1
|
Li Y, Bai Y, Wang Y, Lu S, Fang L. Precise structural regulation of copper-based electrocatalysts for sustainable nitrate reduction to ammonia. ENVIRONMENTAL RESEARCH 2025; 266:120422. [PMID: 39581256 DOI: 10.1016/j.envres.2024.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The electrocatalytic reduction of nitrate to ammonia (NRA) technology not only achieves the effective removal of nitrates in the environment but also produces value-added products-NH3. In recent years, copper-based materials have shown tremendous application prospects in this field due to their excellent conductivity, moderate cost, and their proximity of d orbital energy levels to the LUMO π∗ molecular orbitals of nitrate. This review starts with copper-based catalysts to elucidate the reaction mechanisms of NRA and its influencing factors, while summarizing and analyzing the principles and pros and cons of various modification strategies. Then, we will explore the impact of different modification strategies on improving NRA performance and the underlying theoretical mechanisms. Finally, this review proposes the current challenges and prospects of copper-based materials, aiming to provide a reference for the further development and industrial application of copper-based catalysts.
Collapse
Affiliation(s)
- Yaxuan Li
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yanwei Wang
- Xuzhou College of Industrial Technology, NO. 1 Xiangwang Road, Gulou District, Xuzhou, 221140, Jiangsu Province, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China.
| |
Collapse
|
2
|
Li Y, Li H, Li G, Wang D, Wang S, Zhao X. Low-temperature N-anchored ordered Pt 3Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction. NANOSCALE 2022; 14:14199-14211. [PMID: 36125088 DOI: 10.1039/d2nr04316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To enhance nanocatalyst performance and durability for the methanol oxidation reaction (MOR) in a direct methanol fuel cell, small-sized (2.1 nm) and structurally ordered Pt3Co intermetallic nanoparticles are uniformly anchored onto nitrogen-doped carbon nanotubes (N-CNTs) via a low-temperature N-anchoring method, and the N-doping abilities of different N-containing reagents are compared. After investigating the microstructure of Pt3Co/N-CNTs and evaluating their catalytic activity for the MOR, the results show that N-doping facilitates the uniform loading of Pt3Co NPs and plays a crucial role in improving the electrocatalytic activity of Pt3Co NPs supported on CNTs. Pt3Co/N-CNT-M with melamine as the N dopant exhibits the highest MOR activity and stability among all N-CNT-supported Pt3Co NPs and Pt/N-CNT-M. Density functional theory calculations suggest that the doping of N enhances the binding energy of CNTs to Pt3Co NPs, and the MOR mechanism shows that the introduction of Co is the reason for the enhancement of MOR reaction kinetics. The excellent electrochemical performance of Pt3Co/N-CNT-M is mainly attributed to the synergistic effect of N and Pt3Co intermetallic nanoparticles. The combination of ordered alloy nanoparticles and high-performance carrier N-CNT-M described herein exhibits great potential for fuel cells and may provide an unequivocal direction for the optimization of catalyst performance.
Collapse
Affiliation(s)
- Yanru Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Hongwei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Guixian Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Dongliang Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Shoudeng Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Xinhong Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
3
|
Chang F, Liu Y, Yang L, Zhang Q, Wei J, Wang X, Bai Z. Modulating the intrinsic properties of platinum–cobalt nanowires for enhanced electrocatalysis of the oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01146h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to improve the intrinsic activity of nanoalloy electrocatalysts is essential for designing highly efficient electrocatalysts by optimizing the basic physical properties of the nanoalloy.
Collapse
Affiliation(s)
- Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yongpeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Juncai Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Song T, Xue H, Sun J, Guo N, Sun J, Wang Q. Solvent assistance induced surface N-modification of PtCu aerogels and their enhanced electrocatalytic properties. Chem Commun (Camb) 2021; 57:7140-7143. [PMID: 34180464 DOI: 10.1039/d1cc02038b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile method involving the nitrogen modification of PtCu aerogel surfaces with N-methyl pyrrolidone as the sole nitrogen source is reported. The half wave potential (E1/2) of the PtCu aerogels was 0.932 V and the electrochemical active surface area (ECSA) was 102.04 m2 g-1 for the oxygen reduction reaction (ORR), and the mass activity (MA) for the methanol electrooxidation reaction (MOR) was measured to be 4.08 A mg-1, values better than those of a commercial Pt/C catalyst and other reported Pt-based catalysts.
Collapse
Affiliation(s)
- Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - NianKun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
5
|
Su Z, Chen T. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005354. [PMID: 33733551 DOI: 10.1002/smll.202005354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Active sites (intrinsic activity, quantity, and distribution), electron transfer, and mass diffusion are three important factors affecting the performance of electrocatalysts. Composed of highly active components which are built into various network structures, porous noble metal is an inherently promising electrocatalysts. In recent years, great efforts have been made to explore new efficient synthesis methods and establish structural-performance relationships in the field of porous noble metal electrocatalysis. In this review, the very recent progress in strategies for preparing porous noble metal, including innovation and deeper understanding of traditional methods is summarized. A discussion of relationship between porous noble metal structure and electrocatalytic performance, such as accessibility of active sites, connectivity of skeleton structures, channels dimensions, and hierarchical structures, is provided.
Collapse
Affiliation(s)
- Zhipeng Su
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
6
|
Wang H, Li J, Li F, Li J, Xu J. Facile Route to Constructing Ternary Nanoalloy Bifunctional Oxygen Cathode for Metal-Air Batteries. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0199-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wang H, Zhang K, Qiu J, Wu J, Shao J, Wang H, Zhang Y, Han J, Zhang Y, Yan L. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. NANOSCALE 2020; 12:9824-9832. [PMID: 32338669 DOI: 10.1039/d0nr00757a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ternary PtFeCo alloys as alternatives to conventional Pt electrocatalysts are highly important in the field of the methanol oxidation reaction. In this study, we demonstrate a one-pot two-step reduction method for the synthesis of graphene supported PtFeCo alloy nanocomposites as an integrated binder-free catalyst. The synergistic effect of alloying with Fe and Co as well as graphene decorating contributes to an increase in the utilization of the noble metal, namely, reducing the amount of Pt in the nanocomposites to 7%. After tailoring the elemental composition of the alloys, Pt52Fe29Co19@G-7% exhibits a mass activity/specific activity of 1758.2 mA mg-1Pt/3.42 mA cm-2 that is 3.13/3.45 times that of commercial Pt/C in an acidic medium. Impressively, it showed a superior mass current density of 9356.1 mA mg-1Pt at 60 °C which is close to the operating temperature of direct methanol fuel cells. Moreover, the as-obtained Pt52Fe29Co19@G-7% also exhibited excellent CO tolerance and reliable stability compared to commercial Pt/C. The structural characterization further verifies that the surface strain and electronic effect play a critical role in determining the electrocatalytic properties of PtFeCo@G nanocomposites for the methanol oxidation reaction.
Collapse
Affiliation(s)
- Hongfei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
9
|
Electrochemical competitive immunodetection of messenger RNA modified with N6-methyladenosine by using DNA-modified mesoporous PtCo nanospheres. Mikrochim Acta 2019; 187:31. [DOI: 10.1007/s00604-019-4010-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
|
10
|
Wang Y, Guo H, Luo X, Liu X, Hu Z, Han L, Zhang Z. Nonsiliceous Mesoporous Materials: Design and Applications in Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805277. [PMID: 30869834 DOI: 10.1002/smll.201805277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, the progress in the design of nonsiliceous mesoporous materials (nonSiMPMs) over the last five years from the perspectives of the chemical composition, morphology, loading, and surface modification is summarized. Carbon, metal, and metal oxide are in focus, which are the most promising compositions. Then, representative applications of nonSiMPMs are demonstrated in energy conversion and storage, including recent technical advances in dye-sensitized solar cells, perovskite solar cells, photocatalysts, electrocatalysts, fuel cells, storage batteries, supercapacitors, and hydrogen storage systems. Finally, the requirements and challenges of the design and application of nonSiMPMs are outlined.
Collapse
Affiliation(s)
- Yongfei Wang
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Hong Guo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xudong Luo
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Xin Liu
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Lu Han
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| |
Collapse
|
11
|
Yin S, Wang H, Deng K, Dai Z, Wang Z, Xu Y, Li X, Xue H, Wang L. Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Self‐Sacrificial Template. Chemistry 2019; 25:5316-5321. [DOI: 10.1002/chem.201806382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| |
Collapse
|
12
|
Deng K, Xu Y, Li C, Wang Z, Xue H, Li X, Wang L, Wang H. PtPdRh Mesoporous Nanospheres: An Efficient Catalyst for Methanol Electro-Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:413-419. [PMID: 30567437 DOI: 10.1021/acs.langmuir.8b03656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Porous multimetallic alloyed nanostructures possess unique physical and chemical properties to generate promising potential in fuel cells. However, the controllable synthesis of this kind of materials still remains challenging. Herein, we report a facile method for the one-pot, high-yield synthesis of trimetallic PtPdRh mesoporous nanospheres (PtPdRh MNs) under mild conditions. The resultant PtPdRh MNs possess the features of uniform shape, a narrow size distribution, plenty of well-defined mesopores, highly open structure, and multicomponent effects, which impart advantages such as large surface area, favorable mass diffusion, high utilization of electrocatalysts, and synergy among the various metal components. Benefitting from the synergetic effects originating from the multimetallic composition and unique mesoporous structure, the as-prepared PtPdRh MNs exhibit remarkably enhanced electrocatalytic performance for methanol oxidation reaction relative to bimetallic PtPd MNs and commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| |
Collapse
|
13
|
Wang H, Yu H, Yin S, Li Y, Xue H, Li X, Xu Y, Wang L. One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. NANOSCALE 2018; 10:16087-16093. [PMID: 30109334 DOI: 10.1039/c8nr04526g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The controlled synthesis of Pt-based bimetallic porous nanostructures is highly important for the design of electrocatalysts with high performance. Herein, we report a one-step method for the direct synthesis of well-dispersed bimetallic PtNi mesoporous nanospheres (PtNi MNs) at high yield. Benefitting from the synergistic effect of composition (bimetallic PtNi) and structure (mesoporous and highly open structure), the as-obtained PtNi MNs exhibit superior catalytic activity and stability for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|