1
|
Gautier R, Genois É, Blais A. Optimal Control in Large Open Quantum Systems: The Case of Transmon Readout and Reset. PHYSICAL REVIEW LETTERS 2025; 134:070802. [PMID: 40053995 DOI: 10.1103/physrevlett.134.070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
We present a framework that combines the adjoint-state method together with reverse-time backpropagation to solve prohibitively large open-system quantum control problems. Our approach enables the optimization of arbitrary cost functions with fully general controls applied on large open quantum systems described by a Lindblad master equation. It is scalable, computationally efficient, and has a low-memory footprint. We apply this framework to optimize two inherently dissipative operations in superconducting qubits which lag behind in terms of fidelity and duration compared to other unitary operations: the dispersive readout and all-microwave reset of a transmon qubit. Our results show that while standard pulses for dispersive readout are nearly optimal, adding a transmon drive during the protocol can yield 2× improvements in fidelity and duration. We further demonstrate a 2× improvement in reset fidelity and duration through pulse shaping, indicating significant potential for enhancement in reset protocols. Our approach can readily be applied to optimize quantum controls in a vast range of applications such as reservoir engineering, autonomous quantum error correction, and leakage-reduction units.
Collapse
Affiliation(s)
- Ronan Gautier
- Université de Sherbrooke, Institut Quantique and Département de Physique, Sherbrooke, Quebec, Canada
- Laboratoire de Physique de l'École Normale Supérieure, Inria, ENS, Mines ParisTech, Université PSL, Sorbonne Université, Paris, France
- Alice & Bob, Paris, France
| | - Élie Genois
- Université de Sherbrooke, Institut Quantique and Département de Physique, Sherbrooke, Quebec, Canada
| | - Alexandre Blais
- Université de Sherbrooke, Institut Quantique and Département de Physique, Sherbrooke, Quebec, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Liu Y, Mulvihill E, Geva E. Combining the generalized quantum master equation approach with quasiclassical mapping Hamiltonian methods to simulate the dynamics of electronic coherences. J Chem Phys 2024; 161:164101. [PMID: 39435829 DOI: 10.1063/5.0232462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
The generalized quantum master equation (GQME) approach provides a powerful general-purpose framework for simulating the inherently quantum mechanical dynamics of a subset of electronic reduced density matrix elements of interest in complex molecular systems. Previous studies have found that combining the GQME approach with quasiclassical mapping Hamiltonian (QC/MH) methods can dramatically improve the accuracy of electronic populations obtained via those methods. In this paper, we perform a complimentary study of the advantages offered by the GQME approach for simulating the dynamics of electronic coherences, which play a central role in optical spectroscopy, quantum information science, and quantum technology. To this end, we focus on cases where the electronic coherences predicted for the spin-boson benchmark model by direct application of various QC/MH methods are inaccurate. We find that similar to the case of electronic populations, combining the QC/MH methods with the GQME approach can dramatically improve the accuracy of the electronic coherences obtained via those methods. We also provide a comprehensive analysis of how the performance of GQMEs depends on the choice of projection operator and electronic basis and show that the accuracy and feasibility of the GQME approach can benefit from casting the GQME in terms of the eigen-basis of the observable of interest.
Collapse
Affiliation(s)
- Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Ortega-Taberner C, O'Neill E, Butler E, Fux GE, Eastham PR. Unifying methods for optimal control in non-Markovian quantum systems via process tensors. J Chem Phys 2024; 161:124119. [PMID: 39344885 DOI: 10.1063/5.0226031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The large dimensionality of environments is the limiting factor in applying optimal control to open quantum systems beyond the Markovian approximation. Various methods exist to simulate non-Markovian systems, which effectively reduce the environment to a number of active degrees of freedom. Here, we show that several of these methods can be expressed in terms of a process tensor in the form of a matrix-product-operator, which serves as a unifying framework to show how they can be used in optimal control and to compare their performance. The matrix-product-operator form provides a general scheme for computing gradients using back propagation and allows the efficiency of the different methods to be compared via the bond dimensions of their respective process tensors.
Collapse
Affiliation(s)
- Carlos Ortega-Taberner
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Eoin O'Neill
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Eoin Butler
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Gerald E Fux
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - P R Eastham
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
4
|
Chen X, Franco I. Bexcitonics: Quasiparticle approach to open quantum dynamics. J Chem Phys 2024; 160:204116. [PMID: 38814013 DOI: 10.1063/5.0198567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
We develop a quasiparticle approach to capture the dynamics of open quantum systems coupled to bosonic thermal baths of arbitrary complexity based on the Hierarchical Equations of Motion (HEOM). This is done by generalizing the HEOM dynamics and mapping it into that of the system in interaction with a few bosonic fictitious quasiparticles that we call bexcitons. Bexcitons arise from a decomposition of the bath correlation function into discrete features. Specifically, bexciton creation and annihilation couple the auxiliary density matrices in the HEOM. The approach provides a systematic strategy to construct exact quantum master equations that include the system-bath coupling to all orders even for non-Markovian environments. Specifically, by introducing different metrics and representations for the bexcitons it is possible to straightforwardly generate different variants of the HEOM, demonstrating that all these variants share a common underlying quasiparticle picture. Bexcitonic properties, while unphysical, offer a coarse-grained view of the correlated system-bath dynamics and its numerical convergence. For instance, we use it to analyze the instability of the HEOM when the bath is composed of underdamped oscillators and show that it leads to the creation of highly excited bexcitons. The bexcitonic picture can also be used to develop more efficient approaches to propagate the HEOM. As an example, we use the particle-like nature of the bexcitons to introduce mode-combination of bexcitons in both number and coordinate representation that uses the multi-configuration time-dependent Hartree to efficiently propagate the HEOM dynamics.
Collapse
Affiliation(s)
- Xinxian Chen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
5
|
Butler EP, Fux GE, Ortega-Taberner C, Lovett BW, Keeling J, Eastham PR. Optimizing Performance of Quantum Operations with Non-Markovian Decoherence: The Tortoise or the Hare? PHYSICAL REVIEW LETTERS 2024; 132:060401. [PMID: 38394576 DOI: 10.1103/physrevlett.132.060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
The interaction between a quantum system and its environment limits our ability to control it and perform quantum operations on it. We present an efficient method to find optimal controls for quantum systems coupled to non-Markovian environments, by using the process tensor to compute the gradient of an objective function. We consider state transfer for a driven two-level system coupled to a bosonic environment, and characterize performance in terms of speed and fidelity. This allows us to determine the best achievable fidelity as a function of process duration. We show there can be a trade-off between speed and fidelity, and that slower processes can have higher fidelity by exploiting non-Markovian effects.
Collapse
Affiliation(s)
- Eoin P Butler
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Gerald E Fux
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
- Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Carlos Ortega-Taberner
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Brendon W Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Paul R Eastham
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
6
|
Morzhin OV, Pechen AN. Control of the von Neumann Entropy for an Open Two-Qubit System Using Coherent and Incoherent Drives. ENTROPY (BASEL, SWITZERLAND) 2023; 26:36. [PMID: 38248162 PMCID: PMC10814796 DOI: 10.3390/e26010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
This article is devoted to developing an approach for manipulating the von Neumann entropy S(ρ(t)) of an open two-qubit system with coherent control and incoherent control inducing time-dependent decoherence rates. The following goals are considered: (a) minimizing or maximizing the final entropy S(ρ(T)); (b) steering S(ρ(T)) to a given target value; (c) steering S(ρ(T)) to a target value and satisfying the pointwise state constraint S(ρ(t))≤S¯ for a given S¯; (d) keeping S(ρ(t)) constant at a given time interval. Under the Markovian dynamics determined by a Gorini-Kossakowski-Sudarshan-Lindblad type master equation, which contains coherent and incoherent controls, one- and two-step gradient projection methods and genetic algorithm have been adapted, taking into account the specifics of the objective functionals. The corresponding numerical results are provided and discussed.
Collapse
Affiliation(s)
- Oleg V. Morzhin
- Department of Mathematical Methods for Quantum Technologies & Steklov International Mathematical Center, Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Str., 119991 Moscow, Russia
| | - Alexander N. Pechen
- Department of Mathematical Methods for Quantum Technologies & Steklov International Mathematical Center, Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Str., 119991 Moscow, Russia
| |
Collapse
|
7
|
Song X, Murch K. Parity-Time Symmetric Holographic Principle. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1523. [PMID: 37998215 PMCID: PMC10670666 DOI: 10.3390/e25111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Originating from the Hamiltonian of a single qubit system, the phenomenon of the avoided level crossing is ubiquitous in multiple branches of physics, including the Landau-Zener transition in atomic, molecular, and optical physics, the band structure of condensed matter physics and the dispersion relation of relativistic quantum physics. We revisit this fundamental phenomenon in the simple example of a spinless relativistic quantum particle traveling in (1+1)-dimensional space-time and establish its relation to a spin-1/2 system evolving under a PT-symmetric Hamiltonian. This relation allows us to simulate 1-dimensional eigenvalue problems with a single qubit. Generalizing this relation to the eigenenergy problem of a bulk system with N spatial dimensions reveals that its eigenvalue problem can be mapped onto the time evolution of the edge state with (N-1) spatial dimensions governed by a non-Hermitian Hamiltonian. In other words, the bulk eigenenergy state is encoded in the edge state as a hologram, which can be decoded by the propagation of the edge state in the temporal dimension. We argue that the evolution will be PT-symmetric as long as the bulk system admits parity symmetry. Our work finds the application of PT-symmetric and non-Hermitian physics in quantum simulation and provides insights into the fundamental symmetries.
Collapse
Affiliation(s)
| | - Kater Murch
- Department of Physics, Washington University, St. Louis, MO 63130, USA;
| |
Collapse
|
8
|
Lau JWZ, Lim KH, Bharti K, Kwek LC, Vinjanampathy S. Convex Optimization for Nonequilibrium Steady States on a Hybrid Quantum Processor. PHYSICAL REVIEW LETTERS 2023; 130:240601. [PMID: 37390417 DOI: 10.1103/physrevlett.130.240601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 04/28/2023] [Indexed: 07/02/2023]
Abstract
Finding the transient and steady state properties of open quantum systems is a central problem in various fields of quantum technologies. Here, we present a quantum-assisted algorithm to determine the steady states of open system dynamics. By reformulating the problem of finding the fixed point of Lindblad dynamics as a feasibility semidefinite program, we bypass several well-known issues with variational quantum approaches to solving for steady states. We demonstrate that our hybrid approach allows us to estimate the steady states of higher dimensional open quantum systems and discuss how our method can find multiple steady states for systems with symmetries.
Collapse
Affiliation(s)
- Jonathan Wei Zhong Lau
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
| | - Kian Hwee Lim
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
| | - Kishor Bharti
- Joint Center for Quantum Information and Computer Science and Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Leong-Chuan Kwek
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
- MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, Singapore UMI 3654, Singapore
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
- School of Electrical and Electronic Engineering Block S2.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Sai Vinjanampathy
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
- Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
- Centre of Excellence in Quantum Information, Computation, Science and Technology, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Rabitz H, Russell B, Ho TS. The Surprising Ease of Finding Optimal Solutions for Controlling Nonlinear Phenomena in Quantum and Classical Complex Systems. J Phys Chem A 2023; 127:4224-4236. [PMID: 37142303 DOI: 10.1021/acs.jpca.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This Perspective addresses the often observed surprising ease of achieving optimal control of nonlinear phenomena in quantum and classical complex systems. The circumstances involved are wide-ranging, with scenarios including manipulation of atomic scale processes, maximization of chemical and material properties or synthesis yields, Nature's optimization of species' populations by natural selection, and directed evolution. Natural evolution will mainly be discussed in terms of laboratory experiments with microorganisms, and the field is also distinct from the other domains where a scientist specifies the goal(s) and oversees the control process. We use the word "control" in reference to all of the available variables, regardless of the circumstance. The empirical observations on the ease of achieving at least good, if not excellent, control in diverse domains of science raise the question of why this occurs despite the generally inherent complexity of the systems in each scenario. The key to addressing the question lies in examining the associated control landscape, which is defined as the optimization objective as a function of the control variables that can be as diverse as the phenomena under consideration. Controls may range from laser pulses, chemical reagents, chemical processing conditions, out to nucleic acids in the genome and more. This Perspective presents a conjecture, based on present findings, that the systematics of readily finding good outcomes from controlled phenomena may be unified through consideration of control landscapes with the same common set of three underlying assumptions─the existence of an optimal solution, the ability for local movement on the landscape, and the availability of sufficient control resources─whose validity needs assessment in each scenario. In practice, many cases permit using myopic gradient-like algorithms while other circumstances utilize algorithms having some elements of stochasticity or introduced noise, depending on whether the landscape is locally smooth or rough. The overarching observation is that only relatively short searches are required despite the common high dimensionality of the available controls in typical scenarios.
Collapse
Affiliation(s)
- Herschel Rabitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Benjamin Russell
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tak-San Ho
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Müller MM, Gherardini S, Calarco T, Montangero S, Caruso F. Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels. Sci Rep 2022; 12:21405. [PMID: 36496434 PMCID: PMC9741659 DOI: 10.1038/s41598-022-25770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman-Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
Collapse
Affiliation(s)
- Matthias M Müller
- Peter Grünberg Institute - Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Stefano Gherardini
- CNR-INO, Area Science Park, 34149, Basovizza, Trieste, Italy
- Department of Physics and Astronomy and LENS, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Tommaso Calarco
- Peter Grünberg Institute - Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute for Theoretical Physics, University of Cologne, 50937, Cologne, Germany
| | - Simone Montangero
- Department of Physics and Astronomy "G. Galilei", University of Padua, and with INFN Sezione di Padova, 35131, Padua, Italy
| | - Filippo Caruso
- Department of Physics and Astronomy and LENS, University of Florence, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Dasari DBR, Yang S, Chakrabarti A, Finkler A, Kurizki G, Wrachtrup J. Anti-Zeno purification of spin baths by quantum probe measurements. Nat Commun 2022; 13:7527. [PMID: 36473849 PMCID: PMC9726817 DOI: 10.1038/s41467-022-35045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
The quantum Zeno and anti-Zeno paradigms have thus far addressed the evolution control of a quantum system coupled to an immutable bath via non-selective measurements performed at appropriate intervals. We fundamentally modify these paradigms by introducing, theoretically and experimentally, the concept of controlling the bath state via selective measurements of the system (a qubit). We show that at intervals corresponding to the anti-Zeno regime of the system-bath exchange, a sequence of measurements has strongly correlated outcomes. These correlations can dramatically enhance the bath-state purity and yield a low-entropy steady state of the bath. The purified bath state persists long after the measurements are completed. Such purification enables the exploitation of spin baths as long-lived quantum memories or as quantum-enhanced sensors. The experiment involved a repeatedly probed defect center dephased by a nuclear spin bath in a diamond at low-temperature.
Collapse
Affiliation(s)
- Durga Bhaktavatsala Rao Dasari
- grid.5719.a0000 0004 1936 97133.Physics Institute, Center for Applied Quantum Technologies, IQST, University of Stuttgart, Stuttgart, 70569 Germany
| | - Sen Yang
- grid.24515.370000 0004 1937 1450Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Arnab Chakrabarti
- grid.13992.300000 0004 0604 7563AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Finkler
- grid.13992.300000 0004 0604 7563AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gershon Kurizki
- grid.13992.300000 0004 0604 7563AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Jörg Wrachtrup
- grid.5719.a0000 0004 1936 97133.Physics Institute, Center for Applied Quantum Technologies, IQST, University of Stuttgart, Stuttgart, 70569 Germany ,grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Stuttgart, Germany
| |
Collapse
|
12
|
Li JF, Hu JR, Guo QF, He DS. Resonant and non-resonant optimizations by multi-constraint quantum control theory in molecular rotational states. Sci Rep 2022; 12:19210. [DOI: 10.1038/s41598-022-23762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
AbstractIt is a promising research for optimization of quantum gate in the field of quantum computation. We investigate the feasibility of implementing the single-qubit gate (Hadamard) in molecular rotational system. By applying the Multi-constraint quantum optimal control method, the excepted final states can be achieved based on the molecular rotational states both in resonant and non-resonant cases with the control pulses. The permanent electric dipole moment is ignored in non-resonance. Besides, the zero-pulse area constraint and the constant fluence constraint are employed to optimize shapes of control pulses. Finally, we show that the Hadamard gate can be realized with the high fidelity (0.9999) and also examine the dependence of the fidelity on pulse fluence as well as the control pulse.
Collapse
|
13
|
Kallush S, Dann R, Kosloff R. Controlling the uncontrollable: Quantum control of open-system dynamics. SCIENCE ADVANCES 2022; 8:eadd0828. [PMID: 36322661 PMCID: PMC9629718 DOI: 10.1126/sciadv.add0828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Control of open quantum systems is essential for the realization of contemporary quantum science and technology. We demonstrate such control using a thermodynamically consistent framework, taking into account the fact that the drive can modify the system's interaction with the environment. Such an effect is incorporated within the dynamical equation, leading to control-dependent dissipation. This relation serves as the key element for open-system control. The control paradigm is displayed by analyzing entropy-changing state-to-state transformations, such as heating and cooling. The difficult task of controlling quantum gates is achieved for nonunitary reset maps with complete memory loss. In addition, we identify a mechanism for controlling unitary gates by actively removing entropy from the system to the environment. We demonstrate a universal set of single- and double-qubit unitary gates under dissipation.
Collapse
Affiliation(s)
- Shimshon Kallush
- Sciences Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102, Israel
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Garcia L, Bofill JM, Moreira IDPR, Albareda G. Highly Adiabatic Time-Optimal Quantum Driving at Low Energy Cost. PHYSICAL REVIEW LETTERS 2022; 129:180402. [PMID: 36374669 DOI: 10.1103/physrevlett.129.180402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Time-efficient control schemes for manipulating quantum systems are of great importance in quantum technologies, where environmental forces rapidly degrade the quality of pure states over time. In this Letter, we formulate an approach to time-optimal control that circumvents the boundary-value problem that plagues the quantum brachistochrone equation at the expense of relaxing the form of the control Hamiltonian. In this setting, a coupled system of equations, one for the control Hamiltonian and another one for the duration of the protocol, realizes an ansatz-free approach to quantum control theory. We show how driven systems, in the form of a Landau-Zener type Hamiltonian, can be efficiently maneuvered to speed up a given state transformation in a highly adiabatic manner and with a low energy cost.
Collapse
Affiliation(s)
- Lluc Garcia
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ibério de P R Moreira
- Institute of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Guillermo Albareda
- Institute of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Ideaded, Carrer de la Tecnologia, 35, 08840 Viladecans, Barcelona, Spain
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
15
|
Quantum Optimal Control: Practical Aspects and Diverse Methods. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Li JF, Hu JR, Wan F, He DS. Optimization two-qubit quantum gate by two optical control methods in molecular pendular states. Sci Rep 2022; 12:14918. [PMID: 36050511 PMCID: PMC9437090 DOI: 10.1038/s41598-022-18967-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Implementation of quantum gates are important for quantum computations in physical system made of polar molecules. We investigate the feasibility of implementing gates based on pendular states of the molecular system by two different quantum optical control methods. Firstly, the Multi-Target optimal control theory and the Multi-Constraint optimal control theory are described for optimizing control fields and accomplish the optimization of quantum gates. Numerical results show that the controlled NOT gate (CNOT) can be realized under the control of above methods with high fidelities (0.975 and 0.999) respectively. In addition, in order to examine the dependence of the fidelity on energy difference in the same molecular system, the SWAP gate in the molecular system is also optimized with high fidelity (0.999) by the Multi-Constraint optimal control theory with the zero-area and constant-fluence constraints.
Collapse
Affiliation(s)
- Jin-Fang Li
- Department of Physics and Electronic Engineering, Xianyang Normal University, Shaanxi, 712000, China. .,State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai, 200062, China.
| | - Jie-Ru Hu
- State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai, 200062, China
| | - Feng Wan
- Department of Physics and Electronic Engineering, Xianyang Normal University, Shaanxi, 712000, China
| | - Dong-Shan He
- Department of Physics and Electronic Engineering, Xianyang Normal University, Shaanxi, 712000, China
| |
Collapse
|
17
|
Sauvage F, Mintert F. Optimal Control of Families of Quantum Gates. PHYSICAL REVIEW LETTERS 2022; 129:050507. [PMID: 35960583 DOI: 10.1103/physrevlett.129.050507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum optimal control (QOC) enables the realization of accurate operations, such as quantum gates, and supports the development of quantum technologies. To date, many QOC frameworks have been developed, but those remain only naturally suited to optimize a single targeted operation at a time. We extend this concept to optimal control with a continuous family of targets, and demonstrate that an optimization based on neural networks can find families of time-dependent Hamiltonians realizing desired classes of quantum gates in minimal time.
Collapse
Affiliation(s)
- Frédéric Sauvage
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Florian Mintert
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom
| |
Collapse
|
18
|
Müller MM, Said RS, Jelezko F, Calarco T, Montangero S. One decade of quantum optimal control in the chopped random basis. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076001. [PMID: 35605567 DOI: 10.1088/1361-6633/ac723c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The chopped random basis (CRAB) ansatz for quantum optimal control has been proven to be a versatile tool to enable quantum technology applications such as quantum computing, quantum simulation, quantum sensing, and quantum communication. Its capability to encompass experimental constraints-while maintaining an access to the usually trap-free control landscape-and to switch from open-loop to closed-loop optimization (including with remote access-or RedCRAB) is contributing to the development of quantum technology on many different physical platforms. In this review article we present the development, the theoretical basis and the toolbox for this optimization algorithm, as well as an overview of the broad range of different theoretical and experimental applications that exploit this powerful technique.
Collapse
Affiliation(s)
- Matthias M Müller
- Peter Grünberg Institute-Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, D-52425 Germany
| | - Ressa S Said
- Institute for Quantum Optics & Center for Integrated Quantum Science and Technology, Universität Ulm, D-89081 Germany
| | - Fedor Jelezko
- Institute for Quantum Optics & Center for Integrated Quantum Science and Technology, Universität Ulm, D-89081 Germany
| | - Tommaso Calarco
- Peter Grünberg Institute-Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, D-52425 Germany
- Institute for Theoretical Physics, University of Cologne, D-50937 Germany
| | - Simone Montangero
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università degli Studi di Padova & INFN, Sezione di Padova, I-35131 Italy
- Padua Quantum Technology Center, Università degli Studi di Padova, I-35131 Italy
| |
Collapse
|
19
|
Aerts A, Kockaert P, Gorza SP, Brown A, Vander Auwera J, Vaeck N. Laser control of a dark vibrational state of acetylene in the gas phase—Fourier transform pulse shaping constraints and effects of decoherence. J Chem Phys 2022; 156:084302. [DOI: 10.1063/5.0080332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We propose a methodology to tackle the laser control of a non-stationary dark ro-vibrational state of acetylene (C2H2), given realistic experimental limitations in the 7.7 μm (1300 cm−1) region. Simulations are performed using the Lindblad master equation, where the so-called Lindblad parameters are used to describe the effect of the environment in the dilute gas phase. A phenomenological representation of the parameters is used, and they are extracted from high-resolution spectroscopy line broadening data. An effective Hamiltonian is used for the description of the system down to the rotational level close to experimental accuracy. The quality of both the Hamiltonian and Lindblad parameters is assessed by a comparison of a calculated infrared spectrum with the available experimental data. A single shaped laser pulse is used to perform the control, where elements of optics and pulse shaping using masks are introduced with emphasis on experimental limitations. The optimization procedure, based on gradients, explicitly takes into account the experimental constraints. Control performances are reported for shaping masks of increasing complexity. Although modest performances are obtained, mainly due to the strong pulse shaping constraints, we gain insights into the control mechanism. This work is the first step toward the conception of a realistic experiment that will allow for population characterization and manipulation of a non-stationary vibrational “dark” state. Effects of the collisions on the laser control in the dilute gas phase, leading to decoherence in the molecular system, are clearly shown.
Collapse
Affiliation(s)
- Antoine Aerts
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pascal Kockaert
- OPERA-Photonique, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 194/05, B-1050 Brussels, Belgium
| | - Simon-Pierre Gorza
- OPERA-Photonique, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 194/05, B-1050 Brussels, Belgium
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jean Vander Auwera
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium
| | - Nathalie Vaeck
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium
| |
Collapse
|
20
|
Yin Z, Li C, Allcock J, Zheng Y, Gu X, Dai M, Zhang S, An S. Shortcuts to adiabaticity for open systems in circuit quantum electrodynamics. Nat Commun 2022; 13:188. [PMID: 35013301 PMCID: PMC8748912 DOI: 10.1038/s41467-021-27900-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Shortcuts to adiabaticity are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various shortcuts to adiabaticity protocols have been demonstrated in closed systems. However, realizing shortcuts to adiabaticity for open quantum systems has presented a challenge due to the complex controls in existing proposals. Here, we present the experimental demonstration of shortcuts to adiabaticity for open quantum systems, using a superconducting circuit quantum electrodynamics system. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for precise time-domain control of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.
Collapse
Affiliation(s)
- Zelong Yin
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Chunzhen Li
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Jonathan Allcock
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Yicong Zheng
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Xiu Gu
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Maochun Dai
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Shengyu Zhang
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China
| | - Shuoming An
- Tencent Quantum Laboratory, Tencent, 518057, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Cai W, Han J, Hu L, Ma Y, Mu X, Wang W, Xu Y, Hua Z, Wang H, Song YP, Zhang JN, Zou CL, Sun L. High-Efficiency Arbitrary Quantum Operation on a High-Dimensional Quantum System. PHYSICAL REVIEW LETTERS 2021; 127:090504. [PMID: 34506165 DOI: 10.1103/physrevlett.127.090504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The ability to manipulate quantum systems lies at the heart of the development of quantum technology. The ultimate goal of quantum control is to realize arbitrary quantum operations (AQUOs) for all possible open quantum system dynamics. However, the demanding extra physical resources impose great obstacles. Here, we experimentally demonstrate a universal approach of AQUO on a photonic qudit with the minimum physical resource of a two-level ancilla and a log_{2}d-scale circuit depth for a d-dimensional system. The AQUO is then applied in a quantum trajectory simulation for quantum subspace stabilization and quantum Zeno dynamics, as well as incoherent manipulation and generalized measurements of the qudit. Therefore, the demonstrated AQUO for complete quantum control would play an indispensable role in quantum information science.
Collapse
Affiliation(s)
- W Cai
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - J Han
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - L Hu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Ma
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - X Mu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Xu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Z Hua
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - H Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y P Song
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - J-N Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - C-L Zou
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - L Sun
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Han J, Cai W, Hu L, Mu X, Ma Y, Xu Y, Wang W, Wang H, Song YP, Zou CL, Sun L. Experimental Simulation of Open Quantum System Dynamics via Trotterization. PHYSICAL REVIEW LETTERS 2021; 127:020504. [PMID: 34296922 DOI: 10.1103/physrevlett.127.020504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Digital quantum simulators provide a diversified tool for solving the evolution of quantum systems with complicated Hamiltonians and hold great potential for a wide range of applications. Although much attention is paid to the unitary evolution of closed quantum systems, dissipation and noise are vital in understanding the dynamics of practical quantum systems. In this work, we experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment with the assistance of a single ancillary qubit. By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized, and its application in error mitigation is demonstrated by adjusting the simulated noise intensities. High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy. Our results represent a significant step toward hardware-efficient simulation of open quantum systems and error mitigation in quantum algorithms in noisy intermediate-scale quantum systems.
Collapse
Affiliation(s)
- J Han
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Cai
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - L Hu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - X Mu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Ma
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Xu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - H Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y P Song
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - C-L Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - L Sun
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Koch CP. Corrigendum: Controlling open quantum systems: tools, achievements, limitations (2016 J. Phys. Condens. Matter28213001). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:329501. [PMID: 34165084 DOI: 10.1088/1361-648x/ac07cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Christiane P Koch
- Dahlem Center for Complex Quantum Systems and Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
24
|
Fux GE, Butler EP, Eastham PR, Lovett BW, Keeling J. Efficient Exploration of Hamiltonian Parameter Space for Optimal Control of Non-Markovian Open Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 126:200401. [PMID: 34110219 DOI: 10.1103/physrevlett.126.200401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
We present a general method to efficiently design optimal control sequences for non-Markovian open quantum systems, and illustrate it by optimizing the shape of a laser pulse to prepare a quantum dot in a specific state. The optimization of control procedures for quantum systems with strong coupling to structured environments-where time-local descriptions fail-is a computationally challenging task. We modify the numerically exact time evolving matrix product operator (TEMPO) method, such that it allows the repeated computation of the time evolution of the reduced system density matrix for various sets of control parameters at very low computational cost. This method is potentially useful for studying numerous optimal control problems, in particular in solid state quantum devices where the coupling to vibrational modes is typically strong.
Collapse
Affiliation(s)
- Gerald E Fux
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Eoin P Butler
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Paul R Eastham
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Brendon W Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
25
|
Keefer D, Mukamel S. Selective Enhancement of Spectroscopic Features by Quantum Optimal Control. PHYSICAL REVIEW LETTERS 2021; 126:163202. [PMID: 33961451 DOI: 10.1103/physrevlett.126.163202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Tailored light can be used to steer atomic motions into selected quantum pathways. In optimal control theory (OCT), the target is usually expressed in terms of the molecular wave function, a quantity that is not directly observable in experiment. We present simulations using OCT that optimize the spectroscopic signal itself. By shaping the optical pump, the x-ray stimulated Raman signal, which occurs solely during the passage through conical intersections, is temporally controlled and amplified by up to 2 orders of magnitude. This enhancement can be crucial in order to bring small coherence-based signatures above the detectable threshold. Our approach is applicable to any signal that depends on the expectation value of a positive definite operator.
Collapse
Affiliation(s)
- Daniel Keefer
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, USA
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
26
|
Aerts A, Vander Auwera J, Vaeck N. Lindblad parameters from high resolution spectroscopy to describe collision-induced rovibrational decoherence in the gas phase-Application to acetylene. J Chem Phys 2021; 154:144308. [PMID: 33858172 DOI: 10.1063/5.0045275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Within the framework of the Lindblad master equation, we propose a general methodology to describe the effects of the environment on a system in the dilute gas phase. The phenomenological parameters characterizing the transitions between rovibrational states of the system induced by collisions can be extracted from experimental transition kinetic constants, relying on energy gap fitting laws. As the availability of these kinds of experimental data can be limited, this work relied on experimental line broadening coefficients, however still using energy gap fitting laws. The 3 μm infrared spectral range of acetylene was chosen to illustrate the proposed approach. The method shows fair agreement with available experimental data while being computationally inexpensive. The results are discussed in the context of state laser quantum control.
Collapse
Affiliation(s)
- Antoine Aerts
- Université Libre de Bruxelles, Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium
| | - Jean Vander Auwera
- Université Libre de Bruxelles, Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium
| | - Nathalie Vaeck
- Université Libre de Bruxelles, Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium
| |
Collapse
|
27
|
He Y, Ji L, Wang Y, Qiu L, Zhao J, Ma Y, Huang X, Wu S, Chang DE. Geometric Control of Collective Spontaneous Emission. PHYSICAL REVIEW LETTERS 2020; 125:213602. [PMID: 33275003 DOI: 10.1103/physrevlett.125.213602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Dipole spin-wave states of atomic ensembles with wave vector k(ω) mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario in quantum optics. We propose and demonstrate an optical technique to efficiently access these states. In particular, subnanosecond laser pulses shaped by a home-developed wideband modulation method are applied to shift the spin wave in k space with state-dependent geometric phase patterning, in an error-resilient fashion and on timescales much faster than spontaneous emission. We verify this control through the redirection, switch off, and recall of collectively enhanced emission from a ^{87}Rb gas with ∼75% single-step efficiency. Our work represents a first step toward efficient control of electric dipole spin waves for studying many-body dissipative dynamics of excited gases, as well as for numerous quantum optical applications.
Collapse
Affiliation(s)
- Yizun He
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Lingjing Ji
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuzhuo Wang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liyang Qiu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Jian Zhao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yudi Ma
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xing Huang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Saijun Wu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Darrick E Chang
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
28
|
Villazon T, Claeys PW, Pandey M, Polkovnikov A, Chandran A. Persistent dark states in anisotropic central spin models. Sci Rep 2020; 10:16080. [PMID: 32999321 PMCID: PMC7527970 DOI: 10.1038/s41598-020-73015-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
Long-lived dark states, in which an experimentally accessible qubit is not in thermal equilibrium with a surrounding spin bath, are pervasive in solid-state systems. We explain the ubiquity of dark states in a large class of inhomogeneous central spin models using the proximity to integrable lines with exact dark eigenstates. At numerically accessible sizes, dark states persist as eigenstates at large deviations from integrability, and the qubit retains memory of its initial polarization at long times. Although the eigenstates of the system are chaotic, exhibiting exponential sensitivity to small perturbations, they do not satisfy the eigenstate thermalization hypothesis. Rather, we predict long relaxation times that increase exponentially with system size. We propose that this intermediate chaotic but non-ergodic regime characterizes mesoscopic quantum dot and diamond defect systems, as we see no numerical tendency towards conventional thermalization with a finite relaxation time.
Collapse
Affiliation(s)
- Tamiro Villazon
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA.
| | - Pieter W Claeys
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Mohit Pandey
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Anatoli Polkovnikov
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Anushya Chandran
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| |
Collapse
|
29
|
Finsterhölzl R, Katzer M, Knorr A, Carmele A. Using Matrix-Product States for Open Quantum Many-Body Systems: Efficient Algorithms for Markovian and Non-Markovian Time-Evolution. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E984. [PMID: 33286753 PMCID: PMC7597300 DOI: 10.3390/e22090984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/20/2022]
Abstract
This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.
Collapse
Affiliation(s)
- Regina Finsterhölzl
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Hardenbergstraße 36, 10623 Berlin, Germany; (M.K.); (A.K.); (A.C.)
| | | | | | | |
Collapse
|
30
|
Wasielewski MR, Forbes MDE, Frank NL, Kowalski K, Scholes GD, Yuen-Zhou J, Baldo MA, Freedman DE, Goldsmith RH, Goodson T, Kirk ML, McCusker JK, Ogilvie JP, Shultz DA, Stoll S, Whaley KB. Exploiting chemistry and molecular systems for quantum information science. Nat Rev Chem 2020; 4:490-504. [PMID: 37127960 DOI: 10.1038/s41570-020-0200-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.
Collapse
Affiliation(s)
| | - Malcolm D E Forbes
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Natia L Frank
- Department of Chemistry, University of Nevada-Reno, Reno, Nevada, USA
| | - Karol Kowalski
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - James K McCusker
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Angaroni F, Graudenzi A, Rossignolo M, Maspero D, Calarco T, Piazza R, Montangero S, Antoniotti M. An Optimal Control Framework for the Automated Design of Personalized Cancer Treatments. Front Bioeng Biotechnol 2020; 8:523. [PMID: 32548108 PMCID: PMC7270334 DOI: 10.3389/fbioe.2020.00523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
One of the key challenges in current cancer research is the development of computational strategies to support clinicians in the identification of successful personalized treatments. Control theory might be an effective approach to this end, as proven by the long-established application to therapy design and testing. In this respect, we here introduce the Control Theory for Therapy Design (CT4TD) framework, which employs optimal control theory on patient-specific pharmacokinetics (PK) and pharmacodynamics (PD) models, to deliver optimized therapeutic strategies. The definition of personalized PK/PD models allows to explicitly consider the physiological heterogeneity of individuals and to adapt the therapy accordingly, as opposed to standard clinical practices. CT4TD can be used in two distinct scenarios. At the time of the diagnosis, CT4TD allows to set optimized personalized administration strategies, aimed at reaching selected target drug concentrations, while minimizing the costs in terms of toxicity and adverse effects. Moreover, if longitudinal data on patients under treatment are available, our approach allows to adjust the ongoing therapy, by relying on simplified models of cancer population dynamics, with the goal of minimizing or controlling the tumor burden. CT4TD is highly scalable, as it employs the efficient dCRAB/RedCRAB optimization algorithm, and the results are robust, as proven by extensive tests on synthetic data. Furthermore, the theoretical framework is general, and it might be applied to any therapy for which a PK/PD model can be estimated, and for any kind of administration and cost. As a proof of principle, we present the application of CT4TD to Imatinib administration in Chronic Myeloid leukemia, in which we adopt a simplified model of cancer population dynamics. In particular, we show that the optimized therapeutic strategies are diversified among patients, and display improvements with respect to the current standard regime.
Collapse
Affiliation(s)
- Fabrizio Angaroni
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
| | - Marco Rossignolo
- Center for Integrated Quantum Science and Technologies, Institute for Quantum Optics, Universitat Ulm, Ulm, Germany
- Istituto Nazionale di Fisica Nucleare (INFN), Padova, Italy
| | - Davide Maspero
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Calarco
- Forschungszentrum Jülich, Institute of Quantum Control (PGI-8), Jülich, Germany
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Simone Montangero
- Istituto Nazionale di Fisica Nucleare (INFN), Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, Milan, Italy
| |
Collapse
|
32
|
Omran A, Levine H, Keesling A, Semeghini G, Wang TT, Ebadi S, Bernien H, Zibrov AS, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V, Lukin MD. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 2020; 365:570-574. [PMID: 31395778 DOI: 10.1126/science.aax9743] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/08/2019] [Indexed: 11/03/2022]
Abstract
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of "Schrödinger cat" states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.
Collapse
Affiliation(s)
- A Omran
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - H Levine
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - A Keesling
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - G Semeghini
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - T T Wang
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Gordon College, Wenham, MA 01984, USA
| | - S Ebadi
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - H Bernien
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - A S Zibrov
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - H Pichler
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Institute for Theoretical Atomic Molecular and Optical Physics (ITAMP), Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
| | - S Choi
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - J Cui
- Forschungszentrum Jülich, Institute of Quantum Control (PGI-8), D-52425 Jülich, Germany
| | - M Rossignolo
- Institute for Quantum Optics and Center of Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89081 Ulm, Germany
| | - P Rembold
- Forschungszentrum Jülich, Institute of Quantum Control (PGI-8), D-52425 Jülich, Germany
| | - S Montangero
- Dipartimento di Fisica e Astronomia "G. Galilei," Università degli Studi di Padova and Istituto Nazionale di Fisica Nucleare (INFN), I-35131 Padova, Italy
| | - T Calarco
- Forschungszentrum Jülich, Institute of Quantum Control (PGI-8), D-52425 Jülich, Germany.,Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany
| | - M Endres
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Greiner
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - V Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M D Lukin
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Abstract
In laboratory and numerical experiments, physical quantities are known with a finite precision and described by rational numbers. Based on this, we deduce that quantum control problems both for open and closed systems are in general not algorithmically solvable, i.e., there is no algorithm that can decide whether dynamics of an arbitrary quantum system can be manipulated by accessible external interactions (coherent or dissipative) such that a chosen target reaches a desired value. This conclusion holds even for the relaxed requirement of the target only approximately attaining the desired value. These findings do not preclude an algorithmic solvability for a particular class of quantum control problems. Moreover, any quantum control problem can be made algorithmically solvable if the set of accessible interactions (i.e., controls) is rich enough. To arrive at these results, we develop a technique based on establishing the equivalence between quantum control problems and Diophantine equations, which are polynomial equations with integer coefficients and integer unknowns. In addition to proving uncomputability, this technique allows to construct quantum control problems belonging to different complexity classes. In particular, an example of the control problem involving a two-mode coherent field is shown to be NP-hard, contradicting a widely held believe that two-body problems are easy.
Collapse
|
34
|
Dann R, Tobalina A, Kosloff R. Shortcut to Equilibration of an Open Quantum System. PHYSICAL REVIEW LETTERS 2019; 122:250402. [PMID: 31347905 DOI: 10.1103/physrevlett.122.250402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Indexed: 06/10/2023]
Abstract
We present a procedure to accelerate the relaxation of an open quantum system towards its equilibrium state. The control protocol, termed the shortcut to equilibration, is obtained by reverse-engineering the nonadiabatic master equation. This is a nonunitary control task aimed at rapidly changing the entropy of the system. Such a protocol serves as a shortcut to an abrupt change in the Hamiltonian, i.e., a quench. As an example, we study the thermalization of a particle in a harmonic well. We observe that for short protocols the accuracy improves by 3 orders of magnitude.
Collapse
Affiliation(s)
- Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Ander Tobalina
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apdo 644, Bilbao, Spain
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
35
|
Abstract
A comprehensive approach to modeling open quantum systems consistent with thermodynamics is presented. The theory of open quantum systems is employed to define system bath partitions. The Markovian master equation defines an isothermal partition between the system and bath. Two methods to derive the quantum master equation are described: the weak coupling limit and the repeated collision model. The role of the eigenoperators of the free system dynamics is highlighted, in particular, for driven systems. The thermodynamical relations are pointed out. Models that lead to loss of coherence, i.e., dephasing are described. The implication of the laws of thermodynamics to simulating transport and spectroscopy is described. The indications for self-averaging in large quantum systems and thus its importance in modeling are described. Basic modeling by the surrogate Hamiltonian is described, as well as thermal boundary conditions using the repeated collision model and their use in the stochastic surrogate Hamiltonian. The problem of modeling with explicitly time dependent driving is analyzed. Finally, the use of the stochastic surrogate Hamiltonian for modeling ultrafast spectroscopy and quantum control is reviewed.
Collapse
Affiliation(s)
- Ronnie Kosloff
- The Institute of Chemistry and The Fritz Haber Centre for Theoretical Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
36
|
Abstract
In 1998, the first successful quantum control experiment with application to a molecular framework was conducted with a shaped laser pulse, optimizing the branching ratio between different organometallic reaction channels. This work induced a vast activity in quantum control during the next 10 years, and different optimization aims were achieved in the gas phase, liquid phase, and even in biologically relevant molecules like light-harvesting complexes. Accompanying and preceding this development were important advances in theoretical quantum control simulations. They predicted several control scenarios and explained how and why quantum control experiments work. After many successful proofs of concept in molecular science, the big challenge is to expand its huge conceptual potential of directly being able to steer nuclear and/or electronic motion to more applied implementations. In this Account, based on several recent advances, we give a personal evaluation of where the field of molecular quantum control is at the moment and especially where we think promising applications can be in the near future. One of these paths leads to synthetic chemistry. The synthesis of novel pharmaceutical compounds or natural products often involves many synthetic steps, each one devouring resources and lowering the product yield. Shaped laser pulses can possibly act as photonic reagents and shorten the synthetic route toward the desired product. Chemical synthesis usually takes place in solution, and by including explicit solvent molecules in our quantum control simulations, we were able to identify their highly inhomogeneous influence on chemical reactions and how this affects potential quantum control. More important, we demonstrated for a synthetically relevant example that these complications can be overcome in theory, and laser pulses can be optimized to initiate the desired carbon-carbon bond formation. Putting this into context with the recently emerging concept of flow chemistry, which brings several practical advantages to the application of laser pulses, we want to encourage experimental groups to exploit this concept. Another path was opened by several additions to the commonly used laser pulse optimization algorithm (optimal control theory, OCT), several of which were developed in our group. The OCT algorithm as such is a purely mathematical optimization procedure, with no direct relation to experimental requirements. This means that usually the electric fields obtained out of OCT optimizations do not resemble laser pulses that can be achieved experimentally. However, the previously mentioned additions are aimed at closing the gap toward the experiment. In a recent quantum control study of our group, these algorithmic developments came to fruition. We were able to suggest a shaped laser pulse which can induce a long-living wave packet in the excited state of uracil. This might pave the way for novel experiments dedicated to investigating the formation of biological photodamage in DNA and RNA. The pulse we suggest is surprisingly simple because of the extended OCT algorithm and fulfills all criteria to be experimentally accessible.
Collapse
Affiliation(s)
- Daniel Keefer
- Department Chemie, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | | |
Collapse
|
37
|
Mangaud E, Meier C, Desouter-Lecomte M. Analysis of the non-Markovianity for electron transfer reactions in an oligothiophene-fullerene heterojunction. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Puthumpally-Joseph R, Atabek O, Mangaud E, Desouter-Lecomte M, Sugny D. Towards laser control of open quantum systems: memory effects. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1319085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- R. Puthumpally-Joseph
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne Franche Comté , Dijon, France
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, University of Paris-Sud, Université Paris-Saclay , Orsay, France
| | - O. Atabek
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, University of Paris-Sud, Université Paris-Saclay , Orsay, France
| | - E. Mangaud
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians Universität Würzburg , Würzburg, Germany
| | - M. Desouter-Lecomte
- Laboratorie Chimie Physique (LCP), CNRS, University of Paris-Sud, Université Paris-Saclay , Orsay, France
- Département de Chimie, Université de Liège , Liège, Belgium
| | - D. Sugny
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université Bourgogne Franche Comté , Dijon, France
- Institute for Advanced Study (IAS), Technische Universität München, Garching, Germany
| |
Collapse
|
39
|
Fradkov AL. Horizons of cybernetical physics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160223. [PMID: 28115620 PMCID: PMC5311442 DOI: 10.1098/rsta.2016.0223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 05/30/2023]
Abstract
The subject and main areas of a new research field-cybernetical physics-are discussed. A brief history of cybernetical physics is outlined. The main areas of activity in cybernetical physics are briefly surveyed, such as control of oscillatory and chaotic behaviour, control of resonance and synchronization, control in thermodynamics, control of distributed systems and networks, quantum control.This article is part of the themed issue 'Horizons of cybernetical physics'.
Collapse
Affiliation(s)
- Alexander L Fradkov
- Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178 Saint Petersburg, Russia
- Department of Control of Complex Systems, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint Petersburg, Russia
- Department of Theoretical Cybernetics, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|