1
|
Knight Z, Ruiz A, Elies J. Piezoelectric Nanomaterials for Cancer Therapy: Current Research and Future Perspectives on Glioblastoma. J Funct Biomater 2025; 16:114. [PMID: 40278222 PMCID: PMC12027790 DOI: 10.3390/jfb16040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in late stages. Glioblastoma, for example, is known for its poor prognosis post-diagnosis, with a median survival time of approximately 15 months. Novel therapies using local electric fields have shown anti-tumour effects in glioblastoma by disrupting mitotic spindle assembly and inhibiting cell growth. However, constant application poses risks like patient burns. Wireless stimulation via piezoelectric nanomaterials offers a safer alternative, requiring ultrasound activation to induce therapeutic effects, such as altering voltage-gated ion channel conductance by depolarising membrane potentials. This review highlights the piezoelectric mechanism, drug delivery, ion channel activation, and current technologies in cancer therapy, emphasising the need for further research to address limitations like biocompatibility in whole systems. The goal is to underscore these areas to inspire new avenues of research and overcome barriers to developing piezoelectric nanoparticle-based cancer therapies.
Collapse
Affiliation(s)
- Zayne Knight
- Centre for Pharmaceutical Engineering Science, School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK
| | - Amalia Ruiz
- Institute of Cancer Therapeutics (ICT), Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Jacobo Elies
- Institute of Cancer Therapeutics (ICT), Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
2
|
Liu L, Liu Z, Tian L, Huang Z, Zhang W, Li J. Preparation of disulfiram-Cu 2+-polylactide nanofibrous membranes via electrostatic spinning and evaluation of their in vitro anticancer effects. Int J Biol Macromol 2024; 282:137469. [PMID: 39528191 DOI: 10.1016/j.ijbiomac.2024.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The antitumor effects of disulfiram (DSF) -a conventional medication used to treat alcohol dependence-have been documented in numerous studies. However, because of its low water solubility and Cu2+-dependent anticancer effects, the application of DSF in cancer therapy has been limited. Nanofibrous membranes produced via electrospinning have large specific surface areas. Consequently, they have been extensively used in biomedical applications, such as tissue scaffolding, drug delivery. In this study, a polylactic acid nanofibrous membrane was designed to encapsulate Cu2+ and DSF. The encapsulated drug was released when the membranes came into contact with the tumor tissue. DSF functioned as a Cu-ion carrier and combined with Cu2+ to induce tumor-cell apoptosis. The anticancer properties of the drug-loaded nanofibrous membrane were verified at the cellular level using in vitro experiments with cells. The results indicated that DSF and Cu2+ were released from the fiber membrane, and the combination of DSF and Cu2+ exhibited a better of cancer are proposed.
Collapse
Affiliation(s)
- Lanjiao Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China.
| | - Zihe Liu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Liguo Tian
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zefeng Huang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenxiao Zhang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jian Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| |
Collapse
|
3
|
Tahir M, Vicini S, Sionkowska A. Electrospun Materials Based on Polymer and Biopolymer Blends-A Review. Polymers (Basel) 2023; 15:1654. [PMID: 37050268 PMCID: PMC10096894 DOI: 10.3390/polym15071654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This review covers recent developments and progress in polymer and biopolymer blending and material preparation by electrospinning. Electrospinning is a technique that is used to produce nanofibers to improve the quality of membranes. Electrospun nanofibers are highly applicable in biomedical sciences, supercapacitors, and in water treatment following metal ion adsorption. The key affecting factors of electrospinning have been checked in the literature to obtain optimal conditions of the electrospinning process. Future research directions and outlooks have been suggested to think about innovative ideas for research in this field.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genoa, Italy
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| |
Collapse
|
4
|
Cui J, Li W, Bu W, Liu J, Chen X, Li X, Liu C, Meng L, Chen M, Sun H, Wang J. Folic acid-modified disulfiram/Zn-IRMOF3 nanoparticles for oral cancer therapy by inhibiting ALDH1A1+ cancer stem cells. BIOMATERIALS ADVANCES 2022; 139:213038. [PMID: 35908474 DOI: 10.1016/j.bioadv.2022.213038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The repurposing of old drugs can reduce the cost of drug development and speed up the availability of drugs for clinical use. Disulfiram (DSF) is an approved drug for alcohol abuse. In recent years, it has been established that DSF exerts an antitumor effect via targeted inhibition of ALDH1+ cancer stem cells (CSCs). However, due to its metal ion dependence, easy hydrolysis and low availability, the clinical application of DSF is limited. Previous studies have also shown that Zn2+ can inhibit CSCs. Accordingly, we developed a novel metal organic framework (IRMOF3)-Zn2+, and DSF was incorporated in the IRMOF3. Folic acid (FA) was subsequently loaded on the surface yielding IRMOF3 (IRMOF3-DSF-FA) for targeted therapy of tumors. The nanoscale IRMOF3-DSF-FA exhibited a high loading capacity, good biocompatibility and strong cell uptake capacity, which could provide metal ions, target tumor tissues and inhibit ALDH1+ CSCs. In vivo experiments showed that IRMOF3-DSF-FA could significantly inhibit the growth of CSCs and tumors, with no significant vital organ damage during treatment. Accordingly, IRMOF3-DSF-FA has great prospects for application as a DSF carrier, opening new horizons for targeted therapy of oral cancer.
Collapse
Affiliation(s)
- Jiasen Cui
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Weitao Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China; College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, Hebei 054001, China
| | - Wenhuan Bu
- School and Hospital of Stomatology, Department of Dental Materials, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jinhui Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Xi Chen
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Xuewen Li
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Chunran Liu
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Lin Meng
- Department of Oral Pathology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China.
| | - Hongchen Sun
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| |
Collapse
|
5
|
Electrospun nanofibrous membrane for biomedical application. SN APPLIED SCIENCES 2022; 4:172. [PMID: 35582285 PMCID: PMC9099337 DOI: 10.1007/s42452-022-05056-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrospinning is a simple, cost-effective, flexible, and feasible continuous micro-nano polymer fiber preparation technology that has attracted extensive scientific and industrial interest over the past few decades, owing to its versatility and ability to manufacture highly tunable nanofiber networks. Nanofiber membrane materials prepared using electrospinning have excellent properties suitable for biomedical applications, such as a high specific surface area, strong plasticity, and the ability to manipulate their nanofiber components to obtain the desired properties and functions. With the increasing popularity of nanomaterials in this century, electrospun nanofiber membranes are gradually becoming widely used in various medical fields. Here, the research progress of electrospun nanofiber membrane materials is reviewed, including the basic electrospinning process and the development of the materials as well as their biomedical applications. The main purpose of this review is to discuss the latest research progress on electrospun nanofiber membrane materials and the various new electrospinning technologies that have emerged in recent years for various applications in the medical field. The application of electrospun nanofiber membrane materials in recent years in tissue engineering, wound dressing, cancer diagnosis and treatment, medical protective equipment, and other fields is the main topic of discussion in this review. Finally, the development of electrospun nanofiber membrane materials in the biomedical field is systematically summarized and prospects are discussed. In general, electrospinning has profound prospects in biomedical applications, as it is a practical and flexible technology used for the fabrication of microfibers and nanofibers. This review summarizes recent research on the application of electrospun nanofiber membranes as tissue engineering materials for the cardiovascular system, motor system, nervous system, and other clinical aspects. Research on the application of electrospun nanofiber membrane materials as protective products is discussed in the context of the current epidemic situation. Examples and analyses of recent popular applications in tissue engineering, wound dressing, protective products, and cancer sensors are presented.
Collapse
|
6
|
Xie C, Yan J, Cao S, Liu R, Sun B, Xie Y, Qu K, Zhang W, Weng Z, Wang Z. Bi-layered disulfiram-loaded fiber membranes with antibacterial properties for wound dressing. Appl Biochem Biotechnol 2022; 194:1359-1372. [PMID: 34714499 DOI: 10.1007/s12010-021-03663-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
In this study, the bi-layered disulfiram-loaded fiber membranes with the antibacterial activity and different surface wettabilities are prepared using electrospinning technology. In the application of wound dressing, the hydrophilic surface of fiber membranes is beneficial for cell adhesion and drug release to heal the wound. Meanwhile, the outside hydrophobic surface is able to block water penetration to reduce the probability of wound infection. The obtained bi-layered drug-loaded fiber membranes are composed of polyvinylidene fluoride (PVDF) bottom surface and disulfiram (DSF)/polylactic acid (PLA) top surface. To modify the top surface wettability, the oxygen plasma modification of bi-layered membranes was carried out. The morphology, wettability, and chemical compositions of bi-layered drug-loaded fiber membranes were analyzed using the scanning electronic microscope (SEM), drop shape analysis instrument, X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS). The bi-layered disulfiram-loaded membranes showed the potent antibacterial activity in vitro against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). It was found that the bi-layered membranes had good biocompatibility with L929 cells. Thus, the obtained bi-layered disulfiram-loaded fiber membranes are suitable for wound dressing application.
Collapse
Affiliation(s)
- Chenchen Xie
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jin Yan
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Siyuan Cao
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Baishun Sun
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ying Xie
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenxiao Zhang
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China (CNM), Changchun University of Science and Technology, Changchun, 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China.
- IRAC & JR3CN, University of Bedfordshire, Luton, LU1 3JU, UK.
| |
Collapse
|
7
|
Huang J, Wei S, Peng Z, Xiao Z, Yang Y, Liu J, Zhang B, Li W. Disulfiram attenuates lipopolysaccharide-induced acute kidney injury by suppressing oxidative stress and NLRP3 inflammasome activation in mice. J Pharm Pharmacol 2021; 74:259-267. [PMID: 34923585 DOI: 10.1093/jpp/rgab171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Disulfiram (DSF), an old drug for treating chronic alcohol addiction, has been reported to exhibit widely pharmacological actions. This study aimed to explore the protective effect of DSF on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). METHODS C57BL/6J mice were treated with 15 mg/kg LPS (i.p.) with or without DSF pre-treatment (i.p.). The histopathological analysis was conducted by H&E staining and TUNEL kit assay. An automatic biochemical analyser was used to determine the serum creatinine and blood urea nitrogen (BUN). Expressions of 8-OHdG, NLRP3 and IL-1β in the kidney tissues were observed by IHC staining. The protein expressions of β-actin, Bax, Bcl-2, NLRP3, caspase-1 (p20), pro-IL-1β and IL-1β were analysed by western blot. KEY FINDINGS DSF attenuated the histopathologic deterioration of the kidney and inhibited the elevation of creatinine and BUN levels in mice. DSF inhibited LPS-induced cell apoptosis. Moreover, DSF treatment reversed the LPS-induced excessive oxidative stress. The NLRP3 inflammasome activation induced by the LPS, as indicated by up-regulation of NLRP3 expression, cleaved caspase-1 (p20) and IL-1β, was also suppressed by DSF. CONCLUSIONS The study here shows that DSF protects against the AKI induced by LPS at least partially via inhibiting oxidative stress and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijun Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Allafchian A, Saeedi S, Jalali SAH. Biocompatibility of electrospun cell culture scaffolds made from balangu seed mucilage/PVA composites. NANOTECHNOLOGY 2021; 33:075302. [PMID: 34757957 DOI: 10.1088/1361-6528/ac3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shiva Saeedi
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
9
|
Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJM, Yu DG, Zhu LM, Williams GR. Electrospinning for healthcare: recent advancements. J Mater Chem B 2021; 9:939-951. [DOI: 10.1039/d0tb02124e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This perspective explores recent developments and innovations in the electrospinning technique and their potential applications in biomedicine.
Collapse
Affiliation(s)
| | - Qingqing Sang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Jinglei Wu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Ziwei Zhang
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Fenglei Zhou
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
- Centre for Medical Image Computing, UCL Computer Science
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology
- Spanish Council for Scientific Research
- Valencia 46100
- Spain
| | - Xiumei Mo
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, UCL Computer Science
- University College London
- London WC1V 6LJ
- UK
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Li-Min Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | | |
Collapse
|
10
|
Nga DT, Phan AD, Lam VD, Woods LM, Wakabayashi K. Enhanced solar photothermal effect of PANi fabrics with plasmonic nanostructures. RSC Adv 2020; 10:28447-28453. [PMID: 35519101 PMCID: PMC9055669 DOI: 10.1039/d0ra04558f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
The photothermal energy conversion in hanging and floating polyaniline (PANi)-cotton fabrics is investigated using a model based on the heat diffusion equation. Perfect absorption and anti-reflection of wet hanging PANi-cotton fabrics cause quick transfer of total incident light into water confining nearly 100% of the sunlight. As a result, a hanging membrane is found to have more attractive properties than a floating above water fabric. We find, however, that the photothermal properties of a floating PANi-cotton membrane can greatly be enhanced by dispersing TiN nanoparticles in the water below the fabric. The calculated temperature gradients for TiN nanoparticle solutions show that the absorbed energy grows with increasing the nanoparticle density and that the photothermal process occurs mostly near the surface. The collective heating effects depend on the size and density of nanoparticles, which can further be used to modulate the photothermal process. The photothermal energy conversion in hanging and floating polyaniline (PANi)-cotton fabrics is investigated using a model based on the heat diffusion equation.![]()
Collapse
Affiliation(s)
- Do T Nga
- Institute of Physics, Vietnam Academy of Science and Technology 10 Dao Tan, Ba Dinh Hanoi 10000 Vietnam
| | - Anh D Phan
- Phenikaa Institute for Advanced Study, Artificial Intelligence Laboratory, Faculty of Computer Science, Materials Science and Engineering, Phenikaa University Hanoi 12116 Vietnam .,Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Vu D Lam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Lilia M Woods
- Department of Physics, University of South Florida Tampa Florida 33620 USA
| | - Katsunori Wakabayashi
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| |
Collapse
|