1
|
Aluculesei A, Zhang Y, Huang S, Wang Z, Cang Y, Min Y, Fytas G. Elasticity Anisotropy of Bombyx mori Silkworm Silk Fiber by Brillouin Light Spectroscopy. Biomacromolecules 2025; 26:2479-2486. [PMID: 40168590 PMCID: PMC12004526 DOI: 10.1021/acs.biomac.4c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Silkworm silk has long been an important natural protein fiber for textile and medical applications, where its superior mechanical properties play a crucial role. Despite the many studies by conventional stress-strain tests, our understanding of the mechanical properties of silkworm silk remains limited. This work investigates the complete elastic properties of Bombyx mori silkworm silk in a noncontact, noninvasive manner by conducting Brillouin light spectroscopy experiments. The analysis of the angle-dependent sound velocities leads to the determination of the full elastic tensor and the engineering mechanical properties of the silkworm silk in natural and stretched states. In the natural state, the axial and lateral Young's moduli are 23.4 ± 1.0 and 10.4 ± 0.5 GPa, respectively, giving an elastic anisotropy of 2.3. Different from the strain-hardening behavior of the spider silk, the mechanical properties of the silkworm silk exhibit a weak strain-dependence up to the breakage strain (∼20%).
Collapse
Affiliation(s)
- Alina Aluculesei
- Institute
of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion 70013, Greece
| | - Yuanzhong Zhang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Shifeng Huang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zuyuan Wang
- School of
Mechanical and Electrical Engineering, University
of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Yu Cang
- School of
Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu
Road 100, Shanghai 200092, China
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Material
Science and Engineering Program, University
of California, Riverside, California 92521, United States
| | - George Fytas
- Institute
of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion 70013, Greece
- Max Planck
Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
2
|
Wang Q, McArdle P, Wang SL, Wilmington RL, Xing Z, Greenwood A, Cotten ML, Qazilbash MM, Schniepp HC. Protein secondary structure in spider silk nanofibrils. Nat Commun 2022; 13:4329. [PMID: 35902573 PMCID: PMC9334623 DOI: 10.1038/s41467-022-31883-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Nanofibrils play a pivotal role in spider silk and are responsible for many of the impressive properties of this unique natural material. However, little is known about the internal structure of these protein fibrils. We carry out polarized Raman and polarized Fourier-transform infrared spectroscopies on native spider silk nanofibrils and determine the concentrations of six distinct protein secondary structures, including β-sheets, and two types of helical structures, for which we also determine orientation distributions. Our advancements in peak assignments are in full agreement with the published silk vibrational spectroscopy literature. We further corroborate our findings with X-ray diffraction and magic-angle spinning nuclear magnetic resonance experiments. Based on the latter and on polypeptide Raman spectra, we assess the role of key amino acids in different secondary structures. For the recluse spider we develop a highly detailed structural model, featuring seven levels of structural hierarchy. The approaches we develop are directly applicable to other proteinaceous materials. Secondary fibril structure is a key component of the mechanical properties of protein materials like silk, yet, limited information is known about the internal structure of these protein fibrils. Here, the authors report on the use of polarised Raman and FTIR spectroscopy to study silk materials and identify six distinct secondary structures.
Collapse
Affiliation(s)
- Qijue Wang
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Patrick McArdle
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Stephanie L Wang
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Ryan L Wilmington
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Zhen Xing
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Alexander Greenwood
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - M Mumtaz Qazilbash
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Hannes C Schniepp
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA.
| |
Collapse
|
3
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Abstract
Spiders are nature's engineers that build lightweight and high-performance web architectures often several times their size and with very few supports; however, little is known about web mechanics and geometries throughout construction, especially for three-dimensional (3D) spider webs. In this work, we investigate the structure and mechanics for a Tidarren sisyphoides spider web at varying stages of construction. This is accomplished by imaging, modeling, and simulations throughout the web-building process to capture changes in the natural web geometry and the mechanical properties. We show that the foundation of the web geometry, strength, and functionality is created during the first 2 d of construction, after which the spider reinforces the existing network with limited expansion of the structure within the frame. A better understanding of the biological and mechanical performance of the 3D spider web under construction could inspire sustainable robust and resilient fiber networks, complex materials, structures, scaffolding, and self-assembly strategies for hierarchical structures and inspire additive manufacturing methods such as 3D printing as well as inspire artistic and architectural and engineering applications.
Collapse
|
5
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5020057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spider silk is an astonishingly tough biomaterial that consists almost entirely of large proteins. Studying the secrets behind the high strength nature of spider webs is very challenging due to their miniature size. In spite of their complex nature, researchers have always been inspired to mimic Nature for developing new products or enhancing the performance of existing technologies. Accordingly, the spider web can be taken as a model for optimal fiber orientation for composite materials to be used in critical structural applications. In this study an attempt is made to analyze the geometrical characteristics of the web construction building units such as spirals and radials. As a measurement tool, we have used a developed MATLAB algorithm code for measuring the node to node of rings and radials angle of orientation. Spider web image samples were collected randomly from an ecological niche with black background sample collection tools. The study shows that the radial angle of orientation is 12.7 degrees with 5 mm distance for the spirals’ mesh size. The extracted geometrical numeric values from the spider web show moderately skewed statistical data. The study sheds light on spider web utilization to develop an optimized fiber orientation reinforced composite structure for constructing, for instance, shell structures, pressure vessels and fuselage cones for the aviation industry.
Collapse
|
7
|
Su I, Jung GS, Narayanan N, Buehler MJ. Perspectives on three-dimensional printing of self-assembling materials and structures. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
9
|
Valente F, Allardyce BJ, Hepburn MS, Wijesinghe P, Redmond SL, Chen J, Kennedy BF, Rajkhowa R, Atlas MD, Wang X, Dilley RJ. Enhancing Resistance of Silk Fibroin Material to Enzymatic Degradation by Cross-Linking Both Crystalline and Amorphous Domains. ACS Biomater Sci Eng 2020; 6:2459-2468. [PMID: 33455319 DOI: 10.1021/acsbiomaterials.9b00873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk fibroin (SF) membranes are finding widespread use as biomaterial scaffolds in a range of tissue engineering applications. The control over SF scaffold degradation kinetics is usually driven by the proportion of SF crystalline domains in the formulation, but membranes with a high β-sheet content are brittle and still contain amorphous domains, which are highly susceptible to enzymatic degradation. In this work, photo-cross-linking of SF using a ruthenium-based method, and with the addition of glycerol, was used to generate robust and flexible SF membranes for long-term tissue engineering applications requiring slow degradation of the scaffolds. The resulting mechanical properties, protein secondary structure, and degradation rate were investigated. In addition, the cytocompatibility and versatility of porous micropatterning of SF films were assessed. The photo-cross-linking reduced the enzymatic degradation of SF in vitro without interfering with the β-sheet content of the SF material, while adding glycerol to the composition grants flexibility to the membranes. By combining these methods, the membrane resistance to protease degradation was significantly enhanced compared to either method alone, and the SF mechanical properties were not impaired. We hypothesize that photo-cross-linking protects the SF amorphous regions from enzymatic degradation and complements the natural protection offered by β-sheets in the crystalline region. Overall, this approach presents broad utility in tissue engineering applications that require a long-term degradation profile and mechanical support.
Collapse
Affiliation(s)
- Filippo Valente
- Ear Science Institute Australia; Subiaco, Australia and Ear Sciences Centre, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands 6009, Australia
| | | | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth 6009, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth 6009, Australia
| | - Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth 6009, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth 6009, Australia.,SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Sharon L Redmond
- Ear Science Institute Australia; Subiaco, Australia and Ear Sciences Centre, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands 6009, Australia
| | - Jingyu Chen
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth 6009, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth 6009, Australia
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia
| | - Marcus D Atlas
- Ear Science Institute Australia; Subiaco, Australia and Ear Sciences Centre, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands 6009, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong 3220, Australia
| | - Rodney J Dilley
- Ear Science Institute Australia; Subiaco, Australia and Ear Sciences Centre, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands 6009, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
10
|
Patel M, Dubey DK, Singh SP. Phenomenological models of Bombyx mori silk fibroin and their mechanical behavior using molecular dynamics simulations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110414. [DOI: 10.1016/j.msec.2019.110414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022]
|
11
|
Kamada A, Levin A, Toprakcioglu Z, Shen Y, Lutz-Bueno V, Baumann KN, Mohammadi P, Linder MB, Mezzenga R, Knowles TPJ. Modulating the Mechanical Performance of Macroscale Fibers through Shear-Induced Alignment and Assembly of Protein Nanofibrils. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904190. [PMID: 31595701 DOI: 10.1002/smll.201904190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Indexed: 05/09/2023]
Abstract
Protein-based fibers are used by nature as high-performance materials in a wide range of applications, including providing structural support, creating thermal insulation, and generating underwater adhesives. Such fibers are commonly generated through a hierarchical self-assembly process, where the molecular building blocks are geometrically confined and aligned along the fiber axis to provide a high level of structural robustness. Here, this approach is mimicked by using a microfluidic spinning method to enable precise control over multiscale order during the assembly process of nanoscale protein nanofibrils into micro- and macroscale fibers. By varying the flow rates on chip, the degree of nanofibril alignment can be tuned, leading to an orientation index comparable to that of native silk. It is found that the Young's modulus of the resulting fibers increases with an increasing level of nanoscale alignment of the building blocks, suggesting that the mechanical properties of macroscopic fibers can be controlled through varying the level of ordering of the nanoscale building blocks. Capitalizing on strategies evolved by nature, the fabrication method allows for the controlled formation of macroscopic fibers and offers the potential to be applied for the generation of further novel bioinspired materials.
Collapse
Affiliation(s)
- Ayaka Kamada
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Aviad Levin
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Viviane Lutz-Bueno
- Laboratory of Food and Soft Materials Science, ETH Zurich, Schmelzbergstrasse, 9, 8092, Zurich, Switzerland
| | - Kevin N Baumann
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076, Aalto, Espoo, Finland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials Science, ETH Zurich, Schmelzbergstrasse, 9, 8092, Zurich, Switzerland
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
12
|
Luo J, Yang J, Zheng X, Ke X, Chen Y, Tan H, Li J. A Highly Stretchable, Real-Time Self-Healable Hydrogel Adhesive Matrix for Tissue Patches and Flexible Electronics. Adv Healthc Mater 2020; 9:e1901423. [PMID: 31945276 DOI: 10.1002/adhm.201901423] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/29/2019] [Indexed: 01/05/2023]
Abstract
The development of biocompatible self-healable hydrogel adhesives for skin or wet, stretchable surfaces in air or under water is highly desirable for various biomedical applications ranging from skin patches to bioelectronics. However, it has been proven to be very challenging because most existing hydrogel adhesives are cytotoxic, or poorly adhere to dynamic or stretchable surfaces in wet environments. In this study, multifunctional hydrogel adhesives derived from silk fibroin (SF) and tannic acid (TA) are effectively constructed with high extensibility (i.e., up to 32 000%), real-time self-healing capability, underwater adhesivity, water-sealing ability, biocompatibility, and antibiotic properties. According to all-atom molecular dynamics simulation studies, the properties of the hydrogel adhesives, especially high extensibility, are mainly attributed to the hydrogen bonds between TA and the SF chains in water, and water and TA molecules can result in loose assemblies with fewer β-sheets, and more random coils in the SF. Conductivity can also be easily introduced to the adhesive matrix and adjusted when the strain of the adhesives occurs. Considering that it has multiple functions and can be efficiently prepared, the proposed hydrogel adhesives have the potential for future medical applications, such as tissue adhesives and integrated bioelectronics.
Collapse
Affiliation(s)
- Jun Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan University Chengdu 610041 P. R. China
| | - Xiaoran Zheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Xiang Ke
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Yantao Chen
- Shenzhen Key Laboratory of Functional PolymerCollege of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Hong Tan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jianshu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| |
Collapse
|
13
|
Viera C, Garcia LF, Lacava M, Fang J, Wang X, Kasumovic MM, Blamires SJ. Silk physico-chemical variability and mechanical robustness facilitates intercontinental invasibility of a spider. Sci Rep 2019; 9:13273. [PMID: 31519928 PMCID: PMC6744404 DOI: 10.1038/s41598-019-49463-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/24/2019] [Indexed: 01/27/2023] Open
Abstract
There are substantive problems associated with invasive species, including threats to endemic organisms and biodiversity. Understanding the mechanisms driving invasions is thus critical. Variable extended phenotypes may enable animals to invade into novel environments. We explored here the proposition that silk variability is a facilitator of invasive success for the highly invasive Australian house spider, Badumna longinqua. We compared the physico-chemical and mechanical properties and underlying gene expressions of its major ampullate (MA) silk between a native Sydney population and an invasive counterpart from Montevideo, Uruguay. We found that while differential gene expressions might explain the differences in silk amino acid compositions and protein nanostructures, we did not find any significant differences in silk mechanical properties across the populations. Our results accordingly suggest that B. longinqua’s silk remains functionally robust despite underlying physico-chemical and genetic variability as the spider expands its range across continents. They also imply that a combination of silk physico-chemical plasticity combined with mechanical robustness might contribute more broadly to spider invasibilities.
Collapse
Affiliation(s)
- Carmen Viera
- Entomología, Universidad de la República de Uruguay, Montevideo, Uruguay.,Laboratorio Ecología del Comportamiento (IIBCE), Montevideo, Uruguay
| | - Luis F Garcia
- Centro Universitario Regional del Este, Sede Treinta y Tres, Universidad de la República, Treinta y Tres, Uruguay
| | - Mariángeles Lacava
- Laboratorio Ecología del Comportamiento (IIBCE), Montevideo, Uruguay.,Centro Universitario de Rivera, Universidad de la República, Rivera, Uruguay
| | - Jian Fang
- Deakin University, Institute for Frontier Materials (IFM), Waurn Ponds Campus, Geelong, 3220, Australia
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials (IFM), Waurn Ponds Campus, Geelong, 3220, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
14
|
Mohammadi P, Aranko AS, Landowski CP, Ikkala O, Jaudzems K, Wagermaier W, Linder MB. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. SCIENCE ADVANCES 2019; 5:eaaw2541. [PMID: 31548982 PMCID: PMC6744269 DOI: 10.1126/sciadv.aaw2541] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/07/2019] [Indexed: 05/20/2023]
Abstract
Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into β sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.
Collapse
Affiliation(s)
- Pezhman Mohammadi
- Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
- Corresponding author. (P.M.); (M.B.L.)
| | - A. Sesilja Aranko
- Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | | | - Olli Ikkala
- Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, 1006 Riga, Latvia
- Department of Chemistry, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D 14424 Potsdam, Germany
| | - Markus B. Linder
- Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
- Corresponding author. (P.M.); (M.B.L.)
| |
Collapse
|
15
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|
16
|
López Barreiro D, Yeo J, Tarakanova A, Martin-Martinez FJ, Buehler MJ. Multiscale Modeling of Silk and Silk-Based Biomaterials-A Review. Macromol Biosci 2018; 19:e1800253. [PMID: 30375164 DOI: 10.1002/mabi.201800253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Indexed: 12/25/2022]
Abstract
Silk embodies outstanding material properties and biologically relevant functions achieved through a delicate hierarchical structure. It can be used to create high-performance, multifunctional, and biocompatible materials through mild processes and careful rational material designs. To achieve this goal, computational modeling has proven to be a powerful platform to unravel the causes of the excellent mechanical properties of silk, to predict the properties of the biomaterials derived thereof, and to assist in devising new manufacturing strategies. Fine-scale modeling has been done mainly through all-atom and coarse-grained molecular dynamics simulations, which offer a bottom-up description of silk. In this work, a selection of relevant contributions of computational modeling is reviewed to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods. Future research directions are also pointed out, including approaches such as 3D printing and machine learning, that may enable a high throughput design and manufacturing of silk-based biomaterials.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA.,Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore.,Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Francisco J Martin-Martinez
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ. Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 2018; 15:20180193. [PMID: 30232240 PMCID: PMC6170774 DOI: 10.1098/rsif.2018.0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Spiders are abundantly found in nature and most ecosystems, making up more than 47 000 species. This ecological success is in part due to the exceptional mechanics of the spider web, with its strength, toughness, elasticity and robustness, which originate from its hierarchical structures all the way from sequence design to web architecture. It is a unique example in nature of high-performance material design. In particular, to survive in different environments, spiders have optimized and adapted their web architecture by providing housing, protection, and an efficient tool for catching prey. The most studied web in literature is the two-dimensional (2D) orb web, which is composed of radial and spiral threads. However, only 10% of spider species are orb-web weavers, and three-dimensional (3D) webs, such as funnel, sheet or cobwebs, are much more abundant in nature. The complex spatial network and microscale size of silk fibres are significant challenges towards determining the topology of 3D webs, and only a limited number of previous studies have attempted to quantify their structure and properties. Here, we focus on developing an innovative experimental method to directly capture the complete digital 3D spider web architecture with micron scale resolution. We built an automatic segmentation and scanning platform to obtain high-resolution 2D images of individual cross-sections of the web that were illuminated by a sheet laser. We then developed image processing algorithms to reconstruct the digital 3D fibrous network by analysing the 2D images. This digital network provides a model that contains all of the structural and topological features of the porous regions of a 3D web with high fidelity, and when combined with a mechanical model of silk materials, will allow us to directly simulate and predict the mechanical response of a realistic 3D web under mechanical loads. Our work provides a practical tool to capture the architecture of sophisticated 3D webs, and could lead to studies of the relation between architecture, material and biological functions for numerous 3D spider web applications.
Collapse
Affiliation(s)
- Isabelle Su
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Tomás Saraceno
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Adrian Krell
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Roland Mühlethaler
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Ally Bisshop
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Chen G, Matsuhisa N, Liu Z, Qi D, Cai P, Jiang Y, Wan C, Cui Y, Leow WR, Liu Z, Gong S, Zhang KQ, Cheng Y, Chen X. Plasticizing Silk Protein for On-Skin Stretchable Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800129. [PMID: 29603437 DOI: 10.1002/adma.201800129] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Indexed: 05/18/2023]
Abstract
Soft and stretchable electronic devices are important in wearable and implantable applications because of the high skin conformability. Due to the natural biocompatibility and biodegradability, silk protein is one of the ideal platforms for wearable electronic devices. However, the realization of skin-conformable electronic devices based on silk has been limited by the mechanical mismatch with skin, and the difficulty in integrating stretchable electronics. Here, silk protein is used as the substrate for soft and stretchable on-skin electronics. The original high Young's modulus (5-12 GPa) and low stretchability (<20%) are tuned into 0.1-2 MPa and > 400%, respectively. This plasticization is realized by the addition of CaCl2 and ambient hydration, whose mechanism is further investigated by molecular dynamics simulations. Moreover, highly stretchable (>100%) electrodes are obtained by the thin-film metallization and the formation of wrinkled structures after ambient hydration. Finally, the plasticized silk electrodes, with the high electrical performance and skin conformability, achieve on-skin electrophysiological recording comparable to that by commercial gel electrodes. The proposed skin-conformable electronics based on biomaterials will pave the way for the harmonized integration of electronics into human.
Collapse
Affiliation(s)
- Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Naoji Matsuhisa
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yajing Cui
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhuangjian Liu
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis North, 138632, Singapore
| | - Suxuan Gong
- Procter and Gamble, Singapore Innovation Center, 70 Biopolis Street, 138547, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yuan Cheng
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis North, 138632, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
19
|
Sparkes J, Holland C. The rheological properties of native sericin. Acta Biomater 2018; 69:234-242. [PMID: 29408618 DOI: 10.1016/j.actbio.2018.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 11/29/2022]
Abstract
Unlike spider silk, spinning silkworm silk has the added intricacy of being both fibre and micron-thick glue-like coating. Whilst the natural flow properties of the fibre feedstock fibroin are now becoming more established, our understanding of the coating sericin is extremely limited and thus presents both a gap in our knowledge and a hindrance to successful exploitation of these materials. In this study we characterise sericin feedstock from the silkworm Bombyx mori in its native state and by employing both biochemical, rheological and spectroscopic tools, define a natural gold standard. Our results demonstrate that native sericin behaves as a viscoelastic shear thinning fluid, but that it does so at a considerably lower viscosity than its partner fibroin, and that its upper critical shear rate (onset of gelation) lies above that of fibroin. Together these findings provide the first evidence that in addition to acting as a binder in the construction of the cocoon, sericin is capable of lubricating the flow of fibroin within the silk gland, which has implications for future processing, modelling and biomimetic use of these materials. STATEMENT OF SIGNIFICANCE This study addresses one of the major gaps in our knowledge regarding natural silk spinning by providing rigorous rheological characterisation of the other major protein involved - sericin. This allows progress in silk flow modelling, biomimetic system design, and in assessing the quality of bioinspired and waste sericin materials by providing a better understanding of the native, undegraded system.
Collapse
Affiliation(s)
- James Sparkes
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S. Yorks S1 3JD, UK
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S. Yorks S1 3JD, UK.
| |
Collapse
|
20
|
Humenik M, Lang G, Scheibel T. Silk nanofibril self-assembly versus electrospinning. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1509. [PMID: 29393590 DOI: 10.1002/wnan.1509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under: Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Gregor Lang
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), Bayreuth Center for Material Science (BayMAT), Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
21
|
Wan Q, Abrams KJ, Masters RC, Talari ACS, Rehman IU, Claeyssens F, Holland C, Rodenburg C. Mapping Nanostructural Variations in Silk by Secondary Electron Hyperspectral Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703510. [PMID: 29116662 DOI: 10.1002/adma.201703510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Nanostructures underpin the excellent properties of silk. Although the bulk nanocomposition of silks is well studied, direct evidence of the spatial variation of nanocrystalline (ordered) and amorphous (disordered) structures remains elusive. Here, secondary electron hyperspectral imaging can be exploited for direct imaging of hierarchical structures in carbon-based materials, which cannot be revealed by any other standard characterization methods. Through applying this technique to silks from domesticated (Bombyx mori) and wild (Antheraea mylitta) silkworms, a variety of previously unseen features are reported, highlighting the local interplay between ordered and disordered structures. This technique is able to differentiate composition on the nanoscale and enables in-depth studies into the relationship between morphology and performance of these complex biopolymer systems.
Collapse
Affiliation(s)
- Quan Wan
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Kerry J Abrams
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Robert C Masters
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Abdullah C S Talari
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Ihtesham U Rehman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| |
Collapse
|
22
|
|
23
|
Huang W, Ebrahimi D, Dinjaski N, Tarakanova A, Buehler MJ, Wong JY, Kaplan DL. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. Acc Chem Res 2017; 50:866-876. [PMID: 28191922 DOI: 10.1021/acs.accounts.6b00616] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.
Collapse
Affiliation(s)
- Wenwen Huang
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Davoud Ebrahimi
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Department of Civil
and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nina Dinjaski
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Anna Tarakanova
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Department of Civil
and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Department of Civil
and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joyce Y. Wong
- Department
of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
Affiliation(s)
- Isabelle Su
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|