1
|
Liu J, Chen Z, Wu C, Yu X, Yu X, Chen C, Li Z, Qiao Q, Cao Y, Zhou Y. Recent Advances in Antimony Selenide Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406028. [PMID: 39139003 DOI: 10.1002/adma.202406028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Photodetectors (PDs) rapidly capture optical signals and convert them into electrical signals, making them indispensable in a variety of applications including imaging, optical communication, remote sensing, and biological detection. Recently, antimony selenide (Sb2Se3) has achieved remarkable progress due to its earth-abundant, low toxicity, low price, suitable bandgap width, high absorption coefficient, and unique structural characteristics. Sb2Se3 has been extensively studied in solar cells, but there's a lack of timely updates in the field of PDs. A literature review based on Sb2Se3 PDs is urgently warranted. This review aims to provide a concise understanding of the latest progress in Sb2Se3 PDs, with a focus on the basic characteristics and the performance optimization for Sb2Se3 photoconductive-type and photodiode-type detectors, including nanostructure regulation, process optimization, and stability improvement of flexible devices. Furthermore, the application progresses of Sb2Se3 PDs in heart rate monitoring, and monolithic-integrated matrix images are introduced. Finally, this review presents various strategies with potential and feasibility to address challenges for the rapid development and commercial application of Sb2Se3 PDs.
Collapse
Affiliation(s)
- Jiaojiao Liu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Zhenbo Chen
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Cheng Wu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiaoming Yu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xuan Yu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Chao Chen
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan, Wuhan, Hubei, 430074, China
| | - Zhenhua Li
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Qian Qiao
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yu Cao
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| |
Collapse
|
2
|
Park JB, Wu W, Wu JY, Karkee R, Kucinski TM, Bustillo KC, Schneider MM, Strubbe DA, Ophus C, Pettes MT. Enabling Oxidation Protection and Carrier-Type Switching for Bismuth Telluride Nanoribbons via in Situ Organic Molecule Coating. NANO LETTERS 2023; 23:11395-11401. [PMID: 38079217 PMCID: PMC10755739 DOI: 10.1021/acs.nanolett.3c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Thermoelectric materials with high electrical conductivity and low thermal conductivity (e.g., Bi2Te3) can efficiently convert waste heat into electricity; however, in spite of favorable theoretical predictions, individual Bi2Te3 nanostructures tend to perform less efficiently than bulk Bi2Te3. We report a greater-than-order-of-magnitude enhancement in the thermoelectric properties of suspended Bi2Te3 nanoribbons, coated in situ to form a Bi2Te3/F4-TCNQ core-shell nanoribbon without oxidizing the core-shell interface. The shell serves as an oxidation barrier but also directly functions as a strong electron acceptor and p-type carrier donor, switching the majority carriers from a dominant n-type carrier concentration (∼1021 cm-3) to a dominant p-type carrier concentration (∼1020 cm-3). Compared to uncoated Bi2Te3 nanoribbons, our Bi2Te3/F4-TCNQ core-shell nanoribbon demonstrates an effective chemical potential dramatically shifted toward the valence band (by 300-640 meV), robustly increased Seebeck coefficient (∼6× at 250 K), and improved thermoelectric performance (10-20× at 250 K).
Collapse
Affiliation(s)
- Jun Beom Park
- Center
for Integrated Nanotechnologies (CINT), Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wei Wu
- Department
of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jason Yingzhi Wu
- Department
of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Rijan Karkee
- Center
for Integrated Nanotechnologies (CINT), Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Physics, University of California, Merced, California 95343, United States
| | - Theresa Marie Kucinski
- Center
for Integrated Nanotechnologies (CINT), Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Karen C. Bustillo
- National
Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew M. Schneider
- Center
for Integrated Nanotechnologies (CINT), Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Materials
Science in Radiation and Dynamics Extremes (MST-8), Materials Science
and Technology Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - David A. Strubbe
- Department
of Physics, University of California, Merced, California 95343, United States
| | - Colin Ophus
- National
Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael Thompson Pettes
- Center
for Integrated Nanotechnologies (CINT), Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Sharma S, Singh HH, Kumar S, Khare N. PANI coupled hierarchical Bi 2S 3nanoflowers based hybrid nanocomposite for enhanced thermoelectric performance. NANOTECHNOLOGY 2021; 32:335705. [PMID: 33721857 DOI: 10.1088/1361-6528/abeeb7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Bismuth sulfide (Bi2S3) is a promising material for thermoelectric applications owing to its non-toxicity and high abundance of bismuth (Bi) and sulfur (S) elements on earth. However, its low electrical conductivity drastically reduces the value of the figure of merit (ZT). In this work, we have synthesized three-dimensional (3D) hierarchical Bi2S3nanoflowers (NFs) by the hydrothermal route and further incorporated them with conducting polymer polyaniline (PANI) by simple chemisorption method. We have investigated the thermoelectric properties of the as-prepared Bi2S3NFs and PANI/Bi2S3nanocomposite samples and it is demonstrated that the incorporation of the PANI matrix with the 3D hierarchical Bi2S3NFs provides a conducting substrate for the easy transport of the electrons and reduces the barrier height at the interface, resulting in ∼62% increment in the electrical conductivity as compared to Bi2S3NFs. Moreover, a decrement in the thermal conductivity of the PANI/Bi2S3nanocomposite is observed as compared to pristine Bi2S3NFs due to the increased phonon scattering at the interfaces facilitated by the hierarchical morphology of the NFs. Furthermore, an increment in the electrical conductivity and simultaneous decrement in the thermal conductivity results in an overall ∼20% increment in the figure of merit (ZT) for PANI/Bi2S3nanocomposite as compared to pristine Bi2S3NFs. The work highlights an effective strategy of coupling 3D hierarchical metal chalcogenide with conducting polymer for optimizing their thermoelectric properties.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Huidrom Hemojit Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sunil Kumar
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Neeraj Khare
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|