1
|
Krause H, Engelmann UM. Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416838. [PMID: 39985275 PMCID: PMC11967826 DOI: 10.1002/advs.202416838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Superparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles' magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
Collapse
Affiliation(s)
- Hans‐Joachim Krause
- Institute of Biological Information ProcessingBioelectronics (IBI‐3)Forschungszentrum Jülich52425JülichGermany
| | - Ulrich M. Engelmann
- Medical Engineering and Applied MathematicsFH Aachen University of Applied Sciences52428JülichGermany
| |
Collapse
|
2
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
3
|
Zeleňáková A, Zeleňák V, Beňová E, Kočíková B, Király N, Hrubovčák P, Szűcsová J, Nagy Ľ, Klementová M, Mačák J, Závišová V, Bednarčík J, Kupčík J, Jacková A, Volavka D, Košuth J, Vilček Š. The surface modification of the silica-coated magnetic nanoparticles and their application in molecular diagnostics of virus infection. Sci Rep 2024; 14:14427. [PMID: 38910140 PMCID: PMC11194262 DOI: 10.1038/s41598-024-64839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
The study presents a series of examples of magnetic nanoparticle systems designed for the diagnosis of viral diseases. In this interdisciplinary work, we describe one of the most comprehensive synthetic approaches for the preparation and functionalization of smart nanoparticle systems for rapid and effective RT-PCR diagnostics and isolation of viral RNA. Twelve different organic ligands and inorganic porous silica were used for surface functionalization of the Fe3O4 magnetic core to increase the number of active centres for efficient RNA binding from human swab samples. Different nanoparticle systems with common beads were characterized by HRTEM, SEM, FT-IR, XRD, XPS and magnetic measurements. We demonstrate the application of the fundamental models modified to fit the experimental zero-field cooling magnetization data. We discuss the influence of the nanoparticle shell parameters (morphology, thickness, ligands) on the overall magnetic performance of the systems. The prepared nanoparticles were tested for the isolation of viral RNA from tissue samples infected with hepatitis E virus-HEV and from biofluid samples of SARS-CoV-2 positive patients. The efficiency of RNA isolation was quantified by RT-qPCR method.
Collapse
Affiliation(s)
- A Zeleňáková
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia.
| | - V Zeleňák
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 04001, Košice, Slovakia
| | - E Beňová
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 04001, Košice, Slovakia
| | - B Kočíková
- Department of Epizootiology, Parasitology and Public Health Protection, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - N Király
- Institute of Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 04001, Košice, Slovakia
| | - P Hrubovčák
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - J Szűcsová
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - Ľ Nagy
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - M Klementová
- Institute of Physics of the CAS, v.v.i., Na Slovance 1999/2, 182 21, Praha 8, Czech Republic
| | - J Mačák
- Synlab Slovakia s. r. o Department of Clinical Microbiology, Opatovská Cesta 10, 04001, Košice, Slovakia
| | - V Závišová
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovakia
| | - J Bednarčík
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - J Kupčík
- Institute of Physics of the CAS, v.v.i., Na Slovance 1999/2, 182 21, Praha 8, Czech Republic
| | - A Jacková
- Department of Epizootiology, Parasitology and Public Health Protection, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - D Volavka
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04001, Košice, Slovakia
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 04154, Košice, Slovakia
| | - Š Vilček
- Department of Epizootiology, Parasitology and Public Health Protection, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| |
Collapse
|
4
|
Arsalani S, Radon P, Eberbeck D, Körber R, Jaufenthaler A, Baumgarten D, Wiekhorst F. Temperature dependent magnetorelaxometry of magnetic nanoparticle ensembles. Phys Med Biol 2023; 68:175017. [PMID: 37524086 DOI: 10.1088/1361-6560/acec28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Magnetorelaxometry imaging (MRXI) is a non-invasive, quantitative imaging technique for magnetic nanoparticles (MNPs). The image resolution of this technique significantly depends on the relaxation amplitude (ΔB). For this work, we measured the room temperature (299 K) relaxation signals of eight commercial MNP sample systems with different magnetic properties, in both fluid and immobilized states, in order to select the most suitable sample for a particular MRXI setting. Additionally, the effect of elevated temperatures (up to hyperthermia temperature, 335 K) on the relaxation signals of four different MNP systems (Synomag, Perimag, BNF and Nanomag) in both states were investigated. The ΔBvalues of fluid samples significantly decreased with increasing temperature, and the behaviour for immobilized samples depended on their blocking temperature (TB). For samples withTB< 299 K, ΔBalso decreased with increasing temperature. Whereas for samples withTB> 299 K, the opposite behaviour was observed. These results are beneficial for improving the image resolution in MRXI and show, among the investigated systems, and for our setup, Synomag is the best candidate for futurein vitroandin vivostudies. This is due to its consistently high ΔBbetween 299 and 335 K in both states. Our findings demonstrate the feasibility of temperature imaging by MRXI.
Collapse
Affiliation(s)
- Soudabeh Arsalani
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Rainer Körber
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Aaron Jaufenthaler
- Institute of Electrical and Biomedical Engineering, UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| |
Collapse
|
5
|
Bulatao BP, Nalinratana N, Jantaratana P, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Lutein-loaded chitosan/alginate-coated Fe 3O 4 nanoparticles as effective targeted carriers for breast cancer treatment. Int J Biol Macromol 2023; 242:124673. [PMID: 37137353 DOI: 10.1016/j.ijbiomac.2023.124673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Magnetic drug targeting can be a strategy for effectively delivering phytochemicals in cancer treatment. Here, we demonstrate the benefit of magnetic targeting with superparamagnetic iron oxide nanoparticles for cytotoxicity enhancement of lutein (LUT) against breast cancer cells. Fabrication of LUT-loaded chitosan/alginate iron oxide nanoparticles (LUT-CS/Alg-Fe3O4-NPs) was optimized by a statistical approach using response surface methodology based on the Box-Behnken design. The optimized LUT-CS/Alg-Fe3O4-NPs with a balance among LUT concentration, copolymer coating, and iron ion concentration exhibited controlled size, narrow size distribution, better crystallinity, excellent saturation magnetization, and sustained-release profile. The negligible magnetic coercivity and remanent magnetization confirmed the superparamagnetism of the prepared NPs. The optimized LUT-CS/Alg-Fe3O4-NPs were biocompatible while exhibiting a significantly enhanced cytotoxicity towards breast cancer MCF-7 cells upon exposure to a permanent magnet compared to free LUT with a 4-fold increase, suggesting the potential of LUT-CS/Alg-Fe3O4-NPs as magnetically targeted delivery for breast cancer.
Collapse
Affiliation(s)
- Bryan Paul Bulatao
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Yan X, Li S, Yan H, Yu C, Liu F. IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment. Int J Nanomedicine 2023; 18:1741-1763. [PMID: 37034271 PMCID: PMC10075272 DOI: 10.2147/ijn.s399047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer-related burden of morbidity and mortality is rapidly rising worldwide. Medical imaging plays an important role in every phase of cancer management, including diagnosis, staging, treatment planning and evaluation. Iron oxide nanoparticles (IONPs) could serve as contrast agents or labeling agents to enhance the identification and visualization of pathological tissues as well as target cells. Multimodal or multifunctional imaging can be easily acquired by modifying IONPs with other imaging agents or functional groups, allowing the accessibility of combined imaging techniques and providing more comprehensive information for cancer care. To date, IONPs-enhanced medical imaging has gained intensive application in early diagnosis, monitoring treatment as well as guiding radio-frequency ablation, sentinel lymph node dissection, radiotherapy and hyperthermia therapy. Besides, IONPs mediated imaging is also capable of promoting the development of anti-cancer nanomedicines through identifying patients potentially sensitive to nanotherapeutics. Based on versatile imaging modes and application fields, this review highlights and summarizes recent research advances of IONPs-based medical imaging in cancer management. Besides, currently existing challenges are also discussed to provide perspectives and advices for the future development of IONPs-based imaging in cancer management.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Shanshan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Haiyin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Chungang Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Fengxi Liu, Tel +86 0531-89269594, Email
| |
Collapse
|
7
|
Arsalani S, Arsalani S, Isikawa M, Guidelli EJ, Mazon EE, Ramos AP, Bakuzis A, Pavan TZ, Baffa O, Carneiro AAO. Hybrid Nanoparticles of Citrate-Coated Manganese Ferrite and Gold Nanorods in Magneto-Optical Imaging and Thermal Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:434. [PMID: 36770395 PMCID: PMC9921964 DOI: 10.3390/nano13030434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The development of nanomaterials has drawn considerable attention in nanomedicine to advance cancer diagnosis and treatment over the last decades. Gold nanorods (GNRs) and magnetic nanoparticles (MNPs) have been known as commonly used nanostructures in biomedical applications due to their attractive optical properties and superparamagnetic (SP) behaviors, respectively. In this study, we proposed a simple combination of plasmonic and SP properties into hybrid NPs of citrate-coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium bromide-coated GNRs (CTAB-GNRs). In this regard, two different samples were prepared: the first was composed of Ci-MnFe2O4 (0.4 wt%), and the second contained hybrid NPs of Ci-MnFe2O4 (0.4 wt%) and CTAB-GNRs (0.04 wt%). Characterization measurements such as UV-Visible spectroscopy and transmission electron microscopy (TEM) revealed electrostatic interactions caused by the opposing surface charges of hybrid NPs, which resulted in the formation of small nanoclusters. The performance of the two samples was investigated using magneto-motive ultrasound imaging (MMUS). The sample containing Ci-MnFe2O4_CTAB-GNRs demonstrated a displacement nearly two-fold greater than just using Ci-MnFe2O4; therefore, enhancing MMUS image contrast. Furthermore, the preliminary potential of these hybrid NPs was also examined in magnetic hyperthermia (MH) and photoacoustic imaging (PAI) modalities. Lastly, these hybrid NPs demonstrated high stability and an absence of aggregation in water and phosphate buffer solution (PBS) medium. Thus, Ci-MnFe2O4_CTAB-GNRs hybrid NPs can be considered as a potential contrast agent in MMUS and PAI and a heat generator in MH.
Collapse
Affiliation(s)
- Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Soudabeh Arsalani
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Mileni Isikawa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Eder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Ernesto E. Mazon
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Andris Bakuzis
- Institute of Physics and CNanoMed, Federal University of Goiás, Goiânia 74690-900, São Paulo, Brazil
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Antonio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| |
Collapse
|
8
|
Arsalani S, Radon P, Schier P, Jaufenthaler A, Liebl M, Baumgarten D, Wiekhorst F. Developing magnetorelaxometry imaging for human applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9c41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Magnetic nanoparticles (MNPs) are a promising tool in biomedical applications such as cancer therapy and diagnosis, where localization and quantification of MNP distributions are often mandatory. This can be obtained by magnetorelaxometry imaging (MRXI). Approach. In this work, the capability of MRXI for quantitative imaging of MNP inside larger volumes such as a human head is investigated. We developed a human head phantom simulating a glioblastoma multiforme (GBM) tumor containing MNP for magnetic hyperthermia treatment. The sensitivity of our MRXI setup for detection of MNP concentrations in the range of 3–19 mg cm−3 was studied. Main result. The results show the high capability of MRXI to detect MNPs in a human head sized volume. Superficial sources with a concentration larger than 12 mg cm-3 could be reconstructed with a resulotion of about 1 cm-3. Significance. The reconstruction of the MNP distribution, mimicking a GBM tumor of 7 cm3 volume with clinically relevant iron concentration, demonstrates the in vivo feasibility of MRXI in humans.
Collapse
|
9
|
Zhang R, Gao Y, Chen L, Ge G. Controllable preparation of monodisperse nanobubbles by membrane sieving. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
11
|
Ludewig P, Graeser M, Forkert ND, Thieben F, Rández-Garbayo J, Rieckhoff J, Lessmann K, Förger F, Szwargulski P, Magnus T, Knopp T. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1757. [PMID: 34617413 DOI: 10.1002/wnan.1757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023]
Abstract
Stroke is one of the leading worldwide causes of death and sustained disability. Rapid and accurate assessment of cerebral perfusion is essential to diagnose and successfully treat stroke patients. Magnetic particle imaging (MPI) is a new technology with the potential to overcome some limitations of established imaging modalities. It is an innovative and radiation-free imaging technique with high sensitivity, specificity, and superior temporal resolution. MPI enables imaging and diagnosis of stroke and other neurological pathologies such as hemorrhage, tumors, and inflammatory processes. MPI scanners also offer the potential for targeted therapies of these diseases. Due to lower field requirements, MPI scanners can be designed as resistive magnets and employed as mobile devices for bedside imaging. With these advantages, MPI could accelerate and improve the diagnosis and treatment of neurological disorders. This review provides a basic introduction to MPI, discusses its current use for stroke imaging, and addresses future applications, including the potential for clinical implementation. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Graeser
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany.,Fraunhofer Research Institute for Individualized and Cell-based Medicine, Lübeck, Germany.,Institute for Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Nils D Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Florian Thieben
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Javier Rández-Garbayo
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Rieckhoff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fynn Förger
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Patryk Szwargulski
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
12
|
Xiao J, Lu Q, Cong H, Shen Y, Yu B. Microporous poly(glycidyl methacrylate- co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 2021. [DOI: 10.1039/d1py00834j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a new kind of functional material, micron-sized porous polymer microspheres are a hot research topic in the field of polymer materials.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingbiao Lu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|