1
|
Marcus RP, Feuerriegel GC, Marth AA, Goller SS, Nanz D, Anhaus J, Sutter R. Reducing Metal Artifacts in Clinical Photon Counting Detector Computed Tomography-A Phantom Study of an Exemplary Total Hip Arthroplasty. Skeletal Radiol 2025; 54:1233-1246. [PMID: 39560770 PMCID: PMC12000155 DOI: 10.1007/s00256-024-04820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE To examine how different photon-counting detector (PCD) CT scanning and reconstruction methods affect the volume of metal artifacts and image quality for a hip prosthesis phantom. METHODS A titanium and cobalt-chromium-molybdenum-alloy total hip prosthesis phantom was scanned using a clinical PCD-CT with a constant tube potential (140 kV) and Computed-Tomography-Dose- Index (7 mGy). Different scan settings were used: with/without tin-filter (Sn), with/without ultra-high resolution (UHR), both individually and combined, resulting in four modes: Quantumplus (Standard), UHR Quantumplus (HighRes), QuantumSn (Standard-Tin) and UHR QuantumSn (HighRes-Tin). Reconstructions included virtual monoenergetic images (VMI) spanning 40-190 keV and polychromatic images, with/without iterative metal artifact reduction (MAR). Artifact volumes rendered in a 3D-printing software were quantified in milliliters (ml), and image quality was evaluated using a Likert score. RESULTS Polychromatic reconstruction: Tin-filter reduced artifact volumes (298 (Standard-Tin) vs. 347 ml (Standard) and 310 (HighRes-Tin) vs. 360 ml (HighRes)). The smallest artifact volume was measured in HighRes MAR (150 ml). VMI reconstruction: The smallest artifact volume was measured in Standard 130 keV (150 ml) and HighRes 130 keV (164 ml) and in Standard-Tin 120 keV (169 ml) and HighRes-Tin 120 keV (172 ml). MAR further reduced the artifact volumes to 130 ml (Standard 150 keV MAR) and 140 ml (HighRes 160 keV MAR). Image quality was rated best for Standard 65 keV MAR, polychromatic HighRes MAR, Standard 100 keV MAR, polychromatic Standard-tin MAR, HighRes-tin 100 keV and polychromatic HighRes-tin. CONCLUSION Combining tin-filter, UHR and MAR in VMI or polychromatic images achieve the strongest artifact reduction.
Collapse
Affiliation(s)
- Roy P Marcus
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - Georg C Feuerriegel
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Adrian A Marth
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus, Zurich, Switzerland
| | - Sophia S Goller
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel Nanz
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus, Zurich, Switzerland
| | | | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Sawall S, Baader E, Trapp P, Kachelrieß M. CT material decomposition with contrast agents: Single or multiple spectral photon-counting CT scans? A simulation study. Med Phys 2025; 52:2167-2190. [PMID: 39791354 PMCID: PMC11972055 DOI: 10.1002/mp.17604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality. It allows for scans with more than two different detected spectra. With these systems, it becomes possible to distinguish more than two materials. It is frequently proposed to administer more than one contrast agent, perform a single PCCT scan, and then calculate the VNC images and the contrast agent maps. This may not be optimal because the patient is injected with a material, only to have it computationally extracted again immediately afterwards by spectral CT. It may be better to do an unenhanced scan followed by one or more contrast-enhanced scans. The main argument for the spectral material decomposition is patient motion, which poses a significant challenge for approaches involving two or more temporally separated scans. In this work, we assume that we can correct for patient motion and thus are free to scan the patient more than once. Our goal is then to quantify the penalty for performing a single contrast-enhanced scan rather than a clever series of unenhanced and enhanced scans. In particular, we consider the impact on patient dose and image quality. METHODS We simulate CT scans of three differently sized phantoms containing various contrast agents. We do this for a variety of tube voltage settings, a variety of patient-specific prefilter (PSP) thicknesses and a variety of threshold settings of the photon-counting detector with up to four energy bins. The reconstructed bin images give the expectation values of soft tissue and of the contrast agents. Error propagation of projection noise into the images yields the image noise. Dose is quantified using the total CT dose index (CTDI) value of the scans. When combining multiple scans, we further consider all possible tube current (or dose) ratios between the scans. Material decomposition is done image-based in a statistical optimal way. Error propagation into the material-specific images yields the signal-to-noise ratio at unit dose (SNRD). The winning scan strategy is the one with the highest total SNRD, which is related to the SNRD of the material that has the lowest signal-to-noise ratio (SNR) among the materials to decompose into. We consider scan strategies with up to three scans and up to three materials (water W, contrast agent X and contrast agent Y). RESULTS In all cases, those scan strategies yield the best performance that combine differently enhanced scans, for example, W+WX, W+WXY, WX+WXY, W+WX+WY, with W denoting an unenhanced scan and WX, WY and WXY denoting X-, Y-, and X-Y-enhanced scans, respectively. The dose efficiency of scans with a single enhancement scheme, such as WX or WXY, is far lower. The dose penalty to pay for these single enhancement strategies is about two or greater. Our findings also apply to scans with a single energy bin and thus also to CT systems with conventional, energy-integrating detectors, that is, conventional DECT. Dual source CT (DSCT) scans are preferable over single source CT scans, also because one can use a PSP on the high Kilovolt spectrum to better separate the detected spectra. For the strategies and tasks considered here, it does not make sense to simultaneously scan with two different types of contrast agents. Iodine outperforms other high Z elements in nearly all cases. CONCLUSIONS Given the significant dose penalty when performing only one contrast-enhanced scan rather than a series of unenhanced and enhanced scans, one should consider avoiding the single-scan strategies. This requires to invest in the development of accurate registration algorithms that can compensate for patient and contrast agent motion between separate scans.
Collapse
Affiliation(s)
- Stefan Sawall
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Edith Baader
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Philip Trapp
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
3
|
Zhan L, Chen GH, Li K. Quantifying photon counting detector (PCD) performance using PCD-CT images. Med Phys 2025. [PMID: 39971720 DOI: 10.1002/mp.17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Photon counting detector CTs (PCD-CTs) have recently been introduced to clinical imaging. This development creates a new need for end-users to quantify and monitor the physical performance of PCDs. Traditionally, the characterization of PCD performance relied on detector counts, which are typically accessible to the manufacturer but are not usually available to clinical end-users. PURPOSE The goal of this work was to develop a new method for quantifying PCD performance using reconstructed PCD-CT images, without requiring access to the PCD counts. METHODS The proposed method is based on a set of closed-form relationships that connect PCD-CT image noise, the PCD deadtime ( τ $\tau$ ), and the zero-frequency detective quantum efficiency (DQE 0 ${\rm DQE}_0$ ) of PCDs. At a low tube current (mA) level, the mean output counts of the PCD were estimated by fitting the measured PCD-CT noise power spectrum (NPS) to a parametric model.DQE 0 ${\rm DQE}_0$ was then calculated by normalizing the estimated mean detector counts to the expected input x-ray photon number. To estimate τ $\tau$ , the image variance of PCD-CT was measured at different mA levels. A novel quantitative relationship between PCD-CT image variance, τ $\tau$ , and mA was employed to estimate τ $\tau$ through parametric fitting. The method was validated using both simulated and experimental PCD-CT data, covering a range of τ $\tau$ ,DQE 0 ${\rm DQE}_0$ , and system geometries. RESULTS For the simulated curved-detector PCD-CT, the estimation errors forDQE 0 ${\rm DQE}_0$ and deadtime were -3.7% and 0.5%, respectively. For the simulated collinear-detector PCD-CT, the estimation errors forDQE 0 ${\rm DQE}_0$ and deadtime were -3.3% and -1.0%, respectively. For the experimental collinear-detector PCD-CT, the estimation errors forDQE 0 ${\rm DQE}_0$ and deadtime were -2.6% and 1.6%, respectively. CONCLUSIONS By analyzing the variance and NPS of PCD-CT images,DQE 0 ${\rm DQE}_0$ and deadtime of scanner's PCD can be accurately estimated, without access to raw detector counts or projection data.
Collapse
Affiliation(s)
- Linying Zhan
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Imaging Physics, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
- Department of Interventional Radiology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|
4
|
Dell'Aversana F, Pezzullo M, Scaglione M. Imaging in Urolithiasis. Urol Clin North Am 2025; 52:51-59. [PMID: 39537304 DOI: 10.1016/j.ucl.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Urolithiasis has high incidence in industrialized countries (0.5% in Europe and North America). Its high incidence along with the severity of clinical symptoms makes nephrolithiasis an important consideration in patients with acute abdominal pain. Imaging has a pivotal role and non-contrast computed tomography scan is the gold standard examination in both the diagnosis and follow-up of patients with urolithiasis. Ultrasound and kidneys, ureters, and bladder radiography are also essential tools in the follow-up of this pathology given its high recurrence rates while MRI can be used in special patient populations such as pregnant women.
Collapse
Affiliation(s)
- Federica Dell'Aversana
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, Napoli 80134, Italy
| | - Martina Pezzullo
- Department of Radiology, Hopital Erasme, Universite Libre de Bruxelles, ULB, Rte de Lennik 808, Brussels 1070, Belgium
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale S. Pietro 10, Sassari 07100, Italy; Department of Radiology, James Cook University Hospital, Marton Road, Middlesbrough TS43BM, UK.
| |
Collapse
|
5
|
Hood S, Newall M, Butler P, O'Brien R, Petasecca M, Dillon O, Rosenfeld A, Hardcastle N, Jackson M, Metcalfe P, Alnaghy S. First linac-mounted photon counting detector for image guided radiotherapy: Planar image quality characterization. Med Phys 2025; 52:1159-1171. [PMID: 39612370 DOI: 10.1002/mp.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Image guided radiotherapy (IGRT) with cone-beam computed tomography (CBCT) is limited by the sub-optimal soft-tissue contrast and spatial resolution of energy-integrating flat panel detectors (FPDs) which produce quasi-quantitative CT numbers. Spectral CT with high resolution photon-counting detectors (PCDs) could improve tumor delineation by enhancing the soft-tissue contrast, spatial resolution, dose-efficiency, and CT number accuracy. PURPOSE This study presents the first linac-mounted PCD. On the journey to developing spectral cone-beam CT for IGRT, the planar image quality of a linac-mounted PCD is first fundamentally characterized and compared to an FPD in terms of the 2D spatial resolution, noise, and contrast. METHODS A Medipix3RX-based PCD was mounted to the kV FPD of an x-ray volume imaging (XVI) system on an Elekta linac and the PCD acquisition was synchronized with the pulsed kV source. The energy calibration of the Medipix3RX was determined with various radioisotope gamma emissions up to 60 keV. To compare the 2D spatial resolution and noise between the PCD and FPD, the pre-sampling modulation transfer function (MTF) and normalized noise power spectrum (NPS) were measured using an RQA5 spectrum and a fluoroscopy phantom was imaged to determine the limiting resolution of line pairs. Spectral planar images of phantom inserts containing two different concentrations of calcium (60 and 240 mg/cc) and iodine (5 and 15 mg/cc) were optimally energy weighted to maximize the contrast using tube voltages of 60, 80, 100, and 120 kV. To account for drifts in the sensor temperature, the PCD was dynamically translated in and out of the insert shadow during acquisitions to obtain flat field corrections per frame. The raw contrast of the resultant planar images was compared to the energy-integrating FPD. RESULTS The energy calibration of the Medipix3RX was observed to be linear up to 60 keV. The limiting resolution observed on the fluoroscopy phantom was 2 lp/mm for the FPD and 5 lp/mm for the PCD. The pre-sampling MTF was higher across all frequencies comparing the PCD to the FPD. The normalized NPS of the PCD did not vary with frequency, whereas the spectrum for the FPD decreased monotonically and was lower than the PCD noise power across most of the spatial frequency range studied due to optical light spreading. Optimal energy weights were applied to the dynamically acquired PCD images and the raw contrast of the 60 mg/cc calcium insert increased by factors of1.12 ± 0.09 $1.12\pm 0.09$ and1.52 ± 0.22 $1.52\pm 0.22$ at 60 and 120 kV respectively compared to the FPD. CONCLUSIONS A Medipix3RX-based PCD was successfully integrated with the kilovoltage imaging system on an Elekta linac. The initial planar image quality characterization indicated improvements in the MTF and energy-weighted contrast compared to the FPD. Future work will focus on obtaining linac-mounted spectral CBCT images with a translate-rotate geometry, however this initial study indicates that variations in the PCD sensor response during acquisitions must be addressed to realise the full potential of linac-mounted spectral CBCT.
Collapse
Affiliation(s)
- Sean Hood
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Matthew Newall
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Phil Butler
- Centre for Bioengineering and Nanomedicine, University of Otago, Dunedin, New Zealand
| | - Ricky O'Brien
- Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Owen Dillon
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | | | - Michael Jackson
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Peter Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Saree Alnaghy
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
6
|
Masturzo L, Barca P, De Masi L, Marfisi D, Traino A, Cademartiri F, Giannelli M. Voxelwise characterization of noise for a clinical photon-counting CT scanner with a model-based iterative reconstruction algorithm. Eur Radiol Exp 2025; 9:2. [PMID: 39747757 PMCID: PMC11695565 DOI: 10.1186/s41747-024-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Photon-counting detector (PCD) technology has the potential to reduce noise in computed tomography (CT). This study aimed to carry out a voxelwise noise characterization for a clinical PCD-CT scanner with a model-based iterative reconstruction algorithm (QIR). METHODS Forty repeated axial acquisitions (tube voltage 120 kV, tube load 200 mAs, slice thickness 0.4 mm) of a homogeneous water phantom and CTP404 module (Catphan-504) were performed. Water phantom acquisitions were also performed on a conventional energy-integrating detector (EID) scanner with a sinogram/image-based iterative reconstruction algorithm, using similar acquisition/reconstruction parameters. For smooth/sharp kernels, filtered back projection (FBP)- and iterative-reconstructed images were obtained. Noise maps, non-uniformity index (NUI) of noise maps, image noise histograms, and noise power spectrum (NPS) curves were computed. RESULTS For FBP-reconstructed images of water phantom, mean noise was (smooth/sharp kernel) 11.7 HU/51.1 HU and 18.3 HU/80.1 HU for PCD-scanner and EID-scanner, respectively, with NUI values for PCD-scanner less than half those for EID-scanner. Percentage noise reduction increased with increasing iterative power, up to (smooth/sharp kernel) 57.7%/72.5% and 56.3%/70.1% for PCD-scanner and EID-scanner, respectively. For PCD-scanner, FBP- and QIR-reconstructed images featured an almost Gaussian distribution of noise values, whose shape did not appreciably vary with iterative power. Noise maps of CTP404 module showed increased NUI values with increasing iterative power, up to (smooth/sharp kernel) 15.7%/9.2%. QIR-reconstructed images showed limited low-frequency shift of NPS peak frequency. CONCLUSION PCD-CT allowed appreciably reducing image noise while improving its spatial uniformity. QIR algorithm decreases image noise without modifying its histogram distribution shape, and partly preserving noise texture. RELEVANCE STATEMENT This phantom study corroborates the capability of photon-counting detector technology in appreciably reducing CT imaging noise and improving spatial uniformity of noise values, yielding a potential reduction of radiation exposure, though this needs to be assessed in more detail. KEY POINTS First voxelwise characterization of noise for a clinical CT scanner with photon-counting detector technology. Photon-counting detector technology has the capability to appreciably reduce CT imaging noise and improve spatial uniformity of noise values. In photon-counting CT, a model-based iterative reconstruction algorithm (QIR) allows decreasing effectively image noise. This is done without modifying noise histogram distribution shape, while limiting the low-frequency shift of noise power spectrum peak frequency.
Collapse
Affiliation(s)
- Luigi Masturzo
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Patrizio Barca
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | | | - Daniela Marfisi
- Medical Physics Department, Udine University Hospital "Azienda Sanitaria Universitaria Friuli Centrale", Udine, Italy
| | - Antonio Traino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | | | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
7
|
Asahara T, Okada S, Hayashi H, Maeda T, Nishigami R, Kobayashi D, Kurose C, Kimoto N, Goto S, Hisatomi M, Yanagi Y, Iguchi T. Helpfulness of effective atomic number image in forensic dental identification: Photon-counting computed tomography is suitable. Comput Biol Med 2025; 184:109333. [PMID: 39522368 DOI: 10.1016/j.compbiomed.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The identities of unidentified persons are often confirmed by matching dental treatment information. Although treatment restorations consisting of artificial materials can be confirmed visually and/or by X-ray photography, they should be quantitatively analyzed. This study demonstrates that effective atomic number (Zeff) images can be created using photon-counting computed tomography (PC-CT) and used to identify artificial materials employed in dentistry. We examined a multi-energy phantom with known atomic number materials, artificial dental materials, and a head phantom in which various actual dental inlay-materials can be embedded in the tooth. To analyze Zeff images, we used (ⅰ) a photon-counting CT (PC-CT), (ⅱ) a dual-energy CT (DE-CT), and (ⅲ) a photon-counting-type scanogram imaging system (PC-scanogram). An algorithm for Zeff analysis using PC-CT was newly proposed in this study, in which two virtual monochromatic X-ray images of 70 keV and 100 keV were utilized. The PC-CT results were compared to those of DE-CT and PC-scanogram. The Zeff images using PC-CT, DE-CT, and PC-scanogram were created properly with errors of ±0.40, ±0.21, and ±0.24, respectively. We indicated that the Zeff value of artificial dental materials can be uniquely determined irrespective of the imaging system. Moreover, the same result could be obtained even when the artificial dental materials were embedded in a head phantom. In conclusion, the Zeff values provide an important quantitative indicator for identifying and/or discriminating artificial dental materials. This paper also proposed a new procedure for forensic dentistry by demonstrating the possibility of diagnosis based on the quantitative analysis of artificial dental materials.
Collapse
Affiliation(s)
- Takashi Asahara
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Shunsuke Okada
- Department of Oral and Maxillofacial Radiology, Okayama University Hospital, Okayama, 700-8525, Japan.
| | - Hiroaki Hayashi
- College of Transdisciplinary Sciences for Innovation, Kanazawa University, Ishikawa, 920-1192, Japan.
| | - Tatsuya Maeda
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan.
| | - Rina Nishigami
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan.
| | - Daiki Kobayashi
- Graduate School of Medical Sciences, Kanazawa University, Ishikawa, 920-0942, Japan.
| | - Chihiro Kurose
- Division of Radiology, Medical Support Department, Okayama University Hospital, Okayama, 700-0914, Japan.
| | - Natsumi Kimoto
- Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, 815-8510, Japan.
| | - Sota Goto
- Faculty of Health Science, Kobe Tokiwa University, Hyogo, 653-0838, Japan.
| | - Miki Hisatomi
- Department of Oral and Maxillofacial Radiology, Okayama University Hospital, Okayama, 700-8525, Japan.
| | - Yoshinobu Yanagi
- Department of Dental Informatics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, 700-8525, Japan.
| | - Toshihiro Iguchi
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| |
Collapse
|
8
|
Fan M, Zhou Z, Wellinghoff J, McCollough CH, Yu L. Low-contrast detectability of photon-counting-detector CT at different scan modes and image types in comparison with energy-integrating-detector CT. J Med Imaging (Bellingham) 2024; 11:S12803. [PMID: 38799271 PMCID: PMC11116128 DOI: 10.1117/1.jmi.11.s1.s12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose We aim to compare the low-contrast detectability of a clinical whole-body photon-counting-detector (PCD)-CT at different scan modes and image types with an energy-integrating-detector (EID)-CT. Approach We used a channelized Hotelling observer (CHO) previously optimized for quality control purposes. An American College of Radiology CT accreditation phantom was scanned on both PCD-CT and EID-CT with 10 phantom positionings. For PCD-CT, images were generated using two scan modes, standard resolution (SR) and ultra-high-resolution (UHR); two image types, virtual monochromatic images at 70 keV and low-energy threshold (T3D); both filtered-back-projection (FBP) and iterative reconstruction (IR) reconstruction methods; and three reconstruction kernels. For each positioning, three repeated scans were acquired for each scan mode, image type, and CTDIvol of 6, 12, and 24 mGy. For EID-CT, images acquired from scans (10 positionings × 3 repeats × 3 doses) were reconstructed using the closest counterpart FBP and IR kernels. CHO was applied to calculate the index of detectability (d ' ) on both scanners. Results With the smooth Br44 kernel, the d ' of UHR was mostly comparable with that of the SR mode (difference: -11.4% to 8.3%, p = 0.020 to 0.956), and the T3D images had a higher d ' (difference: 0.7% to 25.6%) than 70 keV images on PCD-CT. Compared with the EID-CT, UHR-T3D of PCD-CT had non-inferior d ' (difference: -2.7% to 12.9%) with IR and non-superior d ' (difference: 0.8% to 11.2%) with FBP using the Br44 kernel. PCD-CT produced higher d ' than EID-CT by 61.8% to 247.1% with the sharper reconstruction kernels. Conclusions The comparison between PCD-CT and EID-CT was significantly influenced by the reconstruction method and kernel. With a smooth kernel that is typically used in low-contrast detection tasks, the PCD-CT demonstrated low-contrast detectability that was comparable to EID-CT with IR and showed no superiority when using FBP. With the use of sharper kernels, the PCD-CT significantly outperformed EID-CT in low-contrast detectability.
Collapse
Affiliation(s)
- Mingdong Fan
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Zhongxing Zhou
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jarod Wellinghoff
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Lifeng Yu
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Sharma SP, Lemmens MJDK, Smulders MW, Budde RPJ, Hirsch A, Mihl C. Photon-counting detector computed tomography in cardiac imaging. Neth Heart J 2024; 32:405-416. [PMID: 39356451 PMCID: PMC11502613 DOI: 10.1007/s12471-024-01904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Photon-counting detector computed tomography (PCD-CT) has emerged as a revolutionary technology in CT imaging. PCD-CT offers significant advancements over conventional energy-integrating detector CT, including increased spatial resolution, artefact reduction and inherent spectral imaging capabilities. In cardiac imaging, PCD-CT can offer a more accurate assessment of coronary artery disease, plaque characterisation and the in-stent lumen. Additionally, it might improve the visualisation of myocardial fibrosis through qualitative late enhancement imaging and quantitative extracellular volume measurements. The use of PCD-CT in cardiac imaging holds significant potential, positioning itself as a valuable modality that could serve as a one-stop-shop by integrating both angiography and tissue characterisation into a single examination. Despite its potential, large-scale clinical trials, standardisation of protocols and cost-effectiveness considerations are required for its broader integration into clinical practice. This narrative review provides an overview of the current literature on PCD-CT regarding the possibilities and limitations of cardiac imaging.
Collapse
Affiliation(s)
- Simran P Sharma
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Marie-Julie D K Lemmens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn W Smulders
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Casper Mihl
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Yang S, Xue M, Xie T. Development of a Monte Carlo simulation platform for the systematic evaluation of photon-counting detector-based micro-CT. Phys Med 2024; 126:104824. [PMID: 39326287 DOI: 10.1016/j.ejmp.2024.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE This study aimed to develop a photon-counting detector (PCD) based micro-CT simulation platform for assessing the performance of three different PCD sensor materials: cadmium telluride (CdTe), gallium arsenide (GaAs), and silicon (Si). The evaluation encompasses the components of primary and scatter signals, performance of imaging contrast agents, and detector efficiency. METHODS Simulations were performed using the Geant4 Monte Carlo toolkit, and a micro-PCD-CT system was meticulously modeled based on realistic geometric parameters. RESULTS The simulation can obtain HU values consistent with measured results for iodine and calcium hydroxyapatite contrast agents. The two major components of scatter signals for CdTe and GaAs based PCD are fluorescent X-ray photons and photoelectrons, whereas for Si, the components are photoelectrons and Compton electrons. Scattering counts of CdTe and GaAs sensors can be effectively reduced by using energy thresholds, whereas those of Si sensor are insensitive to the applied threshold. The optimal threshold values for CdTe and GaAs are 30 and 15 keV, respectively. For contrast agent imaging, GaAs exhibits enhanced sensitivity to low photon energies compared to CdTe, while it's contrast-to-noise ratio (CNR) values are slightly lower than those of CdTe at the same contrast agent concentration. Among the three sensor materials, Si has the lowest CNR and detector efficiency; CdTe exhibits the highest efficiency, except in low-energy ranges (< 45 keV), where GaAs has superior efficiency. CONCLUSIONS The proposed methods are expected to benefit PCD optimization and applications, including energy threshold selection, scattering correction, and may reduce the need for large-scale experiments.
Collapse
Affiliation(s)
- Shiyan Yang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China; Institute of Modern Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Mengjia Xue
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
| |
Collapse
|
11
|
Algin O, Tokgoz N, Cademartiri F. Photon-counting computed tomography in radiology. Pol J Radiol 2024; 89:e433-e442. [PMID: 39444656 PMCID: PMC11497591 DOI: 10.5114/pjr/191743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/28/2024] [Indexed: 10/25/2024] Open
Abstract
Photon-counting detector computed tomography (PCD-CT) devices have recently been introduced into practice, despite photon-counting detector technology having been studied for many years. PCD-CT devices are expected to provide advantages in dose reduction, tissue specificity, artifact-free imaging, and multi-contrast demonstration capacity. Noise reduction and increased spatial resolution are expected using PCD-CT, even under challenging scanning conditions. Some experimental or preliminary studies support this hypothesis. This pictorial review illustrates the features of PCD-CT systems, particularly in the interventional field. PCD-CT offers superior image quality and better lesion discrimination than conventional CT techniques for various conditions. PCD-CT shows significant improvements in many aspects of vascular imaging. It is still in its early stages, and several challenges have been identified. Also, PCD-CT devices have some important caveats. The average cost of these devices is 3 to 4 times higher than conventional CT units. This additional cost must be justified by improved clinical benefits or reduced clinical harms. Further investigations will be needed to resolve these issues.
Collapse
Affiliation(s)
- Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara, Türkiye
- Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye
- National MR Research Center (UMRAM), Bilkent University, Ankara, Türkiye
| | | | - Filippo Cademartiri
- Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità Pubblica, Pisa, Toscana, Italy
| |
Collapse
|
12
|
Li L, Sun H, Yao Y, Chen Z. Noise characterization analysis of dynamic dual-energy CT and its advantage in suppressing statistical noise. Phys Med Biol 2024; 69:185004. [PMID: 39137803 DOI: 10.1088/1361-6560/ad6eda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.Multi-energy CT conducted by photon-counting detector has a wide range of applications, especially in multiple contrast agents imaging. However, static multi-energy (SME) CT imaging suffers from higher statistical noise because of increased energy bins with static energy thresholds. Our team has proposed a dynamic dual-energy (DDE) CT detector model and the corresponding iterative reconstruction algorithm to solve this problem. However, rigorous and detailed analysis of the statistical noise characterization in this DDE CT was lacked.Approach.Starting from the properties of the Poisson random variable, this paper analyzes the noise characterization of the DDE CT and compares it with the SME CT. It is proved that the multi-energy CT projections and reconstruction images calculated from the proposed DDE CT algorithm have less statistical noise than that of the SME CT.Main results.Simulations and experiments verify that the expectations of the multi-energy CT projections calculated from DDE CT are the same as those of the SME projections. Still, the variance of the former is smaller. We further analyze the convergence of the iterative DDE CT algorithm through simulations and prove that the derived noise characterization can be realized under different CT imaging configurations.Significance.The low statistical noise characteristics demonstrate the value of DDE CT imaging technology.
Collapse
Affiliation(s)
- Liang Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory of Particle and Radiation imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huahai Sun
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yidi Yao
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory of Particle and Radiation imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
| | - Zhiqiang Chen
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory of Particle and Radiation imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
| |
Collapse
|
13
|
Leng S, Toia GV, Hoodeshenas S, Ramirez-Giraldo JC, Yagil Y, Maltz JS, Boedeker K, Li K, Baffour F, Fletcher JG. Standardizing technical parameters and terms for abdominopelvic photon-counting CT: laying the groundwork for innovation and evidence sharing. Abdom Radiol (NY) 2024; 49:3261-3273. [PMID: 38769199 DOI: 10.1007/s00261-024-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Photon-counting detector CT (PCD-CT) is a new technology that has multiple diagnostic benefits including increased spatial resolution, iodine signal, and radiation dose efficiency, as well as multi-energy imaging capability, but which also has unique challenges in abdominal imaging. The purpose of this work is to summarize key features, technical parameters, and terms, which are common amongst current abdominopelvic PCD-CT systems and to propose standardized terminology (where none exists). In addition, user-selectable protocol parameters are highlighted to facilitate both scientific evaluation and early clinical adoption. Unique features of PCD-CT systems include photon-counting detectors themselves, energy thresholds and bins, and tube potential considerations for preserved spectral separation. Key parameters for describing different PCD-CT systems are reviewed and explained. While PCD-CT can generate multi-energy images like dual-energy CT, there are new types of images such as threshold images, energy bin images, and special spectral images. The standardized terms and concepts herein build upon prior interdisciplinary consensus and have been endorsed by the newly created Society of Abdominal Radiology Photon-counting CT Emerging Technology Commission.
Collapse
Affiliation(s)
- Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Safa Hoodeshenas
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Yoad Yagil
- PD CT/AMI R&D Advanced Development, Philips Medical Systems, Haifa, Israel
| | - Jonathan S Maltz
- Molecular Imaging and Computed Tomography, GE Healthcare, Waukesha, WI, USA
| | | | - Ke Li
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Francis Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Maisuria D, Chamberlin JH, Baruah D, Hinen S, O'Doherty J, McGuire A, Knight H, Schoepf UJ, Munden RF, Kabakus IM. Polyenergetic reconstruction mitigates streak artifacts by dual source imaging in chest photon counting detector computed tomography. Clin Imaging 2024; 113:110235. [PMID: 39059085 DOI: 10.1016/j.clinimag.2024.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE This study aims to assess the efficacy of polyenergetic reconstruction methods in reducing streak artifacts caused by dual source imaging in Photon Counting Detector Computed Tomography (PCD-CT) imaging, thereby improving image quality and diagnostic accuracy. METHODS A retrospective cohort study was conducted, involving 50 patients who underwent chest Computed Tomography Angiography with PCD-CT, focusing on those with streak artifacts. Quantitative and qualitative analyses were performed on images reconstructed using monoenergetic and polyenergetic techniques. Quantitative evaluations measured the attenuation of tracheal air density in regions affected by streak artifacts, while qualitative assessments employed a modified Likert scale to rate image quality. Statistical analyses included Wilcoxon's signed-rank tests and Spearman's correlation, alongside assessments of inter-rater reliability. RESULTS There was significantly lower attenuation of tracheal air density on the polyenergetic reconstructions (Median - 1010 ± 62 HU vs -930 ± 110 HU; P < 0.001), and significantly decreased variation on the polyenergetic reconstructions (Median 65.2 ± 79.5 HU vs 38.8 ± 33.9 HU; P < 0.001). The median modified-Likert scale were significantly better for the polyenergetic reconstructions (median modified-Likert 4 ± 0.5 vs 2.5 ± 1; P < 0.001). The inter-rater agreement was substantial and not significantly different between reconstructions (Gwet's ACPolyenergetic = 0.78 vs Gwet's ACVMI = 0.775). CONCLUSION Polyenergetic reconstruction significantly mitigates streak artifacts in PCD-CT imaging, enhancing quantitative and qualitative image quality. This advancement addresses a known limitation of current PCD-CT reconstruction techniques, offering a promising approach to improving diagnostic reliability and accuracy in clinical practice. We demonstrate that future software implementations can resolve this artifact.
Collapse
Affiliation(s)
- Dhruw Maisuria
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Jordan H Chamberlin
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Dhiraj Baruah
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Shaun Hinen
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA; Siemens Medical Solutions, Malvern, PA, USA
| | - Aaron McGuire
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Heather Knight
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Reginald F Munden
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Ismail M Kabakus
- Division of Cardiovascular Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
15
|
Xin L, Zhuo W, Liu Q, Xie T, Zaidi H. Triple-source saddle-curve cone-beam photon counting CT image reconstruction: A simulation study. Z Med Phys 2024; 34:408-418. [PMID: 36336554 PMCID: PMC11384087 DOI: 10.1016/j.zemedi.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The most common detector material in the PC CT system, cannot achieve the best performance at a relatively higher photon flux rate. In the reconstruction view, the most commonly used filtered back projection, is not able to provide sufficient reconstructed image quality in spectral computed tomography (CT). Developing a triple-source saddle-curve cone-beam photon counting CT image reconstruction method can improve the temporal resolution. METHODS Triple-source saddle-curve cone-beam trajectory was rearranged into four trajectory sets for simulation and reconstruction. Projection images in different energy bins were simulated by forward projection and photon counting CT respond model simulation. After simulation, the object was reconstructed using Katsevich's theory after photon counts correction using the pseudo inverse of photon counting CT response matrix. The material decomposition can be performed based on images in different energy bins. RESULTS Root mean square error (RMSE) and structural similarity index (SSIM) are calculated to quantify the image quality of reconstruction images. Compared with FDK images, the RMSE for the triple-source image was improved by 27%, 21%, 14%, 8%, and 6% for the reconstrued image of 20-33, 33-47, 47-58, 58-69, 69-80 keV energy bin. The SSIM was improved by 1.031%, 0.665%, 0.396%, 0.235%, 0.174% for corresponding energy bin. The decomposition image based on corrected images shows improved RMSE and SSIM, each by 33.861% and 0.345%. SSIM of corrected decomposition image of iodine reaches 99.415% of the original image. CONCLUSIONS A new Triple-source saddle-curve cone-beam PC CT image reconstruction method was developed in this work. The exact reconstruction of the triple-source saddle-curve improved both the image quality and temporal resolution.
Collapse
Affiliation(s)
- Lin Xin
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Weihai Zhuo
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, China.
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai, China; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva Neuroscience Center, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Rajagopal JR, Farhadi F, Saboury B, Sahbaee P, Negussie AH, Pritchard WF, Jones EC, Samei E. Multivariate signal-to-noise ratio as a metric for characterizing spectral computed tomography. Phys Med Biol 2024; 69:10.1088/1361-6560/ad5d4a. [PMID: 38942009 PMCID: PMC11267461 DOI: 10.1088/1361-6560/ad5d4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.With the introduction of spectral CT techniques into the clinic, the imaging capacities of CT were expanded to multiple energy levels. Due to a variety of factors, the acquired signal in spectral CT datasets is shared between these images. Conventional image quality metrics assume independence between images which is not preserved within spectral CT datasets, limiting their utility for characterizing energy selective images. The purpose of this work was to develop a metrology to characterize energy selective images by incorporating the shared information between images within a spectral CT dataset.Approach.The signal-to-noise ratio (SNR) was extended into a multivariate space where each image within a spectral CT dataset was treated as a separate information channel. The general definition was applied to the specific case of contrast to define a multivariate contrast-to-noise ratio (CNR). The matrix contained two types of terms: a conventional CNR term which characterized image quality within each image in the spectral CT dataset and covariance weighted CNR (Covar-CNR) which characterized the contrast in each image relative to the covariance between images. Experimental data from an investigational photon-counting CT scanner was used to demonstrate the insight of this metrology. A cylindrical water phantom containing vials of iodine and gadolinium (2, 4, and 8 mg ml-1) was imaged under conditions of variable tube current, tube voltage, and energy threshold. Two image series (threshold and bin images) containing two images each were defined based upon the contribution of photons to reconstructed images. Analysis of variance (ANOVA) was calculated between CNR terms and image acquisition variables. A multivariate regression was then fitted to experimental data.Main Results.Image type had a major difference on how Covar-CNR values were distributed. Bin images had a slightly higher mean and wider standard deviation (Covar-CNRlo: 3.38 ±17.25, Covar-CNRhi: 5.77 ± 30.64) compared to threshold images (Covar-CNRlo: 2.08 ±1.89, Covar-CNRhi: 3.45 ± 2.49) across all conditions. ANOVA found that each acquisition variable had a significant relationship with both Covar-CNR terms. The multivariate regression model suggested that material concentration had the largest impact on all CNR terms.Signficance.In this work, we described a theoretical framework to extend the SNR to a multivariate form that is able to characterize images independently and also provide insight regarding the relationship between images. Experimental data was used to demonstrate the insight that this metrology provides about image formation factors in spectral CT.
Collapse
Affiliation(s)
- Jayasai R. Rajagopal
- Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Department of Radiology, Duke University Medical Center, Durham, NC, 27705
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, 27705
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892
| | - Faraz Farhadi
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Babak Saboury
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892
| | | | - Ayele H. Negussie
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892
| | - William F. Pritchard
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892
| | - Elizabeth C. Jones
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Department of Radiology, Duke University Medical Center, Durham, NC, 27705
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, 27705
| |
Collapse
|
17
|
Rajagopal JR, Farhadi F, Solomon J, Saboury B, Sahbaee P, Negussie AH, Pritchard WF, Jones EC, Samei E. Development of a separability index for task specific characterization of spectral computed tomography. Phys Med 2024; 122:103382. [PMID: 38820805 PMCID: PMC11185224 DOI: 10.1016/j.ejmp.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
PURPOSE In this work, we define a signal detection based metrology to characterize the separability of two different multi-dimensional signals in spectral CT acquisitions. METHOD Signal response was modelled as a random process with a deterministic signal and stochastic noise component. A linear Hotelling observer was used to estimate a scalar test statistic distribution that predicts the likelihood of an intensity value belonging to a signal. Two distributions were estimated for two materials of interest and used to derive two metrics separability: a separability index (s') and the area under the curve of the test statistic distributions. Experimental and simulated data of photon-counting CT scanners were used to evaluate each metric. Experimentally, vials of iodine and gadolinium (2, 4, 8 mg/mL) were scanned at multiple tube voltages, tube currents and energy thresholds. Additionally, a simulated dataset with low tube current (10-150 mAs) and material concentrations (0.25-4 mg/mL) was generated. RESULTS Experimental data showed that conditions favorable for low noise and expression of k-edge signal produced the highest separability. Material concentration had the greatest impact on separability. The simulated data showed that under more difficult separation conditions, difference in material concentration still had the greatest impact on separability. CONCLUSION The results demonstrate the utility of a task specific metrology to measure the overlap in signal between different materials in spectral CT. Using experimental and simulated data, the separability index was shown to describe the relationship between image formation factors and the signal responses of material.
Collapse
Affiliation(s)
- Jayasai R Rajagopal
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States; Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705, United States; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, United States.
| | - Faraz Farhadi
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, United States; Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States
| | - Justin Solomon
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States; Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705, United States; Clinical Imaging Physics Group, Duke University Medical Center, Durham, NC 27705, United States
| | - Babak Saboury
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, United States
| | - Pooyan Sahbaee
- Siemens Medical Solutions USA, Malvern, PA 19335, United States
| | - Ayele H Negussie
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, United States
| | - William F Pritchard
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, United States
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, United States
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC 27705, United States; Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705, United States; Clinical Imaging Physics Group, Duke University Medical Center, Durham, NC 27705, United States.
| |
Collapse
|
18
|
Maier J, Erath J, Sawall S, Fournié E, Stierstorfer K, Kachelrieß M. Raw data consistent deep learning-based field of view extension for dual-source dual-energy CT. Med Phys 2024; 51:1822-1831. [PMID: 37650780 DOI: 10.1002/mp.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Due to technical constraints, dual-source dual-energy CT scans may lack spectral information in the periphery of the patient. PURPOSE Here, we propose a deep learning-based iterative reconstruction to recover the missing spectral information outside the field of measurement (FOM) of the second source-detector pair. METHODS In today's Siemens dual-source CT systems, one source-detector pair (referred to as A) typically has a FOM of about 50 cm, while the FOM of the other pair (referred to as B) is limited by technical constraints to a diameter of about 35 cm. As a result, dual-energy applications are currently only available within the small FOM, limiting their use for larger patients. To derive a reconstruction at B's energy for the entire patient cross-section, we propose a deep learning-based iterative reconstruction. Starting with A's reconstruction as initial estimate, it employs a neural network in each iteration to refine the current estimate according to a raw data fidelity measure. Here, the corresponding mapping is trained using simulated chest, abdomen, and pelvis scans based on a data set containing 70 full body CT scans. Finally, the proposed approach is tested on simulated and measured dual-source dual-energy scans and compared against existing reference approaches. RESULTS For all test cases, the proposed approach was able to provide artifact-free CT reconstructions of B for the entire patient cross-section. Considering simulated data, the remaining error of the reconstructions is between 10 and 17 HU on average, which is about half as low as the reference approaches. A similar performance with an average error of 8 HU could be achieved for real phantom measurements. CONCLUSIONS The proposed approach is able to recover missing dual-energy information for patients exceeding the small 35 cm FOM of dual-source CT systems. Therefore, it potentially allows to extend dual-energy applications to the entire-patient cross section.
Collapse
Affiliation(s)
- Joscha Maier
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Erath
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Stefan Sawall
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | | | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Xiong X, Hong R, Fan X, Hao Z, Zhang X, Zhang Y, Hu C. Quantitative assessment of bone marrow infiltration and characterization of tumor burden using dual-layer spectral CT in patients with multiple myeloma. Radiol Oncol 2024; 58:43-50. [PMID: 38183278 PMCID: PMC10878765 DOI: 10.2478/raon-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The aim of the study was to evaluate whether virtual calcium subtraction (VNCa) image extracted from dual-layer spectral CT could estimate bone marrow (BM) infiltration with MRI as the reference standard and characterize tumor burden in patients with multiple myeloma (MM). PATIENTS AND METHODS Forty-seven patients with newly diagnosed MM were retrospectively enrolled. They had undergone whole-body low-dose dual-layer spectral CT (DLCT) and whole-body MRI within one week. VNCa images with calcium-suppressed (CaSupp) indices ranging from 25 to 95 at an interval of 10 and apparent diffusion coefficient (ADC) maps were quantitatively analyzed on vertebral bodies L1-L5 at the central slice of images. The optimal combination was selected by correlation analysis between CT numbers and ADC values. Then, it was used to characterize tumor burden by correlation analysis and receiver operating characteristic (ROC) curves analysis, including plasma cell infiltration rate (PCIR), high serum-free light chains (SFLC) ratio and the high-risk cytogenetic (HRC) status. RESULTS The most significant quantitative correlation between CT numbers of VNCa images and ADC values could be found at CaSupp index 85 for averaged L1-L5 (r = 0.612, p < 0.001). It allowed quantitative evaluation of PCIR (r = 0.835, p < 0.001). It could also anticipate high SFLC ratio and the HRC status with area under the curve (AUC) of 0.876 and 0.760, respectively. CONCLUSIONS The VNCa measurements of averaged L1-L5 showed the highest correlation with ADC at CaSupp index 85. It could therefore be used as additional imaging biomarker for non-invasive assessment of tumor burden if ADC is not feasible.
Collapse
Affiliation(s)
- Xing Xiong
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rong Hong
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu Fan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhengmei Hao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaohui Zhang
- Department of Clinical Science, Philips Healthcare Greater China, Shanghai, China
| | - Yu Zhang
- Department of Radiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Sharma S, Pal D, Abadi E, Segars P, Hsieh J, Samei E. Deep silicon photon-counting CT: A first simulation-based study for assessing perceptual benefits across diverse anatomies. Eur J Radiol 2024; 171:111279. [PMID: 38194843 PMCID: PMC10922475 DOI: 10.1016/j.ejrad.2023.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES To assess perceptual benefits provided by the improved spatial resolution and noise performance of deep silicon photon-counting CT (Si-PCCT) over conventional energy-integrating CT (ECT) using polychromatic images for various clinical tasks and anatomical regions. MATERIALS AND METHODS Anthropomorphic, computational models were developed for lungs, liver, inner ear, and head-and-neck (H&N) anatomies. These regions included specific abnormalities such as lesions in the lungs and liver, and calcified plaques in the carotid arteries. The anatomical models were imaged using a scanner-specific CT simulation platform (DukeSim) modeling a Si-PCCT prototype and a conventional ECT system at matched dose levels. The simulated polychromatic projections were reconstructed with matched in-plane resolutions using manufacturer-specific software. The reconstructed pairs of images were scored by radiologists to gauge the task-specific perceptual benefits provided by Si-PCCT compared to ECT based on visualization of anatomical and image quality features. The scores were standardized as z-scores for minimizing inter-observer variability and compared between the systems for evidence of statistically significant improvement (one-sided Wilcoxon rank-sum test with a significance level of 0.05) in perceptual performance for Si-PCCT. RESULTS Si-PCCT offered favorable image quality and improved visualization capabilities, leading to mean improvements in task-specific perceptual performance over ECT for most tasks. The improvements for Si-PCCT were statistically significant for the visualization of lung lesion (0.08 ± 0.89 vs. 0.90 ± 0.48), liver lesion (-0.64 ± 0.37 vs. 0.95 ± 0.55), and soft tissue structures (-0.47 ± 0.90 vs. 0.33 ± 1.24) and cochlea (-0.47 ± 0.80 vs. 0.38 ± 0.62) in inner ear. CONCLUSIONS Si-PCCT exhibited mean improvements in task-specific perceptual performance over ECT for most clinical tasks considered in this study, with statistically significant improvement for 6/20 tasks. The perceptual performance of Si-PCCT is expected to improve further with availability of spectral information and reconstruction kernels optimized for high resolution provided by smaller pixel size of Si-PCCT. The outcomes of this study indicate the positive potential of Si-PCCT for benefiting routine clinical practice through improved image quality and visualization capabilities.
Collapse
Affiliation(s)
- Shobhit Sharma
- Center for Virtual Imaging Trials and Carl E. Ravin Advanced Imaging Laboratories, 2424 Erwin Rd, Suite 302, Durham, NC 27705, USA; Department of Physics, Duke University, Science Drive, Durham, NC 27708, USA
| | - Debashish Pal
- GE Healthcare, 3000 N Grandview Blvd, Waukesha, WI 53188, USA
| | - Ehsan Abadi
- Center for Virtual Imaging Trials and Carl E. Ravin Advanced Imaging Laboratories, 2424 Erwin Rd, Suite 302, Durham, NC 27705, USA; Department of Radiology, Duke University, 2301 Erwin Rd, Durham, NC 27705, USA.
| | - Paul Segars
- Center for Virtual Imaging Trials and Carl E. Ravin Advanced Imaging Laboratories, 2424 Erwin Rd, Suite 302, Durham, NC 27705, USA; Department of Radiology, Duke University, 2301 Erwin Rd, Durham, NC 27705, USA
| | - Jiang Hsieh
- GE Healthcare, 3000 N Grandview Blvd, Waukesha, WI 53188, USA
| | - Ehsan Samei
- Center for Virtual Imaging Trials and Carl E. Ravin Advanced Imaging Laboratories, 2424 Erwin Rd, Suite 302, Durham, NC 27705, USA; Department of Physics, Duke University, Science Drive, Durham, NC 27708, USA; Department of Radiology, Duke University, 2301 Erwin Rd, Durham, NC 27705, USA
| |
Collapse
|
21
|
Chen JR, Winfree TN, Bruesewitz MR, Swicklik JR, Thorne JE, Leng S, McCollough CH. Technical Note: Assessment of Pulse Pileup on Single-Energy and Multienergy Images From a Clinical Photon-Counting Detector Computed Tomography. J Comput Assist Tomogr 2024; 48:104-109. [PMID: 37566794 PMCID: PMC10841285 DOI: 10.1097/rct.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
OBJECTIVE Pulse pileup effects occur when pulses occur so close together that they fall on top of one another, resulting in count loss and errors in energy thresholding. To date, there has been little work systematically detailing the quantitative effects of pulse pileup on material decomposition accuracy for photon-counting detector (PCD) computed tomography (CT). Our aim in this work was to quantify the effects of pulse pileup on single-energy and multienergy CT images, including low-energy bin (BL), high-energy bin (BH), iodine map, and virtual noncontrast images from a commercial PCD-CT. METHODS Scans of a 20-cm diameter multienergy CT phantom with 10 solid inserts were acquired at a fixed tube potential as the tube current was varied across the available range. Four types of images (BL, BH, iodine map, and virtual noncontrast) were reconstructed using an iterative reconstruction algorithm at strength 2, a quantitative reconstruction kernel (Qr40), 2-/1-mm slice thickness/increment, and a 210-mm field-of-view. The mean and standard deviation of CT numbers were recorded and the ratios of CT number between BL and BH images were calculated and plotted, along with noise versus tube current and noise × versus tube current. RESULTS As tube current was increased, the range of variations in CT numbers was less than 13.4 HU for all inserts and image types evaluated. Noise × versus tube current showed a small positive slope equal to a noise increase from 100 mA of 10% at 500 mA and 15% at 900 mA compared with what would be expected if the slope was zero. CONCLUSIONS Minimal impact on single-energy and multienergy CT numbers and noise performance was observed for the evaluated clinical PCD-CT system.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, 55906
| | | |
Collapse
|
22
|
Patzer TS, Kunz AS, Huflage H, Gruschwitz P, Pannenbecker P, Afat S, Herrmann J, Petritsch B, Bley TA, Grunz JP. Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants. Eur Radiol 2023; 33:7818-7829. [PMID: 37284870 PMCID: PMC10598126 DOI: 10.1007/s00330-023-09790-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. MATERIAL AND METHODS In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3DiMAR, and VMIiMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. RESULTS iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/-1418.4 versus T3DiMAR 103.2/-46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (p ≤ 0.001). VMIiMAR ≥ 110 keV subjectively enhanced artifact reduction over T3DiMAR (p ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (p ≥ 0.186) and facilitated no significant denoising over T3D (p ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (p ≤ 0.009). VMIiMAR ≥ 110 keV resulted in less overcorrection than T3DiMAR (p ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). CONCLUSION While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. CLINICAL RELEVANCE Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. KEY POINTS • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.
Collapse
Affiliation(s)
- Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany.
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076, Tübingen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076, Tübingen, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| |
Collapse
|
23
|
Björkman AS, Malusek A, Gauffin H, Persson A, Koskinen SK. Spectral photon-counting CT: Image quality evaluation using a metal-containing bovine bone specimen. Eur J Radiol 2023; 168:111110. [PMID: 37788519 DOI: 10.1016/j.ejrad.2023.111110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE To find the optimal imaging parameters for a photon-counting detector CT (PCD-CT) and to compare it to an energy-integrating detector CT (EID-CT) in terms of image quality and metal artefact severity using a metal-containing bovine knee specimen. METHODS A bovine knee with a stainless-steel plate and screws was imaged in a whole-body research PCD-CT at 120 kV and 140 kV and in an EID dual-source CT (DSCT) at Sn150 kV and 80/Sn150 kV. PCD-CT virtual monoenergetic 72 and 150 keV images and EID-CT images processed with and without metal artefact reduction algorithms (iMAR) were compared. Four radiologists rated the visualisation of bony structures and metal artefact severity. The Friedman test and Wilcoxon signed-rank test with Bonferroni's correction were used. P-values of ≤ 0.0001 were considered statistically significant. Distributions of HU values of regions of interest (ROIs) in artefact-affected areas were analysed. RESULTS PCD-CT 140 kV 150 keV images received the highest scores and were significantly better than EID-CT Sn150 kV images. PCD-CT 72 keV images were rated significantly lower than all the others. HU-value variation was larger in the 120 kV and the 72 keV images. The ROI analysis revealed no large difference between scanners regarding artefact severity. CONCLUSION PCD-CT 140 kV 150 keV images of a metal-containing bovine knee specimen provided the best image quality. They were superior to, or as good as, the best EID-CT images; even without the presumed advantage of tin filter and metal artefact reduction algorithms. PCD-CT is a promising method for reducing metal artefacts.
Collapse
Affiliation(s)
- Ann-Sofi Björkman
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85 Linköping, Sweden; Department of Radiology in Linköping, Center for Diagnostics, Röntgenkliniken, Universitetssjukhuset, SE-581 85 Linköping, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | - Alexandr Malusek
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85 Linköping, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | - Håkan Gauffin
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85 Linköping, Sweden; Department of Orthopedics, Linköping University, Universitetssjukhuset, SE-581 85 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | - Anders Persson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85 Linköping, Sweden; Department of Radiology in Linköping, Center for Diagnostics, Röntgenkliniken, Universitetssjukhuset, SE-581 85 Linköping, Sweden; Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | - Seppo K Koskinen
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 85 Linköping, Sweden; Terveystalo Inc., Jaakonkatu 3, 00100 Helsinki, Finland; Department of Clinical Science, Intervention, and Technology, Division for Radiology, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
24
|
Farhadi F, Sahbaee P, Rajagopal JR, Nikpanah M, Saboury B, Gutjahr R, Biassou NM, Shah R, Flohr TG, Samei E, Pritchard WF, Malayeri AA, Bluemke DA, Jones EC. Virtual monoenergetic imaging in photon-counting CT of the head and neck. Clin Imaging 2023; 102:109-115. [PMID: 37672849 PMCID: PMC10838526 DOI: 10.1016/j.clinimag.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Advantages of virtual monoenergetic images (VMI) have been reported for dual energy CT of the head and neck, and more recently VMIs derived from photon-counting (PCCT) angiography of the head and neck. We report image quality metrics of VMI in a PCCT angiography dataset, expanding the anatomical regions evaluated and extending observer-based qualitative methods further than previously reported. METHODS In a prospective study, asymptomatic subjects underwent contrast enhanced PCCT of the head and neck using an investigational scanner. Image sets of low, high, and full spectrum (Threshold-1) energies; linear mix of low and high energies (Mix); and 23 VMIs (40-150 keV, 5 keV increments) were generated. In 8 anatomical locations, SNR and radiologists' preferences for VMI energy levels were measured using a forced-choice rank method (4 observers) and ratings of image quality using visual grading characteristic (VGC) analysis (2 observers) comparing VMI to Mix and Threshold-1 images. RESULTS Fifteen subjects were included (7 men, 8 women, mean 57 years, range 46-75). Among all VMIs, SNRs varied by anatomic location. The highest SNRs were observed in VMIs. Radiologists preferred 50-60 keV VMIs for vascular structures and 75-85 keV for all other structures. Cumulative ratings of image quality averaged across all locations were higher for VMIs with areas under the curve of VMI vs Mix and VMI vs Threshold-1 of 0.67 and 0.68 for the first reader and 0.72 and 0.76 for the second, respectively. CONCLUSION Preferred keV level and quality ratings of VMI compared to mixed and Threshold-1 images varied by anatomical location.
Collapse
Affiliation(s)
- Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Jayasai R Rajagopal
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nadia M Biassou
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ritu Shah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - William F Pritchard
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Wu Y, Ye Z, Chen J, Deng L, Song B. Photon Counting CT: Technical Principles, Clinical Applications, and Future Prospects. Acad Radiol 2023; 30:2362-2382. [PMID: 37369618 DOI: 10.1016/j.acra.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Photon-counting computed tomography (PCCT) is a new technique that utilizes photon-counting detectors to convert individual X-ray photons directly into an electrical signal, which can achieve higher spatial resolution, improved iodine signal, radiation dose reduction, artifact reduction, and multienergy imaging. This review introduces the technical principles of PCCT, and summarizes its first-in-human experience and current applications in clinical settings, and discusses the future prospects of PCCT.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.); Department of Radiology, Sanya People' s Hospital, Sanya, Hainan, China (B.S.).
| |
Collapse
|
26
|
Abstract
In 1971, the first patient CT examination by Ambrose and Hounsfield paved the way for not only volumetric imaging of the brain but of the entire body. From the initial 5-minute scan for a 180° rotation to today's 0.24-second scan for a 360° rotation, CT technology continues to reinvent itself. This article describes key historical milestones in CT technology from the earliest days of CT to the present, with a look toward the future of this essential imaging modality. After a review of the beginnings of CT and its early adoption, the technical steps taken to decrease scan times-both per image and per examination-are reviewed. Novel geometries such as electron-beam CT and dual-source CT have also been developed in the quest for ever-faster scans and better in-plane temporal resolution. The focus of the past 2 decades on radiation dose optimization and management led to changes in how exposure parameters such as tube current and tube potential are prescribed such that today, examinations are more customized to the specific patient and diagnostic task than ever before. In the mid-2000s, CT expanded its reach from gray-scale to color with the clinical introduction of dual-energy CT. Today's most recent technical innovation-photon-counting CT-offers greater capabilities in multienergy CT as well as spatial resolution as good as 125 μm. Finally, artificial intelligence is poised to impact both the creation and processing of CT images, as well as automating many tasks to provide greater accuracy and reproducibility in quantitative applications.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | | |
Collapse
|
27
|
McCollough CH, Rajendran K, Baffour FI, Diehn FE, Ferrero A, Glazebrook KN, Horst KK, Johnson TF, Leng S, Mileto A, Rajiah PS, Schmidt B, Yu L, Flohr TG, Fletcher JG. Clinical applications of photon counting detector CT. Eur Radiol 2023; 33:5309-5320. [PMID: 37020069 PMCID: PMC10330165 DOI: 10.1007/s00330-023-09596-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 04/07/2023]
Abstract
The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. KEY POINTS: • Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. • Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. • Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.
Collapse
Affiliation(s)
- Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Felix E Diehn
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Katrina N Glazebrook
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kelly K Horst
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tucker F Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Bernhard Schmidt
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas G Flohr
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
28
|
Grigoriev M, Zolotov D, Ingacheva A, Buzmakov A, Dyachkova I, Asadchikov V, Chukalina M. Crystal Analyzer Based Multispectral Microtomography Using CCD-Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:6389. [PMID: 37514683 PMCID: PMC10386214 DOI: 10.3390/s23146389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
To solve the problems of spectral tomography, an X-ray optical scheme was proposed, using a crystal analyzer in Laue geometry between the sample and the detector, which allowed for the selection of predetermined pairs of wavelengths from the incident polychromatic radiation to obtain projection images. On a laboratory X-ray microtomography setup, an experiment was carried out for the first time where a mixture of micro-granules of sodium chloride NaCl, silver behenate AgC22H43O2, and lithium niobate LiNbO3 was used as a test sample to identify their spatial arrangement. The elements were chosen based on the presence of absorption edges in two of the elements in the energy range of the polychromatic spectrum of the probing radiation. The method of projection distortion correction was used to preprocess the obtained projections. To interpret the obtained reconstruction results, the segmentation method based on the analysis of joint histograms was used. This allowed us to identify each of the three substances. To compare the results obtained, additional "reference" tomographic measurements were performed: one in polychromatic and two in monochromatic (MoKα-, MoKβ-lines) modes. It took three times less time for the tomographic experiment with the crystal analyzer, while the reconstruction accuracy was comparable to that of the "reference" tomography.
Collapse
Affiliation(s)
- Maxim Grigoriev
- Institute of Microelectronics Technology and High Purity Materials RAS, Osipyan Str., 6, 142432 Chernogolovka, Russia
| | - Denis Zolotov
- FSRC "Crystallography and Photonics" RAS, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Anastasia Ingacheva
- Smart Engines Service LLC, 60-Letiya Oktyabrya Avenue, 9, 117312 Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Bolshoy Karetny Lane, 19, 127051 Moscow, Russia
| | - Alexey Buzmakov
- FSRC "Crystallography and Photonics" RAS, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Irina Dyachkova
- FSRC "Crystallography and Photonics" RAS, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Victor Asadchikov
- FSRC "Crystallography and Photonics" RAS, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Marina Chukalina
- Smart Engines Service LLC, 60-Letiya Oktyabrya Avenue, 9, 117312 Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Bolshoy Karetny Lane, 19, 127051 Moscow, Russia
| |
Collapse
|
29
|
Abstract
ABSTRACT Computed tomography (CT) images display anatomic structures across 3 dimensions and are highly quantitative; they are the reference standard for 3-dimensional geometric measurements and are used for 3-dimensional printing of anatomic models and custom implants, as well as for radiation therapy treatment planning. The pixel intensity in CT images represents the linear x-ray attenuation coefficient of the imaged materials after linearly scaling the coefficients into a quantity known as CT numbers that is conveyed in Hounsfield units. When measured with the same scanner model, acquisition, and reconstruction parameters, the mean CT number of a material is highly reproducible, and quantitative applications of CT scanning that rely on the measured CT number, such as for assessing bone mineral density or coronary artery calcification, are well established. However, the strong dependence of CT numbers on x-ray beam spectra limits quantitative applications and standardization from achieving robust widespread success. This article reviews several quantitative applications of CT and the challenges they face, and describes the benefits brought by photon-counting detector (PCD) CT technology. The discussed benefits of PCD-CT include that it is inherently multienergy, expands material decomposition capabilities, and improves spatial resolution and geometric quantification. Further, the utility of virtual monoenergetic images to standardize CT numbers is discussed, as virtual monoenergetic images can be the default image type in PCD-CT due to the full-time spectral nature of the technology.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| |
Collapse
|
30
|
Flohr T, Schmidt B. Technical Basics and Clinical Benefits of Photon-Counting CT. Invest Radiol 2023; 58:441-450. [PMID: 37185302 PMCID: PMC10259209 DOI: 10.1097/rli.0000000000000980] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
ABSTRACT Novel photon-counting detector CT (PCD-CT) has the potential to address the limitations of previous CT systems, such as insufficient spatial resolution, limited accuracy in detecting small low-contrast structures, or missing routine availability of spectral information. In this review article, we explain the basic principles and potential clinical benefits of PCD-CT, with a focus on recent literature that has grown rapidly since the commercial introduction of a clinically approved PCD-CT.
Collapse
|
31
|
Schwartz FR, Samei E, Marin D. Exploiting the Potential of Photon-Counting CT in Abdominal Imaging. Invest Radiol 2023; 58:488-498. [PMID: 36728045 DOI: 10.1097/rli.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Photon-counting computed tomography (PCCT) imaging uses a new detector technology to provide added information beyond what can already be obtained with current CT and MR technologies. This review provides an overview of PCCT of the abdomen and focuses specifically on applications that benefit the most from this new imaging technique. We describe the requirements for a successful abdominal PCCT acquisition and the challenges for clinical translation. The review highlights work done within the last year with an emphasis on new protocols that have been tested in clinical practice. Applications of PCCT include imaging of cystic lesions, sources of bleeding, and cancers. Photon-counting CT is positioned to move beyond detection of disease to better quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | - Ehsan Samei
- Quantitative Imaging and Analysis Lab, Duke University Health System, Durham, NC
| | | |
Collapse
|
32
|
Ahmed Z, Ferrero A, Ren L, Vrieze TJ, Rajendran K, Favazza CP, Yu L, Bruesewitz MR, McCollough CH, Leng S. Establishing a quality assurance program for photon counting detector (PCD) CT: Tips and caveats. J Appl Clin Med Phys 2023:e14074. [PMID: 37335819 DOI: 10.1002/acm2.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE To determine the suitability of a quality assurance (QA) program based on the American College of Radiology's (ACR) CT quality control (QC) manual to fully evaluate the unique capabilities of a clinical photon-counting-detector (PCD) CT system. METHODS A daily QA program was established to evaluate CT number accuracy and artifacts for both standard and ultra-high-resolution (UHR) scan modes. A complete system performance evaluation was conducted in accordance with the ACR CT QC manual by scanning the CT Accreditation Phantom with routine clinical protocols and reconstructing low-energy-threshold (T3D) and virtual monoenergetic images (VMIs) between 40 and 120 keV. Spatial resolution was evaluated by computing the modulation transfer function (MTF) for the UHR mode, and multi-energy performance was evaluated by scanning a body phantom containing four iodine inserts with concentrations between 2 and 15 mg I/cc. RESULTS The daily QA program identified instances when the detector needed recalibration or replacement. CT number accuracy was impacted by image type: CT numbers at 70 keV VMI were within the acceptable range (defined for 120 kV). Other keV VMIs and the T3D reconstruction had at least one insert with CT number outside the acceptable range. The limiting resolution was nearly 40 lp/cm based on MTF measurements, which far exceeds the 12 lp/cm maximum capability of the ACR phantom. The CT numbers in the iodine inserts were accurate on all VMIs (3.8% average percentage error), while the iodine concentrations had an average root mean squared error of 0.3 mg I/cc. CONCLUSION Protocols and parameters must be properly selected on PCD-CT to meet current accreditation requirements with the ACR CT phantom. Use of the 70 keV VMI allowed passing all tests prescribed in the ACR CT manual. Additional evaluations such an MTF measurement and multi-energy phantom scans are also recommended to comprehensively evaluate PCD-CT scanner performance.
Collapse
Affiliation(s)
- Zaki Ahmed
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Liqiang Ren
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas J Vrieze
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Meloni A, Cademartiri F, Pistoia L, Degiorgi G, Clemente A, De Gori C, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, La Grutta L, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part III: Clinical Overview of Vascular Applications beyond Cardiac and Neuro Imaging. J Clin Med 2023; 12:jcm12113798. [PMID: 37297994 DOI: 10.3390/jcm12113798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that is expected to radically change clinical CT imaging. PCCT offers several advantages over conventional CT, which can be combined to improve and expand the diagnostic possibilities of CT angiography. After a brief description of the PCCT technology and its main advantages we will discuss the new opportunities brought about by PCCT in the field of vascular imaging, while addressing promising future clinical scenarios.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | | | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, CA, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, CA, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|
34
|
Myeloma bone disease imaging on a 1st-generation clinical photon-counting detector CT vs. 2nd-generation dual-source dual-energy CT. Eur Radiol 2023; 33:2415-2425. [PMID: 36350390 PMCID: PMC10017628 DOI: 10.1007/s00330-022-09225-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Subjective and objective image quality comparison of bone microstructure and disease-related abnormalities in multiple myeloma patients using a 1st-generation dual-source photon-counting detector CT(DS-PCD-CT) and a 2nd-generation dual-source dual-energy (energy-integrating detector) CT (DS-EID-CT). METHODS Fifty multiple myeloma patients (mean age 67.7 ± 10.9 years,16 females) were prospectively enrolled. Unenhanced whole-body CTs were clinically indicated and performed on DS-EID-CT and DS-PCD-CT (median time difference: 12 months). DS-PCD-CT was performed in Quantumplus UHR mode and DS-EID-CT was performed using dual-energy mode. DS-PCD-CT kernel was set at Br64 with Quantum iterative reconstruction strength Q1; for DS-EID-CT a comparable I70f kernel with SAFIRE iterative reconstruction strength 1 was used. Two independent radiologists assessed image quality subjectively using a 5-point Likert scale considering delineation and sharpness of trabecular bone and lytic bone lesions in the spine and pelvic bones. Additionally, ImageJ was used for quantification of bony septa inside the cancellous bone and through or the edges of osteolysis. RESULTS Overall quality as well as detectability and sharpness in the delineation of lytic bone lesions were superior for DS-PCD-CT compared with DS-EID-CT (p < 0.0001). The inter-reader agreement for subjective image quality readings showed excellent consistency(α = 94.2-98.8). CTDI and DLP mean values for DS-PCD-CT and DS-EID-CT were 1107.4 ± 247.6 mGy*cm and 8.2 ± 1.8 mGy vs. 1344.3 ± 204.6 mGy*cm and 10.1 ± 1.9 mGy. The quantitative metric for bone microstructure in the femoral head showed significantly better visualization of trabeculae in DS-PCD-CT compared with DS-EID-CT (p < 0.0001). Quantitative analyses of edge sharpness of osteolysis showed significant steeper edges for DS-PCD-CT (p < 0.0001). CONCLUSION DS-PCD-CT significantly improves spatial resolution of bony microstructure and lytic bone lesions compared to DS-EID-CT. KEY POINTS • Application of photon-counting detector CT is superior to dual-source dual-energy integrating detector in clinical workup of multiple myeloma patients. • Compared to energy integrating detectors, photon-counting detectors significantly increase the spatial resolution of bone microstructure including disease-related lytic bone lesions in patients with multiple myeloma.
Collapse
|
35
|
Sartoretti T, Wildberger JE, Flohr T, Alkadhi H. Photon-counting detector CT: early clinical experience review. Br J Radiol 2023:20220544. [PMID: 36744809 DOI: 10.1259/bjr.20220544] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its development in the 1970s, X-ray CT has emerged as a landmark diagnostic imaging modality of modern medicine. Technological advances have been crucial to the success of CT imaging, as they have increasingly enabled improvements in image quality and diagnostic value at increasing radiation dose efficiency. With recent advances in engineering and physics, a novel technology has emerged with the potential to surpass several shortcomings and limitations of current CT systems. Photon-counting detector (PCD)-CT might substantially improve and expand the applicability of CT imaging by offering intrinsic spectral capabilities, increased spatial resolution, reduced electronic noise and improved image contrast. In this review we sought to summarize the first clinical experience of PCD-CT. We focused on most recent prototype and first clinically approved PCD-CT systems thereby reviewing initial publications and presenting corresponding clinical cases.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Ghani MU, Makeev A, Manus JA, Glick SJ, Ghammraoui B. An empirical method for geometric calibration of a photon counting detector-based cone beam CT system. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:865-877. [PMID: 37424488 DOI: 10.3233/xst-230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Geometric calibration is essential in developing a reliable computed tomography (CT) system. It involves estimating the geometry under which the angular projections are acquired. Geometric calibration of cone beam CTs employing small area detectors, such as currently available photon counting detectors (PCDs), is challenging when using traditional-based methods due to detectors' limited areas. OBJECTIVE This study presented an empirical method for the geometric calibration of small area PCD-based cone beam CT systems. METHODS Unlike the traditional methods, we developed an iterative optimization procedure to determine geometric parameters using the reconstructed images of small metal ball bearings (BBs) embedded in a custom-built phantom. An objective function incorporating the sphericities and symmetries of the embedded BBs was defined to assess performance of the reconstruction algorithm with the given initial estimated set of geometric parameters. The optimal parameter values were those which minimized the objective function. The TIGRE toolbox was employed for fast tomographic reconstruction. To evaluate the proposed method, computer simulations were carried out using various numbers of spheres placed in various locations. Furthermore, efficacy of the method was experimentally assessed using a custom-made benchtop PCD-based cone beam CT. RESULTS Computer simulations validated the accuracy and reproducibility of the proposed method. The precise estimation of the geometric parameters of the benchtop revealed high-quality imaging in CT reconstruction of a breast phantom. Within the phantom, the cylindrical holes, fibers, and speck groups were imaged in high fidelity. The CNR analysis further revealed the quantitative improvements of the reconstruction performed with the estimated parameters using the proposed method. CONCLUSION Apart from the computational cost, we concluded that the method was easy to implement and robust.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Andrey Makeev
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Joseph A Manus
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Stephen J Glick
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
37
|
Schmitt N, Wucherpfennig L, Rotkopf LT, Sawall S, Kauczor HU, Bendszus M, Möhlenbruch MA, Schlemmer HP, Vollherbst DF. Metal artifacts and artifact reduction of neurovascular coils in photon-counting detector CT versus energy-integrating detector CT - in vitro comparison of a standard brain imaging protocol. Eur Radiol 2023; 33:803-811. [PMID: 35986773 PMCID: PMC9889475 DOI: 10.1007/s00330-022-09073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/11/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Photon-counting detector computed tomography (PCD-CT) is a promising new technique for CT imaging. The aim of the present study was the in vitro comparison of coil-related artifacts in PCD-CT and conventional energy-integrating detector CT (EID-CT) using a comparable standard brain imaging protocol before and after metal artifact reduction (MAR). METHODS A nidus-shaped rubber latex, resembling an aneurysm of the cerebral arteries, was filled with neurovascular platinum coils and inserted into a brain imaging phantom. Image acquisition and reconstruction were repeatedly performed for PCD-CT and EID-CT (n = 10, respectively) using a standard brain imaging protocol. Moreover, linear interpolation MAR was performed for PCD-CT and EID-CT images. The degree of artifacts was analyzed quantitatively (standard deviation in a donut-shaped region of interest) and qualitatively (5-point scale analysis). RESULTS Quantitative and qualitative analysis demonstrated a lower degree of metal artifacts in the EID-CT images compared to the total-energy PCD-CT images (e.g., 82.99 ± 7.89 Hounsfield units (HU) versus 90.35 ± 6.28 HU; p < 0.001) with no qualitative difference between the high-energy bin PCD-CT images and the EID-CT images (4.18 ± 0.37 and 3.70 ± 0.64; p = 0.575). After MAR, artifacts were more profoundly reduced in the PCD-CT images compared to the EID-CT images in both analyses (e.g., 2.35 ± 0.43 and 3.18 ± 0.34; p < 0.001). CONCLUSION PCD-CT in combination with MAR have the potential to provide an improved option for reduction of coil-related artifacts in cerebral imaging in this in vitro study. KEY POINTS • Photon-counting detector CT produces more artifacts compared to energy-integrating detector CT without metal artifact reduction in cerebral in vitro imaging after neurovascular coil-embolization. • Spectral information of PCD-CT provides the potential for new post-processing techniques, since the coil-related artifacts were lower in PCD-CT images compared to EID-CT images after linear interpolation metal artifact reduction in this in vitro study.
Collapse
Affiliation(s)
- Niclas Schmitt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Lukas T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Sawall
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Marsh JF, Vercnocke AJ, Rajendran K, Tao S, Anderson JL, Ritman EL, Leng S, McCollough CH. Measurement of enhanced vasa vasorum density in a porcine carotid model using photon counting detector CT. J Med Imaging (Bellingham) 2023; 10:016001. [PMID: 36778671 PMCID: PMC9900679 DOI: 10.1117/1.jmi.10.1.016001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose The onset of atherosclerosis is preceded by changes in blood perfusion within the arterial wall due to localized proliferation of the vasa vasorum. The purpose of this study was to quantify these changes in spatial density of the vasa vasorum using a research whole-body photon-counting detector CT (PCD-CT) scanner and a porcine model. Approach Vasa vasorum angiogenesis was stimulated in the left carotid artery wall of anesthetized pigs ( n = 5 ) while the right carotid served as a control. After a 6-week recovery period, the animals were scanned on the PCD-CT prior to and after injection of iodinated contrast. Annular regions of interest were used to measure wall enhancement in the injured and control arteries. The exact Wilcoxon-signed rank test was used to determine whether a significant difference in contrast enhancement existed between the injured and control arterial walls. Results The greatest arterial wall enhancement was observed following contrast recirculation. The wall enhancement measurements made over these time points revealed that the enhancement was greater in the injured artery for 13/16 scanned arterial regions. Using an exact Wilcoxon-signed rank test, a significantly increased enhancement ratio was found in injured arteries compared with control arteries ( p = 0.013 ). Vasa vasorum angiogenesis was confirmed in micro-CT scans of excised arteries. Conclusions Whole-body PCD-CT scanners can be used to detect and quantify the increased perfusion occurring within the porcine carotid arterial wall resulting from an increased density of vasa vasorum.
Collapse
Affiliation(s)
- Jeffrey F. Marsh
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Kishore Rajendran
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Shengzhen Tao
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jill L. Anderson
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Erik L. Ritman
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, United States
| | - Shuai Leng
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | |
Collapse
|
39
|
Yalynska T, Polacin M, Frauenfelder T, Martini K. Impact of Photon Counting Detector CT Derived Virtual Monoenergetic Images on the Diagnosis of Pulmonary Embolism. Diagnostics (Basel) 2022; 12:diagnostics12112715. [PMID: 36359558 PMCID: PMC9689164 DOI: 10.3390/diagnostics12112715] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose: To assess the impact of virtual-monoenergetic-image (VMI) energies on the diagnosis of pulmonary embolism (PE) in photon-counting-detector computed-tomography (PCD-CT). Methods: Eighty patients (median age 60.4 years) with suspected PE were retrospectively included. Scans were performed on PCD-CT in the multi-energy mode at 120 kV. VMIs from 40−70 keV in 10 keV intervals were reconstructed. CT-attenuation was measured in the pulmonary trunk and the main branches of the pulmonary artery. Signal-to-noise (SNR) ratio was calculated. Two radiologists evaluated subjective-image-quality (noise, vessel-attenuation and sharpness; five-point-Likert-scale, non-diagnostic−excellent), the presence of hardening artefacts and presence/visibility of PE. Results: Signal was highest at the lowest evaluated VMI (40 keV; 1053.50 HU); image noise was lowest at the highest VMI (70 keV; 15.60 HU). Highest SNR was achieved at the lowest VMI (p < 0.05). Inter-reader-agreement for subjective analysis was fair to excellent (k = 0.373−1.000; p < 0.001). Scores for vessel-attenuation and sharpness were highest at 40 keV (both:5, range 4/3−5; k = 1.000); scores for image-noise were highest at 70 keV (4, range 3−5). The highest number of hardening artifacts were reported at 40 keV (n = 22; 28%). PE-visualization was rated best at 50 keV (4.7; range 4−5) and decreased with increasing VMI-energy (r = −0.558; p < 0.001). Conclusions: While SNR was best at 40 keV, subjective PE visibility was rated highest at 50 keV, potentially owing to the lower image noise and hardening artefacts.
Collapse
|
40
|
Wu M, FitzGerald P, Zhang J, Segars WP, Yu H, Xu Y, De Man B. XCIST-an open access x-ray/CT simulation toolkit. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9174. [PMID: 36096127 PMCID: PMC10151073 DOI: 10.1088/1361-6560/ac9174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
Objective. X-ray-based imaging modalities including mammography and computed tomography (CT) are widely used in cancer screening, diagnosis, staging, treatment planning, and therapy response monitoring. Over the past few decades, improvements to these modalities have resulted in substantially improved efficacy and efficiency, and substantially reduced radiation dose and cost. However, such improvements have evolved more slowly than would be ideal because lengthy preclinical and clinical evaluation is required. In many cases, new ideas cannot be evaluated due to the high cost of fabricating and testing prototypes. Wider availability of computer simulation tools could accelerate development of new imaging technologies. This paper introduces the development of a new open-access simulation environment for x-ray-based imaging. The main motivation of this work is to publicly distribute a fast but accurate ray-tracing x-ray and CT simulation tool along with realistic phantoms and 3D reconstruction capability, building on decades of developments in industry and academia.Approach. The x-ray-based Cancer Imaging Simulation Toolkit (XCIST) is developed in the context of cancer imaging, but can more broadly be applied. XCIST is physics-based, written in Python and C/C++, and currently consists of three major subsets: digital phantoms, the simulator itself (CatSim), and image reconstruction algorithms; planned future features include a fast dose-estimation tool and rigorous validation. To enable broad usage and to model and evaluate new technologies, XCIST is easily extendable by other researchers. To demonstrate XCIST's ability to produce realistic images and to show the benefits of using XCIST for insight into the impact of separate physics effects on image quality, we present exemplary simulations by varying contributing factors such as noise and sampling.Main results. The capabilities and flexibility of XCIST are demonstrated, showing easy applicability to specific simulation problems. Geometric and x-ray attenuation accuracy are shown, as well as XCIST's ability to model multiple scanner and protocol parameters, and to attribute fundamental image quality characteristics to specific parameters.Significance. This work represents an important first step toward the goal of creating an open-access platform for simulating existing and emerging x-ray-based imaging systems. While numerous simulation tools exist, we believe the combined XCIST toolset provides a unique advantage in terms of modeling capabilities versus ease of use and compute time. We publicly share this toolset to provide an environment for scientists to accelerate and improve the relevance of their research in x-ray and CT.
Collapse
Affiliation(s)
| | | | | | | | - Hengyong Yu
- University of Massachusetts Lowell, Lowell, MA
| | - Yongshun Xu
- University of Massachusetts Lowell, Lowell, MA
| | | |
Collapse
|
41
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
42
|
Gomes MJ, Manakkal JM. Photon-Counting Detectors in Computed Tomography: A Review. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0042-1749180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractPhoton-counting computed tomography (CT) is a new technique that has the potential to revolutionize clinical CT and is predicted to be the next significant advancement. In recent years, tremendous research has been conducted to demonstrate the developments in hardware assembly and its working principles. The articles in this review were obtained by conducting a search of the MEDLINE database. Photon-counting detectors (PCDs) provide excellent quality diagnostic images with high spatial resolution, reduced noise, artifacts, increased contrast-to-noise ratio, and multienergy data acquisition as compared with conventionally used energy-integrating detector (EID). The search covered articles published between 2011 and 2021. The title and abstract of each article were reviewed as determined by the search strategy. From these, eligible studies and articles that provided the working and clinical application of PCDs were selected. This article aims to provide a systematic review of the basic working principles of PCDs, emphasize the uses and clinical applications of PCDs, and compare it to EIDs. It provides a nonmathematical explanation and understanding of photon-counting CT systems for radiologists as well as clinicians.
Collapse
Affiliation(s)
- Muriel Jeremia Gomes
- Department of Radiodiagnosis and Imaging, Medical Imaging Technology, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - Jaseemudheen M Manakkal
- Department of Radiodiagnosis and Imaging, Medical Imaging Technology, KS Hegde Medical Academy, Mangalore, Karnataka, India
| |
Collapse
|
43
|
Photon-Counting Detector CT Virtual Monoengergetic Images for Cochlear Implant Visualization—A Head to Head Comparison to Energy-Integrating Detector CT. Tomography 2022; 8:1642-1648. [PMID: 35894001 PMCID: PMC9326530 DOI: 10.3390/tomography8040136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cochlear implants (CIs) are the primary treatment method in patients with profound sensorineural hearing loss. Interpretation of postoperative imaging with conventional energy-integrating detector computed tomography (EID-CT) following CI surgery remains challenging due to metal artifacts. Still, the photon-counting detector (PCD-CT) is a new emerging technology with the potential to eliminate these problems. This study evaluated the performance of virtual monoenergetic (VME) EID-CT images versus PCD-CT in CI imaging. In this cadaveric study, two temporal bone specimens with implanted CIs were scanned with EID-CT and PCD-CT. The images were assessed according to the visibility of interelectrode wire, size of electrode contact, and diameter of halo artifacts. The visibility of interelectrode wire sections was significantly higher when reviewing PCD-CT images. The difference in diameter measurements for electrode contacts between the two CT scanner modalities showed that the PCD-CT technology generally led to significantly larger diameter readings. The larger measurements were closer to the manufacturer’s specifications for the CI electrode. The size of halo artifacts surrounding the electrode contacts did not differ significantly between the two imaging modalities. PCT-CT imaging is a promising technology for CI imaging with improved spatial resolution and better visibility of small structures than conventional EID-CT.
Collapse
|
44
|
Allphin AJ, Mowery YM, Lafata KJ, Clark DP, Bassil AM, Castillo R, Odhiambo D, Holbrook MD, Ghaghada KB, Badea CT. Photon Counting CT and Radiomic Analysis Enables Differentiation of Tumors Based on Lymphocyte Burden. Tomography 2022; 8:740-753. [PMID: 35314638 PMCID: PMC8938796 DOI: 10.3390/tomography8020061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to investigate if radiomic analysis based on spectral micro-CT with nanoparticle contrast-enhancement can differentiate tumors based on lymphocyte burden. High mutational load transplant soft tissue sarcomas were initiated in Rag2+/− and Rag2−/− mice to model varying lymphocyte burden. Mice received radiation therapy (20 Gy) to the tumor-bearing hind limb and were injected with a liposomal iodinated contrast agent. Five days later, animals underwent conventional micro-CT imaging using an energy integrating detector (EID) and spectral micro-CT imaging using a photon-counting detector (PCD). Tumor volumes and iodine uptakes were measured. The radiomic features (RF) were grouped into feature-spaces corresponding to EID, PCD, and spectral decomposition images. The RFs were ranked to reduce redundancy and increase relevance based on TL burden. A stratified repeated cross validation strategy was used to assess separation using a logistic regression classifier. Tumor iodine concentration was the only significantly different conventional tumor metric between Rag2+/− (TLs present) and Rag2−/− (TL-deficient) tumors. The RFs further enabled differentiation between Rag2+/− and Rag2−/− tumors. The PCD-derived RFs provided the highest accuracy (0.68) followed by decomposition-derived RFs (0.60) and the EID-derived RFs (0.58). Such non-invasive approaches could aid in tumor stratification for cancer therapy studies.
Collapse
Affiliation(s)
- Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
- Correspondence: (A.J.A.); (C.T.B.)
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Kyle J. Lafata
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
- Department of Radiology, Duke University, Durham, NC 27710, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - Darin P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
| | - Alex M. Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
| | - Rico Castillo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
| | - Diana Odhiambo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; (Y.M.M.); (K.J.L.); (A.M.B.); (R.C.); (D.O.)
| | - Matthew D. Holbrook
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
| | - Ketan B. Ghaghada
- E.B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 277101, USA; (D.P.C.); (M.D.H.)
- Correspondence: (A.J.A.); (C.T.B.)
| |
Collapse
|
45
|
VanMeter P, Marsh J, Rajendran K, Leng S, McCollough C. Quantification of Coronary Calcification using High-Resolution Photon-Counting-Detector CT and an Image Domain Denoising Algorithm. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12031:120311R. [PMID: 35677470 PMCID: PMC9172081 DOI: 10.1117/12.2612999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coronary artery calcification (CAC) is an important indicator of coronary disease. Accurate volume quantification of coronary calcification, especially calcifications smaller than a few mm, using computed tomography (CT) is challenging due to calcium blooming, which is a consequence of limited spatial resolution. In this study, ex-vivo coronary specimens were scanned on a clinical photon-counting detector (PCD) CT scanner and the estimated coronary calcification volume were compared with a conventional energy-integrating detector (EID) CT. Scans were performed using the same tube potential and radiation dose (120 kV, 9.3 mGy CTDIvol). EID-CT images were reconstructed using our routine clinical protocol for CAC quantification. PCD-CT images were reconstructed using a sharper reconstruction kernel than that was supported by the EID-CT scanner, resulting in improved resolution but higher image noise levels. An image-based denoising algorithm was applied to the PCD-CT images to achieve similar noise levels as the EID-CT images. Calcifications were segmented to estimate the volume. Micro-CT images of the same calcifications were acquired and served as the reference standard. PCD-CT images showed reduced calcium blooming artifacts compared to EID-CT. Calcification volume estimates were found to overestimate the micro-CT volumes by 9 ± 12% for PCD-CT data, and 24 ± 18% for the EID-CT data. Volume quantification accuracy of the current PCD-CT system was also found to be superior to a previous-generation investigational PCD-CT scanner with larger detector pixels.
Collapse
Affiliation(s)
| | - Jeffrey Marsh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA, 55905
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA, 55905
| | | |
Collapse
|
46
|
Ren L, Huber N, Rajendran K, Fletcher JG, McCollough CH, Yu L. Dual-Contrast Biphasic Liver Imaging With Iodine and Gadolinium Using Photon-Counting Detector Computed Tomography: An Exploratory Animal Study. Invest Radiol 2022; 57:122-129. [PMID: 34411033 PMCID: PMC8732294 DOI: 10.1097/rli.0000000000000815] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aims of this study were to develop a single-scan dual-contrast protocol for biphasic liver imaging with 2 intravenous contrast agents (iodine and gadolinium) and to evaluate its effectiveness in an exploratory swine study using a photon-counting detector computed tomography (PCD-CT) system. MATERIALS AND METHODS A dual-contrast CT protocol was developed for PCD-CT to simultaneously acquire 2 phases of liver contrast enhancement, with the late arterial phase enhanced by 1 contrast agent (iodine-based) and the portal venous phase enhanced by the other (gadolinium-based). A gadolinium contrast bolus (gadobutrol: 64 mL, 8 mL/s) and an iodine contrast bolus (iohexol: 40 mL, 5 mL/s) were intravenously injected in the femoral vein of a healthy domestic swine, with the second injection initiated after 17 seconds from the beginning of the first injection; PCD-CT image acquisition was performed 12 seconds after the beginning of the iodine contrast injection. A convolutional neural network (CNN)-based denoising technique was applied to PCD-CT images to overcome the inherent noise magnification issue in iodine/gadolinium decomposition task. Iodine and gadolinium material maps were generated using a 3-material decomposition method in image space. A set of contrast samples (mixed iodine and gadolinium) was attached to the swine belly; quantitative accuracy of material decomposition in these inserts between measured and true concentrations was calculated using root mean square error. An abdominal radiologist qualitatively evaluated the delineation of arterial and venous vasculatures in the swine liver using iodine and gadolinium maps obtained using the dual-contrast PCD-CT protocol. RESULTS The iodine and gadolinium samples attached to the swine were quantified with root mean square error values of 0.75 mg/mL for iodine and 0.45 mg/mL for gadolinium from the contrast material maps derived from the denoised PCD-CT images. Hepatic arteries containing iodine and veins containing gadolinium in the swine liver could be clearly visualized. Compared with the original images, better distinctions between 2 liver phases were achieved using CNN denoising, with approximately 60% to 80% noise reduction in contrast material maps acquired with the denoised PCD-CT images compared with the original images. CONCLUSIONS Simultaneous biphasic liver imaging in a single multienergy PCD-CT acquisition using a dual-contrast (iodine and gadolinium) injection protocol and CNN denoising was demonstrated in a swine study, where the enhanced hepatic arteries (containing iodine) and the enhanced hepatic veins (containing gadolinium) could be clearly visualized and delineated in the swine liver.
Collapse
Affiliation(s)
- Liqiang Ren
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | |
Collapse
|
47
|
Montoya JC, Zhang C, Li Y, Li K, Chen GH. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Med Phys 2022; 49:901-916. [PMID: 34908175 PMCID: PMC9080958 DOI: 10.1002/mp.15414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A tomographic patient model is essential for radiation dose modulation in x-ray computed tomography (CT). Currently, two-view scout images (also known as topograms) are used to estimate patient models with relatively uniform attenuation coefficients. These patient models do not account for the detailed anatomical variations of human subjects, and thus, may limit the accuracy of intraview or organ-specific dose modulations in emerging CT technologies. PURPOSE The purpose of this work was to show that 3D tomographic patient models can be generated from two-view scout images using deep learning strategies, and the reconstructed 3D patient models indeed enable accurate prescriptions of fluence-field modulated or organ-specific dose delivery in the subsequent CT scans. METHODS CT images and the corresponding two-view scout images were retrospectively collected from 4214 individual CT exams. The collected data were curated for the training of a deep neural network architecture termed ScoutCT-NET to generate 3D tomographic attenuation models from two-view scout images. The trained network was validated using a cohort of 55 136 images from 212 individual patients. To evaluate the accuracy of the reconstructed 3D patient models, radiation delivery plans were generated using ScoutCT-NET 3D patient models and compared with plans prescribed based on true CT images (gold standard) for both fluence-field-modulated CT and organ-specific CT. Radiation dose distributions were estimated using Monte Carlo simulations and were quantitatively evaluated using the Gamma analysis method. Modulated dose profiles were compared against state-of-the-art tube current modulation schemes. Impacts of ScoutCT-NET patient model-based dose modulation schemes on universal-purpose CT acquisitions and organ-specific acquisitions were also compared in terms of overall image appearance, noise magnitude, and noise uniformity. RESULTS The results demonstrate that (1) The end-to-end trained ScoutCT-NET can be used to generate 3D patient attenuation models and demonstrate empirical generalizability. (2) The 3D patient models can be used to accurately estimate the spatial distribution of radiation dose delivered by standard helical CTs prior to the actual CT acquisition; compared to the gold-standard dose distribution, 95.0% of the voxels in the ScoutCT-NET based dose maps have acceptable gamma values for 5 mm distance-to-agreement and 10% dose difference. (3) The 3D patient models also enabled accurate prescription of fluence-field modulated CT to generate a more uniform noise distribution across the patient body compared to tube current-modulated CT. (4) ScoutCT-NET 3D patient models enabled accurate prescription of organ-specific CT to boost image quality for a given body region-of-interest under a given radiation dose constraint. CONCLUSION 3D tomographic attenuation models generated by ScoutCT-NET from two-view scout images can be used to prescribe fluence-field-modulated or organ-specific CT scans with high accuracy for the overall objective of radiation dose reduction or image quality improvement for a given imaging task.
Collapse
Affiliation(s)
- Juan C Montoya
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yinsheng Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Yao Y, Li L, Chen Z. Iterative dynamic dual-energy CT algorithm in reducing statistical noise in multi-energy CT imaging. Phys Med Biol 2021; 67. [PMID: 34937002 DOI: 10.1088/1361-6560/ac459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Multi-energy spectral CT has a broader range of applications with the recent development of photon-counting detectors. However, the photons counted in each energy bin decrease when the number of energy bins increases, which causes a higher statistical noise level of the CT image. In this work, we propose a novel iterative dynamic dual-energy CT algorithm to reduce the statistical noise. In the proposed algorithm, the multi-energy projections are estimated from the dynamic dual-energy CT data during the iterative process. The proposed algorithm is verified on sufficient numerical simulations and a laboratory two-energy-threshold PCD system. By applying the same reconstruction algorithm, the dynamic dual-energy CT's final reconstruction results have a much lower statistical noise level than the conventional multi-energy CT. Moreover, based on the analysis of the simulation results, we explain why the dynamic dual-energy CT has a lower statistical noise level than the conventional multi-energy CT. The reason is that: the statistical noise level of multi-energy projection estimated with the proposed algorithm is much lower than that of the conventional multi-energy CT, which leads to less statistical noise of the dynamic dual-energy CT imaging.
Collapse
Affiliation(s)
- Yidi Yao
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Hai Dian Qu, Beijing, 100084, CHINA
| | - Liang Li
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Hai Dian Qu, Beijing, 100084, CHINA
| | - Zhiqiang Chen
- Department of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Hai Dian Qu, Beijing, 100084, CHINA
| |
Collapse
|
49
|
Rajagopal JR, Farhadi F, Solomon J, Sahbaee P, Saboury B, Pritchard WF, Jones EC, Samei E. Comparison of Low Dose Performance of Photon-Counting and Energy Integrating CT. Acad Radiol 2021; 28:1754-1760. [PMID: 32855051 PMCID: PMC7902731 DOI: 10.1016/j.acra.2020.07.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to investigate the potential of photon-counting CT (PCCT) to improve quantitative image quality for low dose imaging compared to energy-integrating detector CT (EID CT). MATERIALS AND METHODS An investigational scanner (Siemens, Germany) with PCCT and EID CT subsystems was used to compare image quality performance at four dose levels: 1.7, 2, 4, 6 mGy CTDIvol, all at or below current dose values used for conventional abdominal CT. A CT quality control phantom with a homogeneous section for noise measurements and a section with cylindrical inserts of air (-910 HU), polystyrene (50 HU), acrylic (205 HU), and Teflon (1000 HU) was imaged and characterized in terms of noise, resolution, contrast-to-noise ratio (CNR), and detectability index. A second phantom with a 30 cm diameter was also imaged containing iodine solutions ranging from 0.125 to 8 mg I/mL. CNR of the iodine vials was computed as a function of CT dose and iodine concentration. RESULTS With resolution unaffected by dose in both PCCT and EID CT, PCCT images exhibited 22.1-24.0% improvement in noise across dose levels evaluated. This noise improvement translated into a 29-41% improvement in CNR and 20-36% improvement in detectability index. For iodine contrast, PCCT images had a higher CNR for all combinations of iodine contrast and dose evaluated. CONCLUSION For the conditions studied, PCCT exhibited superior image quality compared to EID CT. For iodine detection, PCCT offered a notable advantage with improved CNR at all doses and iodine concentration levels.
Collapse
Affiliation(s)
- Jayasai R Rajagopal
- Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, North Carolina; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 1C351, Bethesda, MD 20892.
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 1C351, Bethesda, MD 20892
| | - Justin Solomon
- Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 1C351, Bethesda, MD 20892
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 1C351, Bethesda, MD 20892
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
50
|
Rajendran K, Petersilka M, Henning A, Shanblatt E, Marsh J, Thorne J, Schmidt B, Flohr T, Fletcher J, McCollough C, Leng S. Full field-of-view, high-resolution, photon-counting detector CT: technical assessment and initial patient experience. Phys Med Biol 2021; 66:10.1088/1361-6560/ac155e. [PMID: 34271558 PMCID: PMC8551012 DOI: 10.1088/1361-6560/ac155e] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
We report a comprehensive evaluation of a full field-of-view (FOV) photon-counting detector (PCD) computed tomography (CT) system using phantoms, and qualitatively assess image quality in patient examples. A whole-body PCD-CT system with 50 cm FOV, 5.76 cm z-detector coverage and two acquisition modes (standard: 144 × 0.4 mm collimation and ultra-high resolution (UHR): 120 × 0.2 mm collimation) was used in this study. Phantoms were scanned to assess image uniformity, CT number accuracy, noise power spectrum, spatial resolution, material decomposition and virtual monoenergetic imaging (VMI) performance. Four patients were scanned on the PCD-CT system with matched or lower radiation dose than their prior clinical CT scans performed using energy-integrating detector (EID) CT, and the potential clinical impact of PCD-CT was qualitatively evaluated. Phantom results showed water CT numbers within ±5 HU, and image uniformity measured between peripheral and central regions-of-interests to be within ±5 HU. For the UHR mode using a dedicated sharp kernel, the cut-off spatial frequency was 40 line-pairs cm-1, which corresponds to a 125μm limiting in-plane spatial resolution. The full-width-at-half-maximum for the section sensitivity profile was 0.33 mm for the smallest slice thickness (0.2 mm) using the UHR mode. Material decomposition in a multi-energy CT phantom showed accurate material classification, with a root-mean-squared-error of 0.3 mg cc-1for iodine concentrations (2-15 mg cc-1) and 14.2 mg cc-1for hydroxyapatite concentrations (200 and 400 mg cc-1). The average percent error for CT numbers corresponding to the iodine concentrations in VMI (40-70 keV) was 2.75%. Patient PCD-CT images demonstrated better delineation of anatomy for chest and temporal bone exams performed with the UHR mode, which allowed the use of very sharp kernels not possible with EID-CT. VMI and virtual non-contrast images generated from a patient head CT angiography exam using the standard acquisition mode demonstrated the multi-energy capability of the PCD-CT system.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Marsh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jamison Thorne
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Joel Fletcher
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|