1
|
Huang W, Seo JA, Canavan MP, Gambardella P, Stepanow S. Observation of different Li intercalation states and local doping in epitaxial mono- and bilayer graphene on SiC(0001). NANOSCALE 2024; 16:3160-3165. [PMID: 38259148 PMCID: PMC10851339 DOI: 10.1039/d3nr03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Li intercalation is commonly used to enhance the carrier density in epitaxial graphene and mitigate coupling to the substrate. So far, the understanding of the intercalation process, particularly how Li penetrates different layers above the substrate, and its impact on electron transport remains incomplete. Here, we report different phases of Li intercalation and their kinetic processes in epitaxial mono- and bilayer graphene grown on SiC. The distinct doping effects of each intercalation phase are characterized using scanning tunneling spectroscopy. Furthermore, changes in the local conduction regimes are directly mapped by scanning tunneling potentiometry and attributed to different charge transfer states of the intercalated Li. The stable intercalation marked by the formation of Li-Si bonds leads to a significant 56% reduction in sheet resistance of the resulting quasi-free bilayer graphene, as compared to the pristine monolayer graphene.
Collapse
Affiliation(s)
- Wei Huang
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jeong Ah Seo
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | - Mark P Canavan
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
2
|
Ajejas F, Anadon A, Gudin A, Diez JM, Ayani CG, Olleros-Rodríguez P, de Melo Costa L, Navío C, Gutierrez A, Calleja F, Vázquez de Parga AL, Miranda R, Camarero J, Perna P. Thermally Activated Processes for Ferromagnet Intercalation in Graphene-Heavy Metal Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4088-4096. [PMID: 31875389 DOI: 10.1021/acsami.9b19159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of graphene (Gr) spintronics requires the ability to engineer epitaxial Gr heterostructures with interfaces of high quality, in which the intrinsic properties of Gr are modified through proximity with a ferromagnet to allow for efficient room temperature spin manipulation or the stabilization of new magnetic textures. These heterostructures can be prepared in a controlled way by intercalation through graphene of different metals. Using photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we achieve a nanoscale control of thermally activated intercalation of a homogeneous ferromagnetic (FM) layer underneath epitaxial Gr grown onto (111)-oriented heavy metal (HM) buffers deposited, in turn, onto insulating oxide surfaces. XPS and STM demonstrate that Co atoms evaporated on top of Gr arrange in 3D clusters and, upon thermal annealing, penetrate through and diffuse below Gr in a 2D fashion. The complete intercalation of the metal occurs at specific temperatures, depending on the type of metallic buffer. The activation energy and the optimum temperature for the intercalation processes are determined. We describe a reliable method to fabricate and characterize in situ high-quality Gr-FM/HM heterostructures, enabling the realization of novel spin-orbitronic devices that exploit the extraordinary properties of Gr.
Collapse
Affiliation(s)
- Fernando Ajejas
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Alberto Anadon
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Adrian Gudin
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - José Manuel Diez
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Cosme G Ayani
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | | | | | - Cristina Navío
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Alejandro Gutierrez
- Departamento Física Aplicada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Fabian Calleja
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Amadeo L Vázquez de Parga
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- IFIMAC, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Rodolfo Miranda
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- IFIMAC, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Julio Camarero
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- IFIMAC, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Paolo Perna
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| |
Collapse
|
3
|
Briggs N, Gebeyehu ZM, Vera A, Zhao T, Wang K, De La Fuente Duran A, Bersch B, Bowen T, Knappenberger KL, Robinson JA. Epitaxial graphene/silicon carbide intercalation: a minireview on graphene modulation and unique 2D materials. NANOSCALE 2019; 11:15440-15447. [PMID: 31393495 DOI: 10.1039/c9nr03721g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intercalation of atomic species through epitaxial graphene on silicon carbide began only a few years following its initial report in 2004. The impact of intercalation on the electronic properties of the graphene is well known; however, the intercalant itself can also exhibit intriguing properties not found in nature. This realization has inspired new interest in epitaxial graphene/silicon carbide (EG/SiC) intercalation, where the scope of the technique extends beyond modulation of graphene properties to the creation of new 2D forms of 3D materials. The mission of this minireview is to provide a concise introduction to EG/SiC intercalation and to demonstrate a simplified approach to EG/SiC intercalation. We summarize the primary techniques used to achieve and characterize EG/SiC intercalation, and show that thermal evaporation-based methods can effectively substitute for more complex synthesis techniques, enabling large-scale intercalation of non-refractory metals and compounds including two-dimensional silver (2D-Ag) and gallium nitride (2D-GaNx).
Collapse
Affiliation(s)
- Natalie Briggs
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA and 2-Dimensional Crystal Consortium Materials Innovation Platform, Pennsylvania State University, University Park, PA 16802, USA
| | - Zewdu M Gebeyehu
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain and Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Alexander Vera
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA
| | - Tian Zhao
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ke Wang
- Materials Characterization Laboratory, University Park, PA 16802, USA
| | - Ana De La Fuente Duran
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Brian Bersch
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Bowen
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Joshua A Robinson
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA. and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA and 2-Dimensional Crystal Consortium Materials Innovation Platform, Pennsylvania State University, University Park, PA 16802, USA and Center for Atomically-Thin Multifunctional Coatings, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|