1
|
Villanueva-Flores F, Garcia-Atutxa I, Santos A, Armendariz-Borunda J. Toward a New Generation of Bio-Scaffolds for Neural Tissue Engineering: Challenges and Perspectives. Pharmaceutics 2023; 15:1750. [PMID: 37376198 DOI: 10.3390/pharmaceutics15061750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neural tissue engineering presents a compelling technological breakthrough in restoring brain function, holding immense promise. However, the quest to develop implantable scaffolds for neural culture that fulfill all necessary criteria poses a remarkable challenge for material science. These materials must possess a host of desirable characteristics, including support for cellular survival, proliferation, and neuronal migration and the minimization of inflammatory responses. Moreover, they should facilitate electrochemical cell communication, display mechanical properties akin to the brain, emulate the intricate architecture of the extracellular matrix, and ideally allow the controlled release of substances. This comprehensive review delves into the primary requisites, limitations, and prospective avenues for scaffold design in brain tissue engineering. By offering a panoramic overview, our work aims to serve as an essential resource, guiding the creation of materials endowed with bio-mimetic properties, ultimately revolutionizing the treatment of neurological disorders by developing brain-implantable scaffolds.
Collapse
Affiliation(s)
- Francisca Villanueva-Flores
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Chihuahua, Av. Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chihuahua, Mexico
| | - Igor Garcia-Atutxa
- Máster en Bioinformática y Bioestadística, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, 08018 Barcelona, Spain
| | - Arturo Santos
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
2
|
Rowland C, Smith JH, Moslehi S, Harland B, Dalrymple-Alford J, Taylor RP. Neuron arbor geometry is sensitive to the limited-range fractal properties of their dendrites. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1072815. [PMID: 36926542 PMCID: PMC10013056 DOI: 10.3389/fnetp.2023.1072815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Fractal geometry is a well-known model for capturing the multi-scaled complexity of many natural objects. By analyzing three-dimensional images of pyramidal neurons in the rat hippocampus CA1 region, we examine how the individual dendrites within the neuron arbor relate to the fractal properties of the arbor as a whole. We find that the dendrites reveal unexpectedly mild fractal characteristics quantified by a low fractal dimension. This is confirmed by comparing two fractal methods-a traditional "coastline" method and a novel method that examines the dendrites' tortuosity across multiple scales. This comparison also allows the dendrites' fractal geometry to be related to more traditional measures of their complexity. In contrast, the arbor's fractal characteristics are quantified by a much higher fractal dimension. Employing distorted neuron models that modify the dendritic patterns, deviations from natural dendrite behavior are found to induce large systematic changes in the arbor's structure and its connectivity within a neural network. We discuss how this sensitivity to dendrite fractality impacts neuron functionality in terms of balancing neuron connectivity with its operating costs. We also consider implications for applications focusing on deviations from natural behavior, including pathological conditions and investigations of neuron interactions with artificial surfaces in human implants.
Collapse
Affiliation(s)
- Conor Rowland
- Physics Department, University of Oregon, Eugene, OR, United States
| | - Julian H Smith
- Physics Department, University of Oregon, Eugene, OR, United States
| | - Saba Moslehi
- Physics Department, University of Oregon, Eugene, OR, United States
| | - Bruce Harland
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - John Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Richard P Taylor
- Physics Department, University of Oregon, Eugene, OR, United States
| |
Collapse
|
3
|
Ghai P, Mayerhofer T, Jha RK. Exploring the effectiveness of incorporating carbon nanotubes into bioengineered scaffolds to improve cardiomyocyte function. Expert Rev Clin Pharmacol 2020; 13:1347-1366. [PMID: 33103928 DOI: 10.1080/17512433.2020.1841634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Carbon nanotubes are effective in improving scaffolds to enhance cardiomyocyte function and hold great promise in the field of cardiac tissue engineering. AREAS COVERED A PubMed and Google Scholar search was performed to find relevant literature. 18 total studies were used as primary literature. The literature revealed that the incorporation of carbon nanotube into biocompatible scaffolds that mimic myocardial extracellular matrix enhanced the ability to promote cell functions by improving physical profiles of scaffolds. Several studies showed improved scaffold conductance, mechanical strength, improvements in cell properties such as viability, and beating behavior of cells grown on carbon nanotube incorporated scaffolds. Carbon nanotubes present a unique opportunity in the world of tissue engineering through reparation and regeneration of the myocardium, an otherwise irreparable tissue. EXPERT OPINION The high burden of cardiovascular disease has prompted research into cardiac tissue engineering applications. Carbon-nanotube incorporation into extracellular matrix-mimicking-scaffolds has shown to improve cardiomyocyte conductivity, viability, mechanical strength, beating behavior, and have protected them from damage to a certain degree. These are promising findings that have the potential of becoming the focus of future cardiac tissue engineering research.
Collapse
Affiliation(s)
- Paridhi Ghai
- Department of Pharmacology, Saba University School of Medicine , The Bottom, Saba, Netherlands Antilles
| | - Thomas Mayerhofer
- Department of Pharmacology, Saba University School of Medicine , The Bottom, Saba, Netherlands Antilles
| | - Rajesh Kumar Jha
- Department of Pharmacology, Saba University School of Medicine , The Bottom, Saba, Netherlands Antilles
| |
Collapse
|
4
|
Barrejón M, Rauti R, Ballerini L, Prato M. Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling. ACS NANO 2019; 13:8879-8889. [PMID: 31329426 DOI: 10.1021/acsnano.9b02429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, the use of free-standing carbon nanotube (CNT) films for neural tissue engineering has attracted tremendous attention. CNT films show large surface area and high electrical conductivity that combined with flexibility and biocompatibility may promote neuron growth and differentiation while stimulating neural activity. In addition, adhesion, survival, and growth of neurons can be modulated through chemical modification of CNTs. Axonal and synaptic signaling can also be positively tuned by these materials. Here we describe the ability of free-standing CNT films to influence neuronal activity. We demonstrate that the degree of cross-linking between the CNTs has a strong impact on the electrical conductivity of the substrate, which, in turn, regulates neural circuit outputs.
Collapse
Affiliation(s)
- Myriam Barrejón
- Department of Chemical and Pharmaceutical Sciences , Università degli Studi di Trieste , Via Licio Giorgieri 1 , Trieste 34127 , Italy
| | - Rossana Rauti
- International School for Advanced Studies (SISSA/ISAS) , Trieste 34136 , Italy
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS) , Trieste 34136 , Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , Università degli Studi di Trieste , Via Licio Giorgieri 1 , Trieste 34127 , Italy
- Carbon Bionanotechnology Group , CIC biomaGUNE , Paseo Miramón 182, San Sebastián , Guipúzcoa 20014 , Spain
- Basque Foundation for Science , Ikerbasque, Bilbao 48013 , Spain
| |
Collapse
|
5
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Weng W, He S, Song H, Li X, Cao L, Hu Y, Cui J, Zhou Q, Peng H, Su J. Aligned Carbon Nanotubes Reduce Hypertrophic Scar via Regulating Cell Behavior. ACS NANO 2018; 12:7601-7612. [PMID: 30040897 DOI: 10.1021/acsnano.7b07439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hypertrophic scars, characterized by excessive cell proliferation, disordered cell growth, and aberrant deposition of collagens, could cause significant clinical problems. Herein, aligned carbon nanotubes (ACNTs) were synthesized via chemical vapor deposition, and bulk ACNTs were pulled out from the arrays. The capacity of the ACNTs to reduce hypertrophic scar formation was evaluated both in vitro and in vivo. The results demonstrated that the ACNTs suppressed the overproliferation of fibroblast cells, directed their growth, and inhibited collagen expression in vitro without cell cytotoxicity. Moreover, in vivo evaluation in a rabbit ear model indicated relieved scar hypertrophy after the ACNTs treatment. The gene expression microarray was further used to understand the mechanism, which showed that ACNTs could inhibit the TGFβ pathway to alter the components in the extracellular matrix, cell proliferation, cell cytoskeleton, and cell motility. These findings may provide a potent strategy of using carbon nanotubes in the bioengineering field.
Collapse
Affiliation(s)
| | - Sisi He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials , Fudan University , Shanghai 200438 , China
| | | | | | | | - Yajie Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials , Fudan University , Shanghai 200438 , China
| | | | | | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials , Fudan University , Shanghai 200438 , China
| | | |
Collapse
|
7
|
Marcus M, Baranes K, Park M, Choi IS, Kang K, Shefi O. Interactions of Neurons with Physical Environments. Adv Healthc Mater 2017. [PMID: 28640544 DOI: 10.1002/adhm.201700267] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth strongly relies on multiple chemical and physical signals throughout development and regeneration. Currently, a cure for injured neuronal tissue is an unmet need. Recent advances in fabrication technologies and materials led to the development of synthetic interfaces for neurons. Such engineered platforms that come in 2D and 3D forms can mimic the native extracellular environment and create a deeper understanding of neuronal growth mechanisms, and ultimately advance the development of potential therapies for neuronal regeneration. This progress report aims to present a comprehensive discussion of this field, focusing on physical feature design and fabrication with additional information about considerations of chemical modifications. We review studies of platforms generated with a range of topographies, from micro-scale features down to topographical elements at the nanoscale that demonstrate effective interactions with neuronal cells. Fabrication methods are discussed as well as their biological outcomes. This report highlights the interplay between neuronal systems and the important roles played by topography on neuronal differentiation, outgrowth, and development. The influence of substrate structures on different neuronal cells and parameters including cell fate, outgrowth, intracellular remodeling, gene expression and activity is discussed. Matching these effects to specific needs may lead to the emergence of clinical solutions for patients suffering from neuronal injuries or brain-machine interface (BMI) applications.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Koby Baranes
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Korea
| | - Orit Shefi
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| |
Collapse
|
8
|
Oprych KM, Whitby RLD, Mikhalovsky SV, Tomlins P, Adu J. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes? Adv Healthc Mater 2016; 5:1253-71. [PMID: 27027923 DOI: 10.1002/adhm.201500864] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/10/2016] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury continues to be a major global health problem that can result in debilitating neurological deficits and neuropathic pain. Current state-of-the-art treatment involves reforming the damaged nerve pathway using a nerve autograft. Engineered nerve repair conduits can provide an alternative to the nerve autograft avoiding the inevitable tissue damage caused at the graft donor site. Commercially available nerve repair conduits are currently only considered suitable for repairing small nerve lesions; the design and performance of engineered conduits requires significant improvements to enable their use for repairing larger nerve defects. Carbon nanotubes (CNTs) are an emerging novel material for biomedical applications currently being developed for a range of therapeutic technologies including scaffolds for engineering and interfacing with neurological tissues. CNTs possess a unique set of physicochemical properties that could be useful within nerve repair conduits. This progress report aims to evaluate and consolidate the current literature pertinent to CNTs as a biomaterial for supporting peripheral nerve regeneration. The report is presented in the context of the state-of-the-art in nerve repair conduit design; outlining how CNTs may enhance the performance of next generation peripheral nerve repair conduits.
Collapse
Affiliation(s)
- Karen M. Oprych
- Department of Brain, Repair and Rehabilitation; Institute of Neurology; University College London; Queen Square London WC1N 3BG UK
| | | | - Sergey V. Mikhalovsky
- School of Engineering; Nazarbayev University; Astana 010000 Kazakhstan
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton BN2 4GJ UK
| | | | - Jimi Adu
- School of Pharmacy and Biomolecular Science; University of Brighton; Brighton BN2 4GJ UK
| |
Collapse
|
9
|
Franca E, Jao PF, Fang SP, Alagapan S, Pan L, Yoon JH, Yoon YK, Wheeler BC. Scale of Carbon Nanomaterials Affects Neural Outgrowth and Adhesion. IEEE Trans Nanobioscience 2016; 15:11-8. [PMID: 26829799 PMCID: PMC4791169 DOI: 10.1109/tnb.2016.2519505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI). Carbonized nanofibers were fabricated by electrospinning SU-8 and pyrolyzing the nanofiber depositions. Additional substrates tested were carbonized and SU-8 thin films and SU-8 nanofibers. Surfaces were O2-plasma treated, coated with varying concentrations of PEI, seeded with E18 rat cortical cells, and examined at 3, 4, and 7 days in vitro (DIV). Neural adhesion was examined at 4 DIV utilizing a parallel plate flow chamber. At 3 DIV, neural viability was lower on the nanofiber and thin film depositions treated with higher PEI concentrations which corresponded with significantly higher zeta potentials (surface charge); this significance was drastically higher on the nanofibers suggesting that the nanostructure may collect more PEI molecules, causing increased toxicity. At 7 DIV, significantly higher neurite outgrowth was observed on SU-8 nanofiber substrates with nanofibers a significant fraction of a neuron's size. No differences were detected for carbonized nanofibers or carbon nanotubes. Both carbonized and SU-8 nanofibers had significantly higher cellular adhesion post-flow in comparison to controls whereas the carbon nanotubes were statistically similar to control substrates. These data suggest a neural cell preference for larger-scale nanomaterials with specific surface treatments. These characteristics could be taken advantage of in the future design and fabrication of neural microelectrodes.
Collapse
|
10
|
Influence of different types of carbon nanotubes on muscle cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:218-25. [DOI: 10.1016/j.msec.2014.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/19/2014] [Indexed: 11/23/2022]
|
11
|
Xie X, Zhao W, Lee HR, Liu C, Ye M, Xie W, Cui B, Criddle CS, Cui Y. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges. ACS NANO 2014; 8:11958-11965. [PMID: 25415858 DOI: 10.1021/nn504898p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological cells often interact with their local environment through subcellular structures at a scale of tens to hundreds of nanometers. This study investigated whether topographic features fabricated at a similar scale would impact cellular functions by promoting the interaction between subcellular structures and nanomaterials. Crinkling of carbon nanotube films by solvent-induced swelling and shrinkage of substrate resulted in the formation of ridge features at the subcellular scale on both flat and three-dimensional substrates. Biological cells grown upon these crinkled CNT films had enhanced activity: neuronal cells grew to higher density and displayed greater cell polarization; exoelectrogenic micro-organisms transferred electrons more efficiently. The results indicate that crinkling of thin CNT films creates secondary mesoscale features that enhance attachment, growth, and electron transfer.
Collapse
Affiliation(s)
- Xing Xie
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Santoro F, Panaitov G, Offenhäusser A. Defined patterns of neuronal networks on 3D thiol-functionalized microstructures. NANO LETTERS 2014; 14:6906-9. [PMID: 25415470 DOI: 10.1021/nl502922b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It is very challenging to study the behavior of neuronal cells in a network due to the multiple connections between the cells. Our idea is then to simplify such a network with a configuration where cells can have just a fixed number of connections in order to create a well-defined and ordered network. Here, we report about guiding primary cortical neurons with three-dimensional gold microspines selectively functionalized with an amino-terminated molecule.
Collapse
Affiliation(s)
- Francesca Santoro
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich , 52425 Jülich, Germany
| | | | | |
Collapse
|
13
|
Fabbro A, Prato M, Ballerini L. Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 2013; 65:2034-44. [PMID: 23856411 DOI: 10.1016/j.addr.2013.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/29/2013] [Accepted: 07/05/2013] [Indexed: 01/16/2023]
Abstract
In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction.
Collapse
|
14
|
Carbon nanomaterials for nerve tissue stimulation and regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:35-49. [PMID: 24268231 DOI: 10.1016/j.msec.2013.09.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/28/2013] [Indexed: 01/25/2023]
Abstract
Nanotechnology offers new perspectives in the field of innovative medicine, especially for reparation and regeneration of irreversibly damaged or diseased nerve tissues due to lack of effective self-repair mechanisms in the peripheral and central nervous systems (PNS and CNS, respectively) of the human body. Carbon nanomaterials, due to their unique physical, chemical and biological properties, are currently considered as promising candidates for applications in regenerative medicine. This chapter discusses the potential applications of various carbon nanomaterials including carbon nanotubes, nanofibers and graphene for regeneration and stimulation of nerve tissue, as well as in drug delivery systems for nerve disease therapy.
Collapse
|
15
|
Nguyen TD, Hogue IB, Cung K, Purohit PK, McAlpine MC. Tension-induced neurite growth in microfluidic channels. LAB ON A CHIP 2013; 13:3735-3740. [PMID: 23884453 DOI: 10.1039/c3lc50681a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The generation of an effective method for stimulating neuronal growth in specific directions, along well-defined geometries, and in numerous cells could impact areas ranging from fundamental studies of neuronal evolution and morphogenesis, to applications in biomedical diagnostics and nerve regeneration. Applied mechanical stress can regulate neurite growth. Indeed, previous studies have shown that neuronal cells can develop and extend neurites with rapid growth rates under applied "towing" tensions imparted by micropipettes. Yet, such methods are complex and exhibit low throughputs, as the tension is applied serially to individual cells. Here we present a novel approach to inducing neurite growth in multiple cells in parallel, by using a miniaturized platform with numerous microchannels. Upon connection of a vacuum to these microchannels, tension can be applied on multiple cells simultaneously to induce the growth of neurites. A theoretical model was also developed to understand the effect of tension on the dynamics of neurite development.
Collapse
Affiliation(s)
- Thanh D Nguyen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
16
|
Yaka C, Björk P, Schönberg T, Erlandsson A. A Novel In Vitro Injury Model Based on Microcontact Printing Demonstrates Negative Effects of Hydrogen Peroxide on Axonal Regeneration both in Absence and Presence of Glia. J Neurotrauma 2013; 30:392-402. [DOI: 10.1089/neu.2012.2562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cane Yaka
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Anna Erlandsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Béduer A, Seichepine F, Flahaut E, Loubinoux I, Vaysse L, Vieu C. Elucidation of the role of carbon nanotube patterns on the development of cultured neuronal cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012. [PMID: 23190396 DOI: 10.1021/la304278n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbon nanotubes (CNTs) promise various novel neural biomedical applications for interfacing neurons with electronic devices or to design appropriate biomaterials for tissue regeneration. In this study, we use a new methodology to pattern SiO(2) cell culture surfaces with double-walled carbon nanotubes (DWNTs). In contrast to homogeneous surfaces, patterned surfaces allow us to investigate new phenomena about the interactions between neural cells and CNTs. Our results demonstrate that thin layers of DWNTs can serve as effective substrates for neural cell culture. Growing neurons sense the physical and chemical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. Cells exhibit comparable adhesion and differentiation scores on homogeneous CNT layers and on a homogeneous control SiO(2) surface. Conversely, on patterned surfaces, it is found that cells preferentially grow on CNT patterns and that neurites are guided by micrometric CNT patterns. To further elucidate this observation, we investigate the interactions between CNTs and proteins that are contained in the cell culture medium by using quartz crystal microbalance measurements. Finally, we show that protein adsorption is enhanced on CNT features and that this effect is thickness dependent. CNTs seem to act as a sponge for culture medium elements, possibly explaining the selectivity in cell growth localization and differentiation.
Collapse
Affiliation(s)
- Amélie Béduer
- CNRS-LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France.
| | | | | | | | | | | |
Collapse
|
18
|
Polyvalent display of RGD motifs on turnip yellow mosaic virus for enhanced stem cell adhesion and spreading. Acta Biomater 2012; 8:2978-85. [PMID: 22522012 DOI: 10.1016/j.actbio.2012.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022]
Abstract
Turnip yellow mosaic virus (TYMV) is a stable 28 nm icosahedral plant virus that can be isolated in gram quantities. In order to study the polyvalent effect of Arg-Gly-Asp (RGD) clustering on the response of bone marrow stem cells (BMSCs), an RGD motif was genetically displayed on the coat protein of the TYMV capsid. Composite films composed of either wild-type TYMV or TYMV-RGD44, in combination with poly(allylamine hydrochloride) (PAH), were fabricated by a layer-by-layer adsorption of virus and PAH. The deposition process was studied by quartz crystal microbalance, UV-visible spectroscopy and atomic force microscopy. BMSC adhesion assays showed enhanced cell adhesion and spreading on TYMV-RGD44 coated substrates compared to native TYMV. These results demonstrate the potential of TYMV as a viable scaffold for bioactive peptide display and cell culturing studies.
Collapse
|
19
|
Fan L, Feng C, Zhao W, Qian L, Wang Y, Li Y. Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate. NANO LETTERS 2012; 12:3668-73. [PMID: 22694271 DOI: 10.1021/nl301428w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Superaligned carbon nanotube (CNT) yarn patterned substrates were developed as the topographic scaffold for guiding the neurite outgrowth. As-prepared patterned substrates were used for culturing rat hippocampal neurons, without purifying and functionalizing processes on the CNTs. The neurite outgrowth on the patterned substrate exhibited a strong tendency to being aligned along the CNT yarns long axes. The neurite grown along the CNT yarns had much less branching than the one on a uniform planar substrate typically used for neuron culture. These results indicate that the pure CNT yarns possess the main characteristics of a guidance scaffold for neurite outgrowth. Furthermore, the CNT yarns can be mass produced and be easily weaved into desired structures, which may make them attractive for neuronal regeneration and tissue engineering.
Collapse
Affiliation(s)
- Li Fan
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | |
Collapse
|
20
|
Mooney E, Mackle JN, Blond DJP, O'Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM. The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 2012; 33:6132-9. [PMID: 22681974 DOI: 10.1016/j.biomaterials.2012.05.032] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/15/2012] [Indexed: 12/29/2022]
Abstract
Once damaged, cardiac muscle has little intrinsic repair capability due to the poor regeneration potential of remaining cardiomyocytes. One method of overcoming this issue is to deliver functional cells to the injured myocardium to promote repair. To address this limitation we sought to test the hypothesis that electroactive carbon nanotubes (CNT) could be employed to direct mesenchymal stem cell (MSC) differentiation towards a cardiomyocyte lineage. Using a two-pronged approach, MSCs exposed to medium containing CNT and MSCs seeded on CNT based polylactic acid scaffolds were electrically stimulated in an electrophysiological bioreactor. After electrical stimulation the cells reoriented perpendicular to the direction of the current and adopted an elongated morphology. Using qPCR, an upregulation in a range of cardiac markers was detected, the greatest of which was observed for cardiac myosin heavy chain (CMHC), where a 40-fold increase was observed for the electrically stimulated cells after 14 days, and a 12-fold increase was observed for the electrically stimulated cells seeded on the PLA scaffolds after 10 days. Differentiation towards a cardioprogenitor cell was more evident from the western blot analysis, where upregulation of Nkx2.5, GATA-4, cardiac troponin t (CTT) and connexin43 (C43) was seen to occur. This was echoed in immunofluorescent staining, where increased levels of CTT, CMHC and C43 protein expression were observed after electrical stimulation for both cells and cell-seeded scaffolds. More interestingly, there was evidence of increased cross talk between the cells as shown by the pattern of C43 staining after electrical stimulation. These results establish a paradigm for nanoscale biomimetic cues that can be readily translated to other electroactive tissue repair applications.
Collapse
Affiliation(s)
- Emma Mooney
- Regenerative Medicine Institute (REMEDI), Orbsen Building, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu M, Zhou G, Song W, Li P, Liu H, Niu X, Fan Y. Effect of nano-hydroxyapatite on the axonal guidance growth of rat cortical neurons. NANOSCALE 2012; 4:3201-3207. [PMID: 22504488 DOI: 10.1039/c2nr30072a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanomaterials such as carbon nanotubes (CNT) can improve axonal connecting in a target direction during regeneration, however, it is limited by the neurotoxicity of CNT. Here we investigate the possible protective effect of nano-hydroxyapatite (n-HA) against nerve injury, as well as CNT in cultured rat cortical neurons. In this study the nanomaterials were characterized by X-Ray diffractometry (XRD) and atomic force microscopy (AFM) analysis. Our results showed that axonal migration and extension were increased significantly after n-HA treatment by immunocytochemistry assay. The patch clamp assay results showed that n-HA acts protectively after nerve injury, which inhibited the average amplitude and frequency of excitatory postsynaptic currents (EPSCs). n-HA is not neurotoxic for the electrophysiology activity of cells. To find the effect of n-HA on axonal guidance growth in the cultured cortical neurons, Netrin 1, one of the axonal guidance cues, was determined by RT-PCR and western blot assay. Compared to the control group, n-HA down-regulated the mRNA level of netrin 1, and moreover, the expression of netrin 1 decreased significantly in the cells. n-HA caused the axonal guidance growth to be mediated by netrin 1 during nerve regeneration. Therefore, the data from the present study provided a new approach for the therapy or prevention of nerve injury.
Collapse
Affiliation(s)
- Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L, Mestroni L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. NANO LETTERS 2012; 12:1831-1838. [PMID: 22432413 DOI: 10.1021/nl204064s] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoscale manipulations of the extracellular microenvironment are increasingly attracting attention in tissue engineering. Here, combining microscopy, biological, and single-cell electrophysiological methodologies, we demonstrate that neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes interact with carbon nanotubes by forming tight contacts and show increased viability and proliferation. Furthermore, we observed changes in the electrophysiological properties of cardiomyocytes, suggesting that carbon nanotubes are able to promote cardiomyocyte maturation.
Collapse
|
23
|
GhoshMitra S, Diercks DR, Mills NC, Hynds DL, Ghosh S. Role of engineered nanocarriers for axon regeneration and guidance: current status and future trends. Adv Drug Deliv Rev 2012; 64:110-25. [PMID: 22240258 DOI: 10.1016/j.addr.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/28/2011] [Accepted: 12/22/2011] [Indexed: 02/07/2023]
Abstract
There are approximately 1.5 million people who experience traumatic injuries to the brain and 265,000 who experience traumatic injuries to the spinal cord each year in the United States. Currently, there are few effective treatments for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. Smart, remotely tunable, multifunctional micro- and nanocarriers hold promise for delivering treatments to the CNS and targeting specific neurons to enhance axon regeneration and synaptogenesis. Furthermore, assessing the efficacy of treatments could be enhanced by biocompatible nanovectors designed for imaging in vivo. Recent developments in nanoengineering offer promising alternatives for designing biocompatible micro- and nanovectors, including magnetic nanostructures, carbon nanotubes, and quantum dot-based systems for controlled release of therapeutic and diagnostic agents to targeted CNS cells. This review highlights recent achievements in the development of smart nanostructures to overcome the existing challenges for treating CNS injuries.
Collapse
|
24
|
Applications of Inorganic Nanoparticles for Biotechnology. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-415769-9.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Lin DW, Bettinger CJ, Ferreira JP, Wang CL, Bao Z. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine. ACS NANO 2011; 5:10026-10032. [PMID: 22053708 DOI: 10.1021/nn203870c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) have shown promise for use in organic electronic applications including thin film transistors, conducting electrodes, and biosensors. Additionally, previous studies found applications for SWNTs in bioelectronic devices, including drug delivery carriers and scaffolds for tissue engineering. There is a current need to rapidly process SWNTs from solution phase to substrates in order to produce device structures that are also biocompatible. Studies have shown the use of surfaces covalently functionalized with primary amines to selectively adsorb semiconducting SWNTs. Here we report the potential of substrates modified with physisorbed polymers as a rapid biomaterials-based approach for the formation of SWNT networks. We hypothesized that rapid surface modification could be accomplished by adsorption of poly-L-lysine (PLL), which is also frequently used in biological applications. We detail a rapid and facile method for depositing SWNTs onto various substrate materials using the amine-rich PLL. Dispersions of SWNTs of different chiralities suspended in N-methylpyrrolidinone (NMP) were spin coated onto various PLL-treated substrates. SWNT adsorption and alignment were characterized by atomic force microscopy (AFM) while electrical properties of the network were characterized by 2-terminal resistance measurements. Additionally, we investigated the relative chirality of the SWNT networks by micro-Raman spectroscopy. The SWNT surface density was strongly dependent upon the adsorbed concentration of PLL on the surface. SWNT adsorbed on PLL-treated substrates exhibited enhanced biocompatibility compared to SWNT networks fabricated using alternative methods such as drop casting. These results suggest that PLL films can promote formation of biocompatible SWNT networks for potential biomedical applications.
Collapse
Affiliation(s)
- Debora W Lin
- Department of Chemical Engineering, Stanford University, Stauffer III, 381 North-South Mall, Stanford, California 94035-5025, United States
| | | | | | | | | |
Collapse
|
26
|
Kang K, Choi SE, Jang HS, Cho WK, Nam Y, Choi IS, Lee JS. In vitro developmental acceleration of hippocampal neurons on nanostructures of self-assembled silica beads in filopodium-size ranges. Angew Chem Int Ed Engl 2011; 51:2855-8. [PMID: 22121089 DOI: 10.1002/anie.201106271] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/07/2011] [Indexed: 12/17/2022]
Affiliation(s)
- Kyungtae Kang
- Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Kang K, Choi SE, Jang HS, Cho WK, Nam Y, Choi IS, Lee JS. In Vitro Developmental Acceleration of Hippocampal Neurons on Nanostructures of Self-Assembled Silica Beads in Filopodium-Size Ranges. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Yoo SJ, Nam Y. Neurons on Parafilm: versatile elastic substrates for neuronal cell cultures. J Neurosci Methods 2011; 204:28-34. [PMID: 22068030 DOI: 10.1016/j.jneumeth.2011.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 01/23/2023]
Abstract
A variety of materials has been applied to neuronal cell culture substrates to improve the efficiency of the culture and to provide pertinent cell growth environment. Here we report the application of Parafilm(®) M ('Parafilm') as a novel substrate for neuronal culture and patterning. Cell culture results show that elastic Parafilm had effects on cell viability, length and number of neurites, and soma spreading. Parafilm was also an effective substrate to obtain patterned neuronal cultures using a conventional micro-contract printing (μCP) technique. Polylysine micropatterns in line or grid forms were readily transferred from PDMS stamp to bare Parafilm surfaces and spatially confined neuronal cultures were successfully maintained for over three weeks. We also demonstrate that batch-processing cell culture substrates can be easily fabricated using a piece of Parafilm. The softness, plasticity, and hydrophobicity were main features that made it attractive for Parafilm to be considered as a practical cell culture platform. The results can be extended to develop an inexpensive and practical neuronal culture substrates in tissue engineering and biochip applications.
Collapse
Affiliation(s)
- Sang Jin Yoo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
29
|
Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC-12 cells. Cell Biol Int 2011; 35:741-5. [DOI: 10.1042/cbi20100705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Liu J, Appaix F, Bibari O, Marchand G, Benabid AL, Sauter-Starace F, Waard MD. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays. NANOTECHNOLOGY 2011; 22:195101. [PMID: 21436508 PMCID: PMC3103516 DOI: 10.1088/0957-4484/22/19/195101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.
Collapse
Affiliation(s)
- Jie Liu
- CEA LETI
CEACEA / Léti 17 rue des Martyrs 38054 Grenoble cedex 9,FR
| | - Florence Appaix
- GIN, Grenoble Institut des Neurosciences
INSERM : U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9,FR
| | - Olivier Bibari
- CEA LETI
CEACEA / Léti 17 rue des Martyrs 38054 Grenoble cedex 9,FR
| | - Gilles Marchand
- CEA LETI
CEACEA / Léti 17 rue des Martyrs 38054 Grenoble cedex 9,FR
| | | | - Fabien Sauter-Starace
- CEA LETI
CEACEA / Léti 17 rue des Martyrs 38054 Grenoble cedex 9,FR
- * Authors to whom correspondence may be addressed: Michel De Waard Fabien Sauter
| | - Michel De Waard
- GIN, Grenoble Institut des Neurosciences
INSERM : U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9,FR
- * Authors to whom correspondence may be addressed: Michel De Waard Fabien Sauter
| |
Collapse
|
31
|
Fricke R, Zentis PD, Rajappa LT, Hofmann B, Banzet M, Offenhäusser A, Meffert SH. Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 2011; 32:2070-6. [DOI: 10.1016/j.biomaterials.2010.11.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
32
|
Staii C, Viesselmann C, Ballweg J, Williams JC, Dent EW, Coppersmith SN, Eriksson MA. Distance dependence of neuronal growth on nanopatterned gold surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:233-9. [PMID: 21121598 DOI: 10.1021/la102331x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Understanding network development in the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. The mechanisms of axonal navigation to target regions and the specific interactions with guidance factors such as membrane-bound proteins, chemical gradients, mechanical guidance cues, etc., are largely unknown. A current limitation for the study of neural network formation is the ability to control precisely the connectivity of small groups of neurons. A first step in designing such networks is to understand the "rules" central nervous system (CNS) neurons use to form functional connections with one another. Here we begin to delineate novel rules for growth and connectivity of small numbers of neurons patterned on Au substrates in simplified geometries. These studies yield new insights into the mechanisms determining the organizational features present in intact systems. We use a previously reported atomic force microscopy (AFM) nanolithography method to control precisely the location and growth of neurons on these surfaces. By examining a series of systems with different geometrical parameters, we quantitatively and systematically analyze how neuronal growth depends on these parameters.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States.
| | | | | | | | | | | | | |
Collapse
|
33
|
Namgung S, Kim T, Baik KY, Lee M, Nam JM, Hong S. Fibronectin-carbon-nanotube hybrid nanostructures for controlled cell growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:56-61. [PMID: 21061404 DOI: 10.1002/smll.201001513] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Seon Namgung
- Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | | | |
Collapse
|