1
|
Jiao L, Gao X, Xing J, Zhou Y, Liu X, Zhao A, Zhang Z. Nuclease-Mimetic Nanomaterials: From Fundamentals to Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502660. [PMID: 40304160 DOI: 10.1002/smll.202502660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Indexed: 05/02/2025]
Abstract
With the rapid development of nanozymes and nanomedicine, designing novel nanostructures directly acting on deoxyribonucleic acid (DNA) has great therapeutic potential because DNA is the carrier of genetic information and plays a vital role on life activities of the organism. Specifically, DNA cleavage is an important step in most of these DNA engineering technologies. While nucleases play crucial roles in the cell metabolism by efficient DNA cutting, the practical applications of natural nucleases suffer from some intrinsic shortcomings such as high cost and intolerance to harsh environments. In the past 20 years, great varieties of engineered nanostructures with DNA cleavage (nuclease-mimetic nanomaterials, abbreviated as nuclease mimics) have been developed rapidly and widely used in biomedical fields. In view of the significant progress of nuclease-mimetic nanomaterials, the possible DNA cleavage mechanism mediated by nuclease-mimetic nanomaterials is systematically discussed in this review, and the classification of nuclease-mimetic nanomaterials is illustrated. Their potential biomedical applications, especially in anti-biofilms and cancer treatment, are also comprehensively summarized. Finally, the current opportunities and challenges are discussed to stimulate the research of understanding and development of nuclease-mimetic nanomaterials.
Collapse
Affiliation(s)
- Lizhi Jiao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyin Gao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Jinzhu Xing
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Yuan Zhou
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Andong Zhao
- Department of Chemistry, School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| |
Collapse
|
2
|
Grammatikaki S, Bala VM, Katifelis H, Lampropoulou DI, Mukha I, Vityuk N, Lagopati N, Kouloulias V, Aravantinos G, Gazouli M. Fe 3O 4 and Fe 3O 4core Au shell-based Hyperthermia Reduces Expression of Proliferation Markers Ki-67, TOP2A and TPX2 in a Human Breast Cancer Cell Line. In Vivo 2024; 38:1665-1670. [PMID: 38936909 PMCID: PMC11215606 DOI: 10.21873/invivo.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Hyperthermia represents an adjuvant local anticancer strategy which relies on the increase of temperature beyond the physiological level. In this study, we investigated the anticancer potential of Fe3O4 and Fe3O4core Aushell nanoparticles as hyperthermic agents in terms of cytotoxicity and studied the expression of cellular markers of proliferation (changes in mRNA levels via real-time polymerase chain reaction). MATERIALS AND METHODS The human breast cancer cell line SK-BR-1 was incubated with either Fe3O4 or Fe3O4core Aushell nanoparticles stabilized with tryptophan, prior to hyperthermia treatment. The normal HEK293 cell line was used as a control. Toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay to estimate possible toxic effects of the tested nanoparticles. After RNA extraction and cDNA synthesis, mRNA expression of three indicators of proliferation, namely marker of proliferation Ki-67, DNA topoisomerase II alpha (TOP2A) and TPX2 microtubule nucleation factor (TPX2), was investigated. RESULTS At each concentration tested, Fe3O4core Aushell nanoparticles showed greater toxicity compared to Fe3O4, while SK-BR-3 cells were more susceptible to their cytotoxic effects compared to the HEK293 cell line. The expression of Ki-67, TOP2A and TPX2 was reduced in SK-BR-3 cells by both Fe3O4 or Fe3O4core Aushell nanoparticles compared to untreated cells, while the only observed change in HEK293 cells was the up-regulation of TOP2A. CONCLUSION Both Fe3O4core Aushell and Fe3O4 NPs exhibit increased cytotoxicity to the cancer cell line tested (SK-BR-3) compared to HEK293 cells. The down-regulation in SK-BR-3 cells of the three proliferative markers studied, Ki-67, TOP2A and TPX2, after incubation with NPs suggests that cells that survived thermal destruction were not actively proliferating.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Iuliia Mukha
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nadiia Vityuk
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
3
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
5
|
Wu Q, Wei M, Yao L, Cheng X, Lu W, Xie X, Li X. Hyperthermia synergistically enhances antitumor efficacy of PARP inhibitor through impacting homologous recombination repair and oxidative stress in vitro. Biochem Biophys Res Commun 2022; 619:49-55. [PMID: 35738064 DOI: 10.1016/j.bbrc.2022.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Tumors with homologous recombination (HR) deficiency are particularly responsive to PARP inhibitors, however strategies to improve the sensitivity of epithelial ovarian carcinoma (EOC) with sufficient HR abilities still need to be deeply explored. In the present study, we firstly validated that hyperthermia (HT) changed diverse genes and signal pathways related to HR and oxidative stress in HR proficient EOC cells. HT impaired HR efficiency through inhibiting Olaparib (Olap) induced RAD51 foci formation in EOC cells, which was independent of the expression level of RAD51. Combination therapy of HT and Olap synergistically induced oxidative stress and oxidative DNA damage of EOC cells. Furthermore, we revealed that HT and Olap synergistically aggravated double-strand breaks of DNA in EOC cells. Conclusively, our findings confirmed that HT could synergistically enhance HR proficient EOC cells' sensitivity to PARP inhibitor through impairing HR efficiency and increasing oxidative stress.
Collapse
Affiliation(s)
- Qianqian Wu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Mingjing Wei
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Lifang Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Department of Obstetrics and Gynecology, Shaoxing Maternal and Child Health Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Oliveira TM, Berti FCB, Gasoto SC, Schneider B, Stimamiglio MA, Berti LF. Calcium Phosphate-Based Bioceramics in the Treatment of Osteosarcoma: Drug Delivery Composites and Magnetic Hyperthermia Agents. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:700266. [PMID: 35047940 PMCID: PMC8757807 DOI: 10.3389/fmedt.2021.700266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The use of biomaterials in medicine is not recent, and in the last few decades, the research and development of biocompatible materials had emerged. Hydroxyapatite (HAp), a calcium phosphate that constitutes a large part of the inorganic composition of human bones and teeth, has been used as an interesting bioceramic material. Among its applications, HAp has been used to carry antitumor drugs, such as doxorubicin, cisplatin, and gemcitabine. Such HAp-based composites have an essential role in anticancer drug delivery systems, including the treatment of osteosarcoma. In addition, the association of this bioceramic with magnetic nanoparticles (MNPs) has also been used as an effective agent of local magnetic hyperthermia. Further, the combined approach of the aforementioned techniques (HAp scaffolds combined with anti-tumor drugs and MNPs) is also an attractive therapeutical alternative. Considering the promising role of the use of bioceramics in modern medicine, we proposed this review, presenting an updated perspective on the use of HAp in the treatment of cancer, especially osteosarcoma. Finally, after giving the current progress in this field, we highlight the urgent need for efforts to provide a better understanding of their potential applications.
Collapse
Affiliation(s)
- Tiê Menezes Oliveira
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Sidney Carlos Gasoto
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | - Bertoldo Schneider
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol 2022; 104:103201. [DOI: 10.1016/j.jtherbio.2022.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
8
|
Sugumaran PJ, Yang Y, Wang Y, Liu X, Ding J. Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia. ACS APPLIED BIO MATERIALS 2021; 4:4809-4820. [PMID: 35007030 DOI: 10.1021/acsabm.1c00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Owing to the problems associated with conventional cancer treatment methods, magnetic hyperthermia-based cancer therapy has gained importance recently. Achieving the desired heating effect at the site of the tumor with a minimal concentration of iron oxide nanoparticles (IONPs) and a safer field is necessary to explore the advantages of hyperthermia. For one to address this challenge, biocompatible IONPs with a desirable magnetic response at a tolerable field are necessary. In this work, magnetic shape anisotropy of iron oxide nanorods (NR) of different lengths (70, 115, 170, and 210 nm) with different aspect ratios ranging from 1.55 to 3.2 was explored to achieve higher hysteresis loss, in turn leading to better hyperthermia efficiency. The magnetic properties of the NRs with respect to the applied field were studied using micromagnetic simulation. Even though the nanorods with high aspect ratio showed a higher hysteresis loss of 69485 J/m3 at 2000 Oe, the field required to attain it was high and well beyond the safety limit. From nanorods of various aspect ratios, the nanorod with a lower aspect ratio of 1.55 and a length of 70 nm exhibited a better hysteresis loss and specific absorption rate (SAR) value of 4214 W g-1 was achieved at a frequency and alternating magnetic field of 400 kHz and 800 Oe, respectively. The PEGylated GO-Nanorod of 70 nm exhibited excellent antitumor efficacy in 4T1 tumor model mice by obstructing the tumor progression within a safer dosage and field.
Collapse
Affiliation(s)
- Pon Janani Sugumaran
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117574
| | - Yong Yang
- Temasek Laboratories, 5A Engineering Drive 1, Singapore 117411
| | - Yanyun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jun Ding
- Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117574
| |
Collapse
|
9
|
Yu S, Zhang H, Zhang S, Zhong M, Fan H. Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Front Chem 2021; 9:651053. [PMID: 33987168 PMCID: PMC8110829 DOI: 10.3389/fchem.2021.651053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Ferrite nanoparticles have been widely used in the biomedical field (such as magnetic targeting, magnetic resonance imaging, magnetic hyperthermia, etc.) due to their appealing magnetic properties. In tumor acidic microenvironment, ferrite nanoparticles show intrinsic peroxidase-like activities, which can catalyze the Fenton reaction of hydrogen peroxide (H2O2) to produce highly toxic hydroxyl free radicals (•OH), causing the death of tumor cell. Recent progresses in this field have shown that the enzymatic activity of ferrite can be improved via converting external field energy such as alternating magnetic field and near-infrared laser into nanoscale heat to produce more •OH, enhancing the killing effect on tumor cells. On the other hand, combined with other nanomaterials or drugs for cascade reactions, the production of reactive oxygen species (ROS) can also be increased to obtain more efficient cancer therapy. In this review, we will discuss the current status and progress of the application of ferrite nanoparticles in ROS-mediated cancer therapy and try to provide new ideas for this area.
Collapse
Affiliation(s)
- Shancheng Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Huan Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Shiya Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Mingli Zhong
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiming Fan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.,College of Chemistry and Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Li Y, Yang J, Sun X. Reactive Oxygen Species-Based Nanomaterials for Cancer Therapy. Front Chem 2021; 9:650587. [PMID: 33968899 PMCID: PMC8100441 DOI: 10.3389/fchem.2021.650587] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology advances in cancer therapy applications have led to the development of nanomaterials that generate cytotoxic reactive oxygen species (ROS) specifically in tumor cells. ROS act as a double-edged sword, as they can promote tumorigenesis and proliferation but also trigger cell death by enhancing intracellular oxidative stress. Various nanomaterials function by increasing ROS production in tumor cells and thereby disturbing their redox balance, leading to lipid peroxidation, and oxidative damage of DNA and proteins. In this review, we outline these mechanisms, summarize recent progress in ROS-based nanomaterials, including metal-based nanoparticles, organic nanomaterials, and chemotherapy drug-loaded nanoplatforms, and highlight their biomedical applications in cancer therapy as drug delivery systems (DDSs) or in combination with chemodynamic therapy (CDT), photodynamic therapy (PDT), or sonodynamic therapy (SDT). Finally, we discuss the advantages and limitations of current ROS-mediated nanomaterials used in cancer therapy and speculate on the future progress of this nanotechnology for oncological applications.
Collapse
Affiliation(s)
- Yingbo Li
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jie Yang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Ignatovich Z, Novik K, Abakshonok A, Koroleva E, Beklemisheva A, Panina L, Kaniukov E, Anisovich M, Shumskaya A. One-Step Synthesis of Magnetic Nanocomposite with Embedded Biologically Active Substance. Molecules 2021; 26:937. [PMID: 33578897 PMCID: PMC7916710 DOI: 10.3390/molecules26040937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic nanocomposites based on hydroxyapatite were prepared by a one-step process using the hydrothermal coprecipitation method to sinter iron oxides (Fe3O4 and γ-Fe2O3). The possibility of expanding the proposed technique for the synthesis of magnetic composite with embedded biologically active substance (BAS) of the 2-arylaminopyrimidine group was shown. The composition, morphology, structural features, and magnetic characteristics of the nanocomposites synthesized with and without BAS were studied. The introduction of BAS into the composite synthesis resulted in minor changes in the structural and physical properties. The specificity of the chemical bonds between BAS and the hydroxyapatite-magnetite core was revealed. The kinetics of the BAS release in a solution simulating the stomach environment was studied. The cytotoxicity of (HAP)FexOy and (HAP)FexOy + BAS composites was studied in vitro using the primary culture of human liver carcinoma cells HepG2. The synthesized magnetic composites with BAS have a high potential for use in the biomedical field, for example, as carriers for magnetically controlled drug delivery and materials for bone tissue engineering.
Collapse
Affiliation(s)
- Zhanna Ignatovich
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Khristina Novik
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Anna Abakshonok
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Elena Koroleva
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| | - Anna Beklemisheva
- Department of Technology of Electronics Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia; (A.B.); (L.P.)
| | - Larisa Panina
- Department of Technology of Electronics Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia; (A.B.); (L.P.)
- Institute of Physics, Mathematics & IT, Immanuel Kant Baltic Federal University, 236004 Kaliningrad, Russia
| | - Egor Kaniukov
- Department of Technology of Electronics Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia; (A.B.); (L.P.)
| | - Marina Anisovich
- Republican Unitary Enterprise “Scientific-Practical Centre of Hygiene”, 220012 Minsk, Belarus;
| | - Alena Shumskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (Z.I.); (K.N.); (A.A.); (E.K.); (A.S.)
| |
Collapse
|
12
|
Stephen ZR, Zhang M. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer. Adv Healthc Mater 2021; 10:e2001415. [PMID: 33236511 PMCID: PMC8034553 DOI: 10.1002/adhm.202001415] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has demonstrated great clinical success in certain cancers, driven primarily by immune checkpoint blockade and adoptive cell therapies. Immunotherapy can elicit strong, durable responses in some patients, but others do not respond, and to date immunotherapy has demonstrated success in only a limited number of cancers. To address this limitation, combinatorial approaches with chemo- and radiotherapy have been applied in the clinic. Extensive preclinical evidence suggests that hyperthermia therapy (HT) has considerable potential to augment immunotherapy with minimal toxicity. This progress report will provide a brief overview of immunotherapy and HT approaches and highlight recent progress in the application of nanoparticle (NP)-based HT in combination with immunotherapy. NPs allow for tumor-specific targeting of deep tissue tumors while potentially providing more even heating. NP-based HT increases tumor immunogenicity and tumor permeability, which improves immune cell infiltration and creates an environment more responsive to immunotherapy, particularly in solid tumors.
Collapse
Affiliation(s)
- Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
14
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
15
|
Zhu C, Zhu Y, Pan H, Chen Z, Zhu Q. Current Progresses of Functional Nanomaterials for Imaging Diagnosis and Treatment of Melanoma. Curr Top Med Chem 2019; 19:2494-2506. [PMID: 31642783 DOI: 10.2174/1568026619666191023130524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Melanoma is a malignant skin tumor that results in poor disease prognosis due to unsuccessful
treatment options. During the early stages of tumor progression, surgery is the primary approach
that assures a good outcome. However, in the presence of metastasis, melanoma hasbecome almost
immedicable, since the tumors can not be removed and the disease recurs easily in a short period of
time. However, in recent years, the combination of nanomedicine and chemotherapeutic drugs has offered
promising solutions to the treatment of late-stage melanoma. Extensive studies have demonstrated
that nanomaterials and their advanced applications can improve the efficacy of traditional chemotherapeutic
drugs in order to overcome the disadvantages, such as drug resistance, low drug delivery rate and
reduced targeting to the tumor tissue. In the present review, we summarized the latest progress in imaging
diagnosis and treatment of melanoma using functional nanomaterials, including polymers,
liposomes, metal nanoparticles, magnetic nanoparticles and carbon-based nanoparticles. These
nanoparticles are reported widely in melanoma chemotherapy, gene therapy, immunotherapy, photodynamic
therapy, and hyperthermia.
Collapse
Affiliation(s)
- Congcong Zhu
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yunjie Zhu
- Cellular Biomedicine Group Inc., Shanghai 201210, China
| | - Huijun Pan
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
16
|
Ren Q, Wu Y, Ma J, Shan Q, Liu S, Liu Y. Carbon black-induced detrimental effect on osteoblasts at low concentrations: Remarkably compromised differentiation without significant cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:211-220. [PMID: 31009927 DOI: 10.1016/j.ecoenv.2019.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Due to similar aerodynamic and micro-nano sized properties between airborne particles and synthetic nanoparticles, a large number of studies have been conducted using carbon-based particles, such as carbon black (CB), carbon nanotubes and graphite, in order to achieve deeper understandings of their adverse effects on human health. It has been reported that particulate matters can aggravate morbidity of patients suffering from bone and joint diseases, e.g. arthritis. However, the molecular mechanism is still elusive thus far. Under this context, we employed two cell lines of osteoblasts, MC3T3-E1 and MG-63, upon exposure to 4 different CB samples with differential physicochemical properties in research of mechanistic insights. Our results indicated that the carbon/oxygen ratio differed in these 4 CB materials showing the order: SB4A < Printex U < C1864 < C824455. In stark contrast, their cytotoxicity and capacity to trigger reactive oxygen species (ROS) in MC3T3-E1 and MG-63 cells closely correlated to oxygen content, revealing the reverse order: SB4A < Printex U < C1864 < C824455. It would be reasonable to speculate that ROS production was a predominant cause of CB cytotoxicity, which strongly relied on the oxygen content of CB. Our study further manifested that all CB samples even at low concentrations significantly inhibited osteoblast differentiation, as reflected by remarkably reduced activity of alkaline phosphatase (ALP) and compromised expression of the differentiation-related genes. And the inhibition on osteoblast differentiation also closely correlated to oxygen content of CB samples. Taken together, our combined data recognized oxygen-associated toxicity towards osteoblasts for CBs. More importantly, we uncovered a new adverse effect of CB exposure: suppression on osteoblast differentiation, which has been overlooked in the past.
Collapse
Affiliation(s)
- Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China.
| |
Collapse
|
17
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
18
|
Özgür ME, Ulu A, Balcıoğlu S, Özcan İ, Köytepe S, Ateş B. The Toxicity Assessment of Iron Oxide (Fe₃O₄) Nanoparticles on Physical and Biochemical Quality of Rainbow Trout Spermatozoon. TOXICS 2018; 6:toxics6040062. [PMID: 30340322 PMCID: PMC6315697 DOI: 10.3390/toxics6040062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the in vitro effect of different doses (50, 100, 200, 400, and 800 mg/L) of Fe₃O₄ nanoparticles (NPs) at 4 °C for 24 h on the kinematics of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) spermatozoon. Firstly, Fe₃O₄ NPs were prepared at about 30 nm from Iron (III) chloride, Iron (II) chloride, and NH₃ via a co-precipitation synthesis technique. Then, the prepared Fe₃O₄ NPs were characterized by different instrumental techniques for their chemical structure, purity, morphology, surface properties, and thermal behavior. The size, microstructure, and morphology of the prepared Fe₃O₄ NPs were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The thermal properties of the Fe₃O₄ NPs were determined with thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimeter (DSC) analysis techniques. According to our results, there were statistically significant (p < 0.05) decreases in the velocities of spermatozoon after treatment with 400 mg/L Fe₃O₄ NPs. The superoxide dismutase (SOD) and catalase (CAT) activities were significant (p < 0.05) decrease after 100 mg/L in after exposure to Fe₃O₄ NPs in 24 h. As the doses of Fe₃O₄ NPs increases, the level of malondialdehyde (MDA) and total glutathione (tGSH) significantly (p < 0.05) increased at doses of 400 and 800 mg/L.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Department of Aquaculture, Faculty of Fishery, Malatya Turgut Özal University, Malatya 44280, Turkey.
| | - Ahmet Ulu
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Sevgi Balcıoğlu
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - İmren Özcan
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Süleyman Köytepe
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Burhan Ateş
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| |
Collapse
|