hospital; Boston MA USA
- Harvard Medical School; Boston MA USA
| |
Collapse
|
22
|
Feng Y, Zhu M, Qiu S, Shen P, Ma S, Zhao X, Hu CH, Guo L. A multi-purpose electromagnetic actuator for magnetic resonance elastography. Magn Reson Imaging 2018; 51:29-34. [DOI: 10.1016/j.mri.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/15/2018] [Indexed: 01/17/2023]
|
23
|
Bayly PV, Garbow JR. Pre-clinical MR elastography: Principles, techniques, and applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:73-83. [PMID: 29705042 PMCID: PMC5943171 DOI: 10.1016/j.jmr.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/07/2018] [Indexed: 05/09/2023]
Abstract
Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.
Collapse
Affiliation(s)
- P V Bayly
- Mechanical Engineering and Materials Science, Washington University in Saint Louis, MO, USA.
| | - J R Garbow
- Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
24
|
Riegler J, Labyed Y, Rosenzweig S, Javinal V, Castiglioni A, Dominguez CX, Long JE, Li Q, Sandoval W, Junttila MR, Turley SJ, Schartner J, Carano RAD. Tumor Elastography and Its Association with Collagen and the Tumor Microenvironment. Clin Cancer Res 2018; 24:4455-4467. [PMID: 29798909 DOI: 10.1158/1078-0432.ccr-17-3262] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/21/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The tumor microenvironment presents with altered extracellular matrix (ECM) and stroma composition, which may affect treatment efficacy and contribute to tissue stiffness. Ultrasound (US) elastography can visualize and quantify tissue stiffness noninvasively. However, the contributions of ECM and stromal components to stiffness are poorly understood. We therefore set out to quantify ECM and stroma density and their relation to tumor stiffness.Experimental Design: A modified clinical ultrasound system was used to measure tumor stiffness and perfusion during tumor growth in preclinical tumor models. In vivo measurements were compared with collagen mass spectroscopy and automatic analysis of matrix and stromal markers derived from immunofluorescence images.Results: US elastography estimates of tumor stiffness were positively correlated with tumor volume in collagen and myofibroblast-rich tumors, while no correlations were found for tumors with low collagen and myofibroblast content. US elastography measurements were strongly correlated with ex vivo mechanical testing and mass spectroscopy-based measurements of total collagen and immature collagen crosslinks. Registration of ultrasound and confocal microscopy data showed strong correlations between blood vessel density and T-cell density in syngeneic tumors, while no correlations were found for genetic tumor models. In contrast to collagen density, which was positively correlated with stiffness, no significant correlations were observed for hyaluronic acid density. Finally, localized delivery of collagenase led to a significant reduction in tumor stiffness without changes in perfusion 24 hours after treatment.Conclusions: US elastography can be used as a potential biomarker to assess changes in the tumor microenvironment, particularly changes affecting the ECM. Clin Cancer Res; 24(18); 4455-67. ©2018 AACR.
Collapse
Affiliation(s)
- Johannes Riegler
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Yassin Labyed
- Siemens Medical Solutions USA, Inc. Mountain View, California
| | | | - Vincent Javinal
- Department of In Vivo Pharmacology, Genentech, Inc, South San Francisco, California
| | | | - Claudia X Dominguez
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, California
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc, South San Francisco, California
| | - Qingling Li
- Department of Microchemistry, and Proteomics and Lipidomics, Genentech, Inc, South San Francisco, California
| | - Wendy Sandoval
- Department of Microchemistry, and Proteomics and Lipidomics, Genentech, Inc, South San Francisco, California
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc, South San Francisco, California
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, California
| | - Jill Schartner
- Department of In Vivo Pharmacology, Genentech, Inc, South San Francisco, California
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California.
| |
Collapse
|
25
|
Palacio‐Torralba J, Good DW, Stewart GD, McNeill SA, Reuben RL, Chen Y. A novel method for rapid and quantitative mechanical assessment of soft tissue for diagnostic purposes: A computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2917. [PMID: 28753220 PMCID: PMC5836875 DOI: 10.1002/cnm.2917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/23/2017] [Accepted: 07/20/2017] [Indexed: 05/07/2023]
Abstract
Biological tissues often experience drastic changes in their microstructure due to their pathophysiological conditions. Such microstructural changes could result in variations in mechanical properties, which can be used in diagnosing or monitoring a wide range of diseases, most notably cancer. This paves the avenue for non-invasive diagnosis by instrumented palpation although challenges remain in quantitatively assessing the amount of diseased tissue by means of mechanical characterization. This paper presents a framework for tissue diagnosis using a quantitative and efficient estimation of the fractions of cancerous and non-cancerous tissue without a priori knowledge of tissue microstructure. First, the sample is tested in a creep or stress relaxation experiment, and the behavior is characterized using a single term Prony series. A rule of mixtures, which relates tumor fraction to the apparent mechanical properties, is then obtained by minimizing the difference between strain energy of a heterogeneous system and an equivalent homogeneous one. Finally, the percentage of each tissue constituent is predicted by comparing the observed relaxation time with that calculated from the rule of mixtures. The proposed methodology is assessed using models reconstructed from histological samples and magnetic resonance imaging of prostate. Results show that estimation of cancerous tissue fraction can be obtained with a maximum error of 12% when samples of different sizes, geometries, and tumor fractions are presented. The proposed framework has the potential to be applied to a wide range of diseases such as rectal polyps, cirrhosis, or breast and prostate cancer whose current primary diagnosis remains qualitative.
Collapse
Affiliation(s)
- Javier Palacio‐Torralba
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Daniel W. Good
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General Hospital, Crewe Road SouthEdinburghEH4 2XUUK
| | - Grant D. Stewart
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General Hospital, Crewe Road SouthEdinburghEH4 2XUUK
- Department of Urology, NHS LothianWestern General HospitalCrewe Road SouthEdinburghEH4 2XUUK
| | - S. Alan McNeill
- Edinburgh Urological Cancer Group, Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General Hospital, Crewe Road SouthEdinburghEH4 2XUUK
- Department of Urology, NHS LothianWestern General HospitalCrewe Road SouthEdinburghEH4 2XUUK
| | - Robert L. Reuben
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Yuhang Chen
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| |
Collapse
|
26
|
Weickenmeier J, Kurt M, Ozkaya E, Wintermark M, Pauly KB, Kuhl E. Magnetic resonance elastography of the brain: A comparison between pigs and humans. J Mech Behav Biomed Mater 2018; 77:702-710. [DOI: 10.1016/j.jmbbm.2017.08.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
27
|
Stojkovski I, Krstevska V, Smichkoska S. Impact on Radiation Dose and Volume V57 Gy of the Brain on Recurrence and Survival of Patients with Glioblastoma Multiformae. Radiol Oncol 2017; 51:463-468. [PMID: 29333126 PMCID: PMC5765324 DOI: 10.1515/raon-2017-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/11/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aim of the study was to analyze impact of irradiated brain volume V57 Gy (volume receiving 57 Gy and more) on time to progression and survival of patients with glioblastoma. PATIENTS AND METHODS Dosimetric analysis of treatment plan data has been performed on 70 patients with glioblastoma, treated with postoperative radiochemotherapy with temozolomide, followed by adjuvant temozolomide. Patients were treated with 2 different methods of definition of treatment volumes and prescription of radiation dose. First group of patients has been treated with one treatment volume receiving 60 Gy in 2 Gy daily fraction (31 patients) and second group of the patients has been treated with "cone-down" technique, which consisted of two phases of treatment: the first phase of 46 Gy in 2 Gy fraction followed by "cone-down" boost of 14 Gy in 2 Gy fraction (39 patients). Quantification of V57 Gy and ratio brain volume/V57Gy has been done. Average values of both parameters have been taken as a threshold value and patients have been split into 2 groups for each parameter (values smaller/ lager than threshold value). RESULTS Mean value for V57 Gy was 593.39 cm3 (range 166.94 to 968.60 cm3), mean value of brain volume has was 1332.86 cm3 (range 1047.00 to 1671.90 cm3) and mean value of brain-to-V57Gy ratio was 2.46 (range 1.42 to 7.67). There was no significant difference between two groups for both V57 Gy and ratio between brain volume and V57 Gy. CONCLUSIONS Irradiated volume with dose 57 Gy or more (V57 Gy) and ration between whole brain volume and 57 Gy had no impact on time to progression and survival of patients with glioblastoma.
Collapse
Affiliation(s)
- Igor Stojkovski
- University Clinic of Radiotherapy and Oncology, Skopje, Macedonia
| | | | | |
Collapse
|
28
|
Zheng W, Yang H, Xuan G, Dai L, Hu Y, Hu S, Zhong S, Li Z, Gao M, Wang S, Feng Y. Longitudinal Study of the Effects of Environmental pH on the Mechanical Properties of Aspergillus niger. ACS Biomater Sci Eng 2017; 3:2974-2979. [PMID: 33418717 DOI: 10.1021/acsbiomaterials.6b00294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The regulation of environmental pH is key to the health of an ecosystem, influencing the metabolic activity, growth, and development of organisms within it. Although pH values can be measured by a wide range of readily available technologies ranging from fluorescent dyes and nanosensors, these cannot reveal the history of environmental pH from before monitoring begins. This information is sometimes crucial for piecing together what has happened to an ecosystem, and our long-term goal is therefore to develop technologies capable of obtaining it. Here, we propose monitoring environmental pH over time by tracking mechanical properties of a common fungus. As a first step toward obtaining a time history of pH, we evaluate the effect of pH upon the effective indentation modulus of spores and hyphae of Aspergillus niger. We report that the indentation modulus of this phosphorus-solubilizing fungus, obtained through atomic force microscopy and nanoindentation, correlated with environmental acidity. We observed a significant, monotonic increase in moduli over the course of incubation in an acidic environment, but no change in moduli over time for incubation in a neutral environment. Results show promise for using our scheme to detect and track environmental pH over time, and more broadly for using a microorganism's mechanical properties as a biomarker for environmental detection.
Collapse
Affiliation(s)
- Wenjun Zheng
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.,School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Hua Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghui Xuan
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.,School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| | - Letian Dai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yunxiao Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.,Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shengkui Zhong
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuan Feng
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.,School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
29
|
Pogoda K, Bucki R, Byfield FJ, Cruz K, Lee T, Marcinkiewicz C, Janmey PA. Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules 2017; 18:3040-3051. [PMID: 28858529 DOI: 10.1021/acs.biomac.7b00324] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unlike many other cancer cells that grow in tumors characterized by an abnormally stiff collagen-enriched stroma, glioma cells proliferate and migrate in the much softer environment of the brain, which generally lacks the filamentous protein matrix characteristic of breast, liver, colorectal, and other types of cancer. Glial cell-derived tumors and the cells derived from them are highly heterogeneous and variable in their mechanical properties, their response to treatments, and their properties in vitro. Some glioma samples are stiffer than normal brain when measured ex vivo, but even those that are soft in vitro stiffen after deformation by pressure gradients that arise in the tumor environment in vivo. Such mechanical differences can strongly alter the phenotype of cultured glioma cells. Alternatively, chemical signaling might elicit the same phenotype as increased stiffness by activating intracellular messengers common to both initial stimuli. In this study the responses of three different human glioma cell lines to changes in substrate stiffness are compared with their responses on very soft substrates composed of a combination of hyaluronic acid and a specific integrin ligand, either laminin or collagen I. By quantifying cell morphology, stiffness, motility, proliferation, and secretion of the cytokine IL-8, glioma cell responses to increased stiffness are shown to be nearly identically elicited by substrates containing hyaluronic acid, even in the absence of increased stiffness. PI3-kinase activity was required for the response to hyaluronan but not to stiffness. This outcome suggests that hyaluronic acid can trigger the same cellular response, as can be obtained by mechanical force transduced from a stiff environment, and demonstrates that chemical and mechanical features of the tumor microenvironment can achieve equivalent reactions in cancer cells.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Institute of Nuclear Physics Polish Academy of Sciences , PL-31342 Krakow, Poland
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok , 15-222 Bialystok, Poland
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Katrina Cruz
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Tongkeun Lee
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Cezary Marcinkiewicz
- CoE Department of Bioengineering, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Department of Physiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|