1
|
Li H, Hao P, Zhang J, Gordon K, Linn AG, Chen X, Zheng H, Zhou X, Mitchell JF, Dessau DS. Electronic structure and correlations in planar trilayer nickelate Pr 4Ni 3O 8. SCIENCE ADVANCES 2023; 9:eade4418. [PMID: 36638179 PMCID: PMC9839319 DOI: 10.1126/sciadv.ade4418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The discovery of superconductivity in planar nickelates raises the question of how the electronic structure and correlations of Ni1+ compounds compare to those of the Cu2+ cuprate superconductors. Here, we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate Pr4Ni3O8, revealing a Fermi surface resembling that of the hole-doped cuprates but with critical differences. Specifically, the main portions of the Fermi surface are extremely similar to that of the bilayer cuprates, with an additional piece that can accommodate additional hole doping. We find that the electronic correlations are about twice as strong in the nickelates and are almost k-independent, indicating that they originate from a local effect, likely the Mott interaction, whereas cuprate interactions are somewhat less local. Nevertheless, the nickelates still demonstrate the strange-metal behavior in the electron scattering rates. Understanding the similarities and differences between these two families of strongly correlated superconductors is an important challenge.
Collapse
Affiliation(s)
- Haoxiang Li
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
| | - Peipei Hao
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Junjie Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Institute of Crystal Materials and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Kyle Gordon
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - A. Garrison Linn
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xinglong Chen
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hong Zheng
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaoqing Zhou
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - J. F. Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - D. S. Dessau
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Center for Experiments on Quantum Materials, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Talantsev EF. Quantifying Nonadiabaticity in Major Families of Superconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:71. [PMID: 36615981 PMCID: PMC9824585 DOI: 10.3390/nano13010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The classical Bardeen−Cooper−Schrieffer and Eliashberg theories of the electron−phonon-mediated superconductivity are based on the Migdal theorem, which is an assumption that the energy of charge carriers, kBTF, significantly exceeds the phononic energy, ℏωD, of the crystalline lattice. This assumption, which is also known as adiabatic approximation, implies that the superconductor exhibits fast charge carriers and slow phonons. This picture is valid for pure metals and metallic alloys because these superconductors exhibit ℏωDkBTF<0.01. However, for n-type-doped semiconducting SrTiO3, this adiabatic approximation is not valid, because this material exhibits ℏωDkBTF≅50. There is a growing number of newly discovered superconductors which are also beyond the adiabatic approximation. Here, leaving aside pure theoretical aspects of nonadiabatic superconductors, we classified major classes of superconductors (including, elements, A-15 and Heusler alloys, Laves phases, intermetallics, noncentrosymmetric compounds, cuprates, pnictides, highly-compressed hydrides, and two-dimensional superconductors) by the strength of nonadiabaticity (which we defined by the ratio of the Debye temperature to the Fermi temperature, TθTF). We found that the majority of analyzed superconductors fall into the 0.025≤TθTF≤0.4 band. Based on the analysis, we proposed the classification scheme for the strength of nonadiabatic effects in superconductors and discussed how this classification is linked with other known empirical taxonomies in superconductivity.
Collapse
Affiliation(s)
- Evgueni F. Talantsev
- M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18 S. Kovalevskoy Str., 620108 Ekaterinburg, Russia; ; Tel.: +7-912-676-0374
- NANOTECH Centre, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| |
Collapse
|
3
|
Harrison N, Chan MK. Magic Gap Ratio for Optimally Robust Fermionic Condensation and Its Implications for High-T_{c} Superconductivity. PHYSICAL REVIEW LETTERS 2022; 129:017001. [PMID: 35841553 DOI: 10.1103/physrevlett.129.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Bardeen-Schrieffer-Cooper (BCS) and Bose-Einstein condensation (BEC) occur at opposite limits of a continuum of pairing interaction strength between fermions. A crossover between these limits is readily observed in a cold atomic Fermi gas. Whether it occurs in other systems such as the high temperature superconducting cuprates has remained an open question. We uncover here unambiguous evidence for a BCS-BEC crossover in the cuprates by identifying a universal magic gap ratio 2Δ/k_{B}T_{c}≈6.5 (where Δ is the pairing gap and T_{c} is the transition temperature) at which paired fermion condensates become optimally robust. At this gap ratio, corresponding to the unitary point in a cold atomic Fermi gas, the measured condensate fraction N_{0} and the height of the jump δγ(T_{c}) in the coefficient γ of the fermionic specific heat at T_{c} are strongly peaked. In the cuprates, δγ(T_{c}) is peaked at this gap ratio when Δ corresponds to the antinodal spectroscopic gap, thus reinforcing its interpretation as the pairing gap. We find the peak in δγ(T_{c}) also to coincide with a normal state maximum in γ, which is indicative of a pairing fluctuation pseudogap above T_{c}.
Collapse
Affiliation(s)
- N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M K Chan
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
Abstract
Superconductivity has been discovered recently in infinite-layer nickel-based 112 thin films R1−xAxNiO2 (R = La, Nd, Pr and A = Sr, Ca). They are isostructural to the infinite-layer cuprate (Ca,Sr)CuO2 and are supposed to have a formal Ni 3d9 valence, thus providing a new platform to study the unconventional pairing mechanism of high-temperature superconductors. This important discovery immediately triggers a huge amount of innovative scientific curiosity in the field. In this paper, we try to give an overview of the recent research progress on the newly found superconducting nickelate systems, both from experimental and theoretical aspects. We mainly focus on the electronic structures, magnetic excitations, phase diagrams and superconducting gaps, and finally make some open discussions for possible pairing symmetries in Ni-based 112 systems. The infinite-layer nickel-based 112 thin films R1−xAxNiO2 can host superconductivity up to 15 K R1−xAxNiO2 is a multiband system, in which the short-range antiferromagnetic fluctuations can be detected R1−xAxNiO2 has an unconventional superconducting pairing sate with a robust d-wave gap and a full gap without unified understanding The nickelate system provides a new platform for researching unconventional superconductivity
Collapse
|
5
|
Unconventional quantum vortex matter state hosts quantum oscillations in the underdoped high-temperature cuprate superconductors. Proc Natl Acad Sci U S A 2021; 118:2021216118. [PMID: 33563764 DOI: 10.1073/pnas.2021216118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting order parameter by modest magnetic fields. Here, we use low applied measurement currents and millikelvin temperatures on ultrapure single crystals of underdoped [Formula: see text] to unearth an unconventional quantum vortex matter ground state characterized by vanishing electrical resistivity, magnetic hysteresis, and nonohmic electrical transport characteristics beyond the highest laboratory-accessible static fields. A model of the pseudogap ground state is now required to explain quantum oscillations that are hosted by the bulk quantum vortex matter state without experiencing sizable additional damping in the presence of a large maximum superconducting gap; possibilities include a pair density wave.
Collapse
|
6
|
Kim HH, Lefrançois E, Kummer K, Fumagalli R, Brookes NB, Betto D, Nakata S, Tortora M, Porras J, Loew T, Barber ME, Braicovich L, Mackenzie AP, Hicks CW, Keimer B, Minola M, Le Tacon M. Charge Density Waves in YBa_{2}Cu_{3}O_{6.67} Probed by Resonant X-Ray Scattering under Uniaxial Compression. PHYSICAL REVIEW LETTERS 2021; 126:037002. [PMID: 33543973 DOI: 10.1103/physrevlett.126.037002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We report a comprehensive Cu L_{3}-edge resonant x-ray scattering (RXS) study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa_{2}Cu_{3}O_{6.67} under uniaxial compression up to 1% along the two inequivalent Cu─O─Cu bond directions (a and b) in the CuO_{2} planes. We confirm the strong in-plane anisotropy of the 2D charge correlations and observe their symmetric response to pressure: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic RXS measurements show that the 3D charge order resides exclusively in the CuO_{2} planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.
Collapse
Affiliation(s)
- H-H Kim
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - E Lefrançois
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - K Kummer
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
| | - R Fumagalli
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - N B Brookes
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
| | - D Betto
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
| | - S Nakata
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Tortora
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - J Porras
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - T Loew
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M E Barber
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany
| | - L Braicovich
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - A P Mackenzie
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - C W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden, Germany
| | - B Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Minola
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Le Tacon
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Abstract
The microscopic mechanism of charge instabilities and the formation of inhomogeneous states in systems with strong electron correlations is investigated. We demonstrate that within a strong coupling expansion the single-band Hubbard model shows an instability towards phase separation and extend the approach also for an analysis of phase separation in the Hubbard-Kanamori hamiltonian as a prototypical multiband model. We study the pairing fluctuations on top of an inhomogeneous stripe state where superconducting correlations in the extended s-wave and d-wave channels correspond to (anti)bound states in the two-particle spectra. Whereas extended s-wave fluctuations are relevant on the scale of the local interaction parameter U, we find that d-wave fluctuations are pronounced in the energy range of the active subband which crosses the Fermi level. As a result, low energy spin and charge fluctuations can transfer the d-wave correlations from the bound states to the low energy quasiparticle bands. Our investigations therefore help to understand the coexistence of stripe correlations and d-wave superconductivity in cuprates.
Collapse
|
8
|
Frano A, Blanco-Canosa S, Keimer B, Birgeneau RJ. Charge ordering in superconducting copper oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:374005. [PMID: 31829986 DOI: 10.1088/1361-648x/ab6140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtained by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowley's legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
Collapse
Affiliation(s)
- Alex Frano
- Department of Physics, University of California, San Diego, CA 92093, United States of America
| | - Santiago Blanco-Canosa
- Donostia International Physics Center, DIPC, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Robert J Birgeneau
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, United States of America
| |
Collapse
|
9
|
Robinson NJ, Johnson PD, Rice TM, Tsvelik AM. Anomalies in the pseudogap phase of the cuprates: competing ground states and the role of umklapp scattering. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:126501. [PMID: 31300626 DOI: 10.1088/1361-6633/ab31ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past two decades, advances in computational algorithms have revealed a curious property of the two-dimensional Hubbard model (and related theories) with hole doping: the presence of close-in-energy competing ground states that display very different physical properties. On the one hand, there is a complicated state exhibiting intertwined spin, charge, and pair density wave orders. We call this 'type A'. On the other hand, there is a uniform d-wave superconducting state that we denote as 'type B'. We advocate, with the support of both microscopic theoretical calculations and experimental data, dividing the high-temperature cuprate superconductors into two corresponding families, whose properties reflect either the type A or type B ground states at low temperatures. We review the anomalous properties of the pseudogap phase that led us to this picture, and present a modern perspective on the role that umklapp scattering plays in these phenomena in the type B materials. This reflects a consistent framework that has emerged over the last decade, in which Mott correlations at weak coupling drive the formation of the pseudogap. We discuss this development, recent theory and experiments, and open issues.
Collapse
Affiliation(s)
- Neil J Robinson
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1098 XH Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Putzke C, Ayres J, Buhot J, Licciardello S, Hussey NE, Friedemann S, Carrington A. Charge Order and Superconductivity in Underdoped YBa_{2}Cu_{3}O_{7-δ} under Pressure. PHYSICAL REVIEW LETTERS 2018; 120:117002. [PMID: 29601770 DOI: 10.1103/physrevlett.120.117002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 06/08/2023]
Abstract
In underdoped cuprates, an incommensurate charge density wave (CDW) order is known to coexist with superconductivity. A dip in T_{c} at the hole doping level where the CDW is strongest (n_{p}≃0.12) suggests that CDW order may suppress superconductivity. We investigate the interplay of charge order with superconductivity in underdoped YBa_{2}Cu_{3}O_{7-δ} by measuring the temperature dependence of the Hall coefficient R_{H}(T) at high magnetic field and at high hydrostatic pressure. We find that, although pressure increases T_{c} by up to 10 K at 2.6 GPa, it has very little effect on R_{H}(T). This suggests that pressure, at these levels, only weakly affects the CDW and that the increase in T_{c} with pressure cannot be attributed to a suppression of the CDW. We argue, therefore, that the dip in T_{c} at n_{p}≃0.12 at ambient pressure is probably not caused by the CDW formation.
Collapse
Affiliation(s)
- Carsten Putzke
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Jake Ayres
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Jonathan Buhot
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen 6525 ED, Netherlands
| | - Salvatore Licciardello
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen 6525 ED, Netherlands
| | - Nigel E Hussey
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen 6525 ED, Netherlands
| | - Sven Friedemann
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Antony Carrington
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
11
|
High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin-charge locking. Proc Natl Acad Sci U S A 2017; 114:12430-12435. [PMID: 29114049 DOI: 10.1073/pnas.1708549114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.
Collapse
|
12
|
Basov DN, Averitt RD, Hsieh D. Towards properties on demand in quantum materials. NATURE MATERIALS 2017; 16:1077-1088. [PMID: 29066824 DOI: 10.1038/nmat5017] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/22/2017] [Indexed: 05/21/2023]
Abstract
The past decade has witnessed an explosion in the field of quantum materials, headlined by the predictions and discoveries of novel Landau-symmetry-broken phases in correlated electron systems, topological phases in systems with strong spin-orbit coupling, and ultra-manipulable materials platforms based on two-dimensional van der Waals crystals. Discovering pathways to experimentally realize quantum phases of matter and exert control over their properties is a central goal of modern condensed-matter physics, which holds promise for a new generation of electronic/photonic devices with currently inaccessible and likely unimaginable functionalities. In this Review, we describe emerging strategies for selectively perturbing microscopic interaction parameters, which can be used to transform materials into a desired quantum state. Particular emphasis will be placed on recent successes to tailor electronic interaction parameters through the application of intense fields, impulsive electromagnetic stimulation, and nanostructuring or interface engineering. Together these approaches outline a potential roadmap to an era of quantum phenomena on demand.
Collapse
Affiliation(s)
- D N Basov
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - R D Averitt
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - D Hsieh
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
13
|
Chang J, Blackburn E, Ivashko O, Holmes AT, Christensen NB, Hücker M, Liang R, Bonn DA, Hardy WN, Rütt U, Zimmermann MV, Forgan EM, Hayden SM. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x. Nat Commun 2016; 7:11494. [PMID: 27146255 PMCID: PMC4858734 DOI: 10.1038/ncomms11494] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.
Collapse
Affiliation(s)
- J Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - E Blackburn
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - O Ivashko
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - A T Holmes
- European Spallation Source ERIC, Box 176, Lund SE-221 00, Sweden
| | - N B Christensen
- Department of Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - M Hücker
- Condensed Matter Physics &Materials Science Department, Brookhaven National Lab, Upton, New York 11973, USA
| | - Ruixing Liang
- Department of Physics &Astronomy, University of British Columbia, Vancouver V6T-1Z1, Canada.,Canadian Institute for Advanced Research, Toronto M5G-1Z8, Canada
| | - D A Bonn
- Department of Physics &Astronomy, University of British Columbia, Vancouver V6T-1Z1, Canada.,Canadian Institute for Advanced Research, Toronto M5G-1Z8, Canada
| | - W N Hardy
- Department of Physics &Astronomy, University of British Columbia, Vancouver V6T-1Z1, Canada.,Canadian Institute for Advanced Research, Toronto M5G-1Z8, Canada
| | - U Rütt
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - M V Zimmermann
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - E M Forgan
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - S M Hayden
- H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
| |
Collapse
|
14
|
Putzke C, Malone L, Badoux S, Vignolle B, Vignolles D, Tabis W, Walmsley P, Bird M, Hussey NE, Proust C, Carrington A. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor. SCIENCE ADVANCES 2016; 2:e1501657. [PMID: 27034989 PMCID: PMC4803492 DOI: 10.1126/sciadv.1501657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.
Collapse
Affiliation(s)
- Carsten Putzke
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Liam Malone
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Sven Badoux
- Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS, 31400 Toulouse, France
| | - Baptiste Vignolle
- Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS, 31400 Toulouse, France
| | - David Vignolles
- Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS, 31400 Toulouse, France
| | - Wojciech Tabis
- Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS, 31400 Toulouse, France
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, aleja Adama Mickiewicza 30, 30-059 Krakow, Poland
| | - Philip Walmsley
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Matthew Bird
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Nigel E. Hussey
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525 ED Nijmegen, Netherlands
| | - Cyril Proust
- Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS, 31400 Toulouse, France
| | - Antony Carrington
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| |
Collapse
|
15
|
Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H, Bonn DA, Liang R, Hardy WN, Islam Z, Mehta A, Song S, Sikorski M, Stefanescu D, Feng Y, Kivelson SA, Devereaux TP, Shen ZX, Kao CC, Lee WS, Zhu D, Lee JS. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 2015; 350:949-52. [PMID: 26541608 DOI: 10.1126/science.aac6257] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/30/2015] [Indexed: 11/02/2022]
Abstract
Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured with x-ray scattering at zero and low fields. We combined a pulsed magnet with an x-ray free-electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields of up to 28 tesla. While the zero-field CDW order, which develops at temperatures below ~150 kelvin, is essentially two dimensional, at lower temperature and beyond 15 tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW appears around the zero-field superconducting transition temperature; in contrast, the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.
Collapse
Affiliation(s)
- S Gerber
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - H Jang
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - H Nojiri
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
| | - S Matsuzawa
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
| | - H Yasumura
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai, 980-8577, Japan
| | - D A Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - R Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Z Islam
- The Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - A Mehta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Sikorski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - D Stefanescu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Y Feng
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S A Kivelson
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - T P Devereaux
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - Z-X Shen
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA. Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - C-C Kao
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W-S Lee
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
| | - D Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - J-S Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
16
|
Knolle J, Cooper NR. Quantum Oscillations without a Fermi Surface and the Anomalous de Haas-van Alphen Effect. PHYSICAL REVIEW LETTERS 2015; 115:146401. [PMID: 26551816 DOI: 10.1103/physrevlett.115.146401] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 06/05/2023]
Abstract
The de Haas-van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed, the effect forms the basis of a well-established experimental procedure for accurately measuring FS topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical situation, there can be quantum oscillations even for band insulators of certain types. We provide simple analytic formulas describing the temperature dependence of the quantum oscillations in this setting, showing strong deviations from LK theory. We draw connections to recent experiments and discuss how our results can be used in future experiments to accurately determine, e.g., hybridization gaps in heavy-fermion systems.
Collapse
Affiliation(s)
- Johannes Knolle
- T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nigel R Cooper
- T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
17
|
Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors. Proc Natl Acad Sci U S A 2015. [PMID: 26199413 DOI: 10.1073/pnas.1504164112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.
Collapse
|
18
|
Tan BS, Hsu YT, Zeng B, Hatnean MC, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes MD, Murphy TP, Park JH, Balicas L, Lonzarich GG, Balakrishnan G, Sebastian SE. Heavy fermions. Unconventional Fermi surface in an insulating state. Science 2015; 349:287-90. [PMID: 26138105 DOI: 10.1126/science.aaa7974] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/24/2015] [Indexed: 11/03/2022]
Abstract
Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. The quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.
Collapse
Affiliation(s)
- B S Tan
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - Y-T Hsu
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - B Zeng
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | | | - N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87504, USA
| | - Z Zhu
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87504, USA
| | - M Hartstein
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - M Kiourlappou
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - A Srivastava
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - M D Johannes
- Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, USA
| | - T P Murphy
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - J-H Park
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - L Balicas
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - G G Lonzarich
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - G Balakrishnan
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Suchitra E Sebastian
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK.
| |
Collapse
|
19
|
Harrison N, Ramshaw BJ, Shekhter A. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates. Sci Rep 2015; 5:10914. [PMID: 26039222 PMCID: PMC4454202 DOI: 10.1038/srep10914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y.
Collapse
Affiliation(s)
- N. Harrison
- Mail Stop E536, Los Alamos National Labs., Los Alamos, NM 87545
| | - B. J. Ramshaw
- Mail Stop E536, Los Alamos National Labs., Los Alamos, NM 87545
| | - A. Shekhter
- Mail Stop E536, Los Alamos National Labs., Los Alamos, NM 87545
| |
Collapse
|
20
|
Ramshaw BJ, Sebastian SE, McDonald RD, Day J, Tan BS, Zhu Z, Betts JB, Liang R, Bonn DA, Hardy WN, Harrison N. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor. Science 2015; 348:317-20. [DOI: 10.1126/science.aaa4990] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 11/02/2022]
|
21
|
Hsiao J, Martyna GJ, Newns DM. Phase diagram of cuprate high-temperature superconductors described by a field theory based on anharmonic oxygen degrees of freedom. PHYSICAL REVIEW LETTERS 2015; 114:107001. [PMID: 25815959 DOI: 10.1103/physrevlett.114.107001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 06/04/2023]
Abstract
In high temperature superconductors, although some phenomena such as the Mott transition (MT) at low doping are clearly driven by electron correlations, recent experimental data imply that anharmonic oxygen degrees of freedom-characteristic of perovskite materials-are playing a significant role. A key test of the role of anharmonic oxygen is to reproduce the complex cuprate phase diagram from a simple model. Here, we show that a field theory based on nonlinear coupling to anharmonic oxygens, parametrized from ab initio calculations, quantitatively reproduces the cuprate phase diagram for dopings above the MT. Pairing is mediated by renormalized oxygen vibrations transmuted into excitations of the pseudogap. The observed strong dependence of gap to transition temperature ratio on Tc also emerges from this field theory. This work suggests that including vibrational degrees of freedom is key to developing a complete understanding of the cuprates.
Collapse
Affiliation(s)
- Jenhao Hsiao
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Glenn J Martyna
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Dennis M Newns
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
22
|
Doiron-Leyraud N, Badoux S, René de Cotret S, Lepault S, LeBoeuf D, Laliberté F, Hassinger E, Ramshaw BJ, Bonn DA, Hardy WN, Liang R, Park JH, Vignolles D, Vignolle B, Taillefer L, Proust C. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy. Nat Commun 2015; 6:6034. [PMID: 25616011 PMCID: PMC4316745 DOI: 10.1038/ncomms7034] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/04/2014] [Indexed: 11/09/2022] Open
Abstract
In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.
Collapse
Affiliation(s)
- N Doiron-Leyraud
- Département de physique &RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - S Badoux
- Laboratoire National des Champs Magnétiques Intenses (CNRS, INSA, UJF, UPS), 31400 Toulouse, France
| | - S René de Cotret
- Département de physique &RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - S Lepault
- Laboratoire National des Champs Magnétiques Intenses (CNRS, INSA, UJF, UPS), 31400 Toulouse, France
| | - D LeBoeuf
- Laboratoire National des Champs Magnétiques Intenses (CNRS, INSA, UJF, UPS), 31400 Toulouse, France
| | - F Laliberté
- Département de physique &RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - E Hassinger
- Département de physique &RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - B J Ramshaw
- Department of Physics &Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - D A Bonn
- 1] Department of Physics &Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 [2] Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| | - W N Hardy
- 1] Department of Physics &Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 [2] Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| | - R Liang
- 1] Department of Physics &Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 [2] Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| | - J-H Park
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - D Vignolles
- Laboratoire National des Champs Magnétiques Intenses (CNRS, INSA, UJF, UPS), 31400 Toulouse, France
| | - B Vignolle
- Laboratoire National des Champs Magnétiques Intenses (CNRS, INSA, UJF, UPS), 31400 Toulouse, France
| | - L Taillefer
- 1] Département de physique &RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1 [2] Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| | - C Proust
- 1] Laboratoire National des Champs Magnétiques Intenses (CNRS, INSA, UJF, UPS), 31400 Toulouse, France [2] Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| |
Collapse
|
23
|
Allais A, Chowdhury D, Sachdev S. Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates. Nat Commun 2014; 5:5771. [PMID: 25493606 DOI: 10.1038/ncomms6771] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/06/2014] [Indexed: 11/09/2022] Open
Abstract
The nature of the pseudogap regime of cuprate superconductors at low hole density remains unresolved. It has a number of seemingly distinct experimental signatures: a suppression of the paramagnetic spin susceptibility at high temperatures, low-energy electronic excitations that extend over arcs in the Brillouin zone, X-ray detection of charge-density wave order at intermediate temperatures and quantum oscillations at high magnetic fields and low temperatures. Here we show that a model of competing charge-density wave and superconducting orders provides a unified description of the intermediate and low-temperature regimes. We treat quantum oscillations at high field beyond semiclassical approximations, and find clear and robust signatures of an electron pocket compatible with existing observations; we also predict oscillations due to additional hole pockets. In the zero-field and intermediate temperature regime, we compute the electronic spectrum in the presence of thermally fluctuating charge-density and superconducting orders. Our results are compatible with experimental trends.
Collapse
Affiliation(s)
- Andrea Allais
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Debanjan Chowdhury
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Subir Sachdev
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
| |
Collapse
|
24
|
Sebastian SE, Harrison N, Balakirev FF, Altarawneh MM, Goddard PA, Liang R, Bonn DA, Hardy WN, Lonzarich GG. Normal-state nodal electronic structure in underdoped high-Tc copper oxides. Nature 2014; 511:61-4. [PMID: 24930767 DOI: 10.1038/nature13326] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/02/2014] [Indexed: 11/09/2022]
Abstract
An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.
Collapse
Affiliation(s)
- Suchitra E Sebastian
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA
| | - F F Balakirev
- National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA
| | - M M Altarawneh
- 1] National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA [2] Department of Physics, Mu'tah University, Mu'tah, Karak 61710, Jordan
| | - P A Goddard
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Ruixing Liang
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada
| | - D A Bonn
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada
| | - W N Hardy
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada
| | - G G Lonzarich
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| |
Collapse
|
25
|
He Y, Yin Y, Zech M, Soumyanarayanan A, Yee MM, Williams T, Boyer MC, Chatterjee K, Wise WD, Zeljkovic I, Kondo T, Takeuchi T, Ikuta H, Mistark P, Markiewicz RS, Bansil A, Sachdev S, Hudson EW, Hoffman JE. Fermi Surface and Pseudogap Evolution in a Cuprate Superconductor. Science 2014; 344:608-11. [DOI: 10.1126/science.1248221] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yang He
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Yi Yin
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - M. Zech
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | - Michael M. Yee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Tess Williams
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - M. C. Boyer
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Kamalesh Chatterjee
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - W. D. Wise
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - I. Zeljkovic
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Takeshi Kondo
- Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
| | - T. Takeuchi
- Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
| | - H. Ikuta
- Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603, Japan
| | - Peter Mistark
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - Arun Bansil
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - E. W. Hudson
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - J. E. Hoffman
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity. Proc Natl Acad Sci U S A 2013; 110:17623-30. [PMID: 24114268 DOI: 10.1073/pnas.1316512110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.
Collapse
|
27
|
Sachdev S, La Placa R. Bond order in two-dimensional metals with antiferromagnetic exchange interactions. PHYSICAL REVIEW LETTERS 2013; 111:027202. [PMID: 23889434 DOI: 10.1103/physrevlett.111.027202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 06/02/2023]
Abstract
We present an unrestricted Hartree-Fock computation of charge-ordering instabilities of two-dimensional metals with antiferromagnetic exchange interactions, allowing for arbitrary ordering wave vectors and internal wave functions of the particle-hole pair condensate. We find that the ordering has a dominant d symmetry of rotations about lattice points for a range of ordering wave vectors, including those observed in recent experiments at low temperatures on YBa2Cu3O(y). This d symmetry implies the charge ordering is primarily on the bonds of the Cu lattice, and we propose incommensurate bond order parameters for the underdoped cuprates. The field theory for the onset of Néel order in a metal has an emergent pseudospin symmetry which "rotates" d-wave Cooper pairs to particle-hole pairs [M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075128 (2010)]; our results show that this symmetry has consequences even when the spin correlations are short ranged and incommensurate.
Collapse
Affiliation(s)
- Subir Sachdev
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
28
|
Blanco-Canosa S, Frano A, Loew T, Lu Y, Porras J, Ghiringhelli G, Minola M, Mazzoli C, Braicovich L, Schierle E, Weschke E, Le Tacon M, Keimer B. Momentum-dependent charge correlations in YBa2Cu3O6+δ superconductors probed by resonant X-ray scattering: evidence for three competing phases. PHYSICAL REVIEW LETTERS 2013; 110:187001. [PMID: 23683237 DOI: 10.1103/physrevlett.110.187001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 06/02/2023]
Abstract
We use resonant x-ray scattering to determine the momentum-dependent charge correlations in YBa(2)Cu(3) O(6.55) samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments are carried out on a YBa(2)Cu(3)O(6.6) crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length are found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa(2)Cu(3)O(6+δ).
Collapse
Affiliation(s)
- S Blanco-Canosa
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Blackburn E, Chang J, Hücker M, Holmes AT, Christensen NB, Liang R, Bonn DA, Hardy WN, Rütt U, Gutowski O, von Zimmermann M, Forgan EM, Hayden SM. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. PHYSICAL REVIEW LETTERS 2013; 110:137004. [PMID: 23581362 DOI: 10.1103/physrevlett.110.137004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Indexed: 06/02/2023]
Abstract
X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is q(CDW)=(0,0.328(2),0.5), with the in-plane component parallel to the b axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wave vector along the a axis. We discuss the relationship between spin and charge correlations in YBa2Cu3O(y) and recent high-field quantum oscillation, NMR, and ultrasound experiments.
Collapse
Affiliation(s)
- E Blackburn
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Achkar AJ, Sutarto R, Mao X, He F, Frano A, Blanco-Canosa S, Le Tacon M, Ghiringhelli G, Braicovich L, Minola M, Sala MM, Mazzoli C, Liang R, Bonn DA, Hardy WN, Keimer B, Sawatzky GA, Hawthorn DG. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O(6+δ) superconductors identified by resonant elastic x-ray scattering. PHYSICAL REVIEW LETTERS 2012; 109:167001. [PMID: 23215115 DOI: 10.1103/physrevlett.109.167001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.
Collapse
Affiliation(s)
- A J Achkar
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|