1
|
Khashan S, Odhah AA, Taha M, Alazzam A, Al-Fandi M. Enhanced microfluidic multi-target separation by positive and negative magnetophoresis. Sci Rep 2024; 14:13293. [PMID: 38858424 PMCID: PMC11164922 DOI: 10.1038/s41598-024-64330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
We introduce magnetophoresis-based microfluidics for sorting biological targets using positive Magnetophoresis (pM) for magnetically labeled particles and negative Magnetophoresis (nM) for label-free particles. A single, externally magnetized ferromagnetic wire induces repulsive forces and is positioned across the focused sample flow near the main channel's closed end. We analyze magnetic attributes and separation performance under two transverse dual-mode magnetic configurations, examining magnetic fields, hydrodynamics, and forces on microparticles of varying sizes and properties. In pM, the dual-magnet arrangement (DMA) for sorting three distinct particles shows higher magnetic gradient generation and throughput than the single-magnet arrangement (SMA). In nM, the numerical results for SMA sorting of red blood cells (RBCs), white blood cells (WBCs), and prostate cancer cells (PC3-9) demonstrate superior magnetic properties and throughput compared to DMA. Magnetized wire linear movement is a key design parameter, allowing device customization. An automated device for handling more targets can be created by manipulating magnetophoretic repulsion forces. The transverse wire and magnet arrangement accommodate increased channel depth without sacrificing efficiency, yielding higher throughput than other devices. Experimental validation using soft lithography and 3D printing confirms successful sorting and separation, aligning well with numerical results. This demonstrates the successful sorting and separating of injected particles within a hydrodynamically focused sample in all systems. Both numerical and experimental findings indicate a separation accuracy of 100% across various Reynolds numbers. The primary channel dimensions measure 100 µm in height and 200 µm in width. N52 permanent magnets were employed in both numerical simulations and experiments. For numerical simulations, a remanent flux density of 1.48 T was utilized. In the experimental setup, magnets measuring 0.5 × 0.5 × 0.125 inches and 0.5 × 0.5 × 1 inch were employed. The experimental data confirm the device's capability to achieve 100% separation accuracy at a Reynolds number of 3. However, this study did not explore the potential impact of increased flow rates on separation accuracy.
Collapse
Affiliation(s)
- Saud Khashan
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Abdulkarem A Odhah
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Marwan Taha
- System on Chip Lab, Department of Mechanical and Nuclear Engineering, Khalifa University of Science & Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- System on Chip Lab, Department of Mechanical and Nuclear Engineering, Khalifa University of Science & Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Mohamed Al-Fandi
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
3
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
4
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
5
|
Dalili A, Samiei E, Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 2019; 144:87-113. [DOI: 10.1039/c8an01061g] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have reviewed the microfluidic approaches for cell/particle isolation and sorting, and extensively explained the mechanism behind each method.
Collapse
Affiliation(s)
- Arash Dalili
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| | - Ehsan Samiei
- University of Victoria
- Department of Mechanical Engineering
- Victoria
- Canada
| | - Mina Hoorfar
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| |
Collapse
|
6
|
Alnaimat F, Dagher S, Mathew B, Hilal‐Alnqbi A, Khashan S. Microfluidics Based Magnetophoresis: A Review. CHEM REC 2018; 18:1596-1612. [DOI: 10.1002/tcr.201800018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Fadi Alnaimat
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Sawsan Dagher
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Bobby Mathew
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Ali Hilal‐Alnqbi
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
- Abu Dhabi Polytechnic Abu Dhabi UAE
| | - Saud Khashan
- Mechanical Engineering DepartmentJordan University of Science and Technology Irbid Jordan
| |
Collapse
|
7
|
Jönsson A, Svejdal RR, Bøgelund N, Nguyen TTTN, Flindt H, Kutter JP, Rand KD, Lafleur JP. Thiol-ene Monolithic Pepsin Microreactor with a 3D-Printed Interface for Efficient UPLC-MS Peptide Mapping Analyses. Anal Chem 2017; 89:4573-4580. [PMID: 28322047 DOI: 10.1021/acs.analchem.6b05103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To improve the sample handling, and reduce cost and preparation time, of peptide mapping LC-MS workflows in protein analytical research, we here investigate the possibility of replacing conventional enzymatic digestion methods with a polymer microfluidic chip based enzyme reactor. Off-stoichiometric thiol-ene is utilized as both bulk material and as a monolithic stationary phase for immobilization of the proteolytic enzyme pepsin. The digestion efficiency of the, thiol-ene based, immobilized enzyme reactor (IMER) is compared to that of a conventional, agarose packed bed, pepsin IMER column commonly used in LC-MS based protein analyses. The chip IMER is found to rival the conventional column in terms of digestion efficiency at comparable residence time and, using a 3D-printed interface, be directly interfaceable with LC-MS.
Collapse
Affiliation(s)
- Alexander Jönsson
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Rasmus R Svejdal
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Nanna Bøgelund
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Tam T T N Nguyen
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Henrik Flindt
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Kasper D Rand
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| | - Josiane P Lafleur
- Department of Pharmacy, Copenhagen University , Universitetsparken 2, Copenhagen E DK-2100, Denmark
| |
Collapse
|
8
|
Gómez-Pastora J, Xue X, Karampelas IH, Bringas E, Furlani EP, Ortiz I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.07.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. Anal Chim Acta 2016; 929:1-22. [DOI: 10.1016/j.aca.2016.04.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 01/25/2023]
|
10
|
Zhao W, Cheng R, Miller JR, Mao L. Label-Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3916-3932. [PMID: 28663720 PMCID: PMC5487005 DOI: 10.1002/adfm.201504178] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Manipulating particles and cells in magnetic liquids through so-called "negative magnetophoresis" is a new research field. It has resulted in label-free and low-cost manipulation techniques in microfluidic systems and many exciting applications. It is the goal of this review to introduce the fundamental principles of negative magnetophoresis and its recent applications in microfluidic manipulation of particles and cells. We will first discuss the theoretical background of three commonly used specificities of manipulation in magnetic liquids, which include the size, density and magnetic property of particles and cells. We will then review and compare the media used in negative magnetophoresis, which include paramagnetic salt solutions and ferrofluids. Afterwards, we will focus on reviewing existing microfluidic applications of negative magnetophoresis, including separation, focusing, trapping and concentration of particles and cells, determination of cell density, measurement of particles' magnetic susceptibility, and others. We will also examine the need for developing biocompatible magnetic liquids for live cell manipulation and analysis, and its recent progress. Finally, we will conclude this review with a brief outlook for this exciting research field.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA
| | - Rui Cheng
- College of Engineering, The University of Georgia, 220 Riverbend Road, Room 166, Athens, Georgia 30602, USA
| | - Joshua R Miller
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA
| | - Leidong Mao
- College of Engineering, The University of Georgia, 220 Riverbend Road, Room 166, Athens, Georgia 30602, USA
| |
Collapse
|
11
|
Zhao W, Zhu T, Cheng R, Liu Y, He J, Qiu H, Wang L, Nagy T, Querec TD, Unger ER, Mao L. Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3990-3998. [PMID: 27478429 PMCID: PMC4963013 DOI: 10.1002/adfm.201503838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h-1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, The University of Georgia Athens, GA 30602, USA
| | - Taotao Zhu
- Department of Chemistry, The University of Georgia Athens, GA 30602, USA
| | - Rui Cheng
- College of Engineering, The University of Georgia, 220 Riverbend Road Room, 166, Athens, GA 30602, USA
| | - Yufei Liu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jian He
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Hong Qiu
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Troy D. Querec
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic, Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elizabeth R. Unger
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic, Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Leidong Mao
- College of Engineering, The University of Georgia, 220 Riverbend Road Room, 166, Athens, GA 30602, USA
| |
Collapse
|
12
|
Wang ZM, Wu RG, Wang ZP, Ramanujan RV. Magnetic Trapping of Bacteria at Low Magnetic Fields. Sci Rep 2016; 6:26945. [PMID: 27254771 PMCID: PMC4890591 DOI: 10.1038/srep26945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/03/2016] [Indexed: 02/04/2023] Open
Abstract
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.
Collapse
Affiliation(s)
- Z M Wang
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore
| | - R G Wu
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - Z P Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - R V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
13
|
Zhou Y, Kumar DT, Lu X, Kale A, DuBose J, Song Y, Wang J, Li D, Xuan X. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet. BIOMICROFLUIDICS 2015. [PMID: 26221197 PMCID: PMC4499041 DOI: 10.1063/1.4926615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.
Collapse
Affiliation(s)
- Yilong Zhou
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Dhileep Thanjavur Kumar
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Xinyu Lu
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Akshay Kale
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - John DuBose
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University , Dalian 116026, China
| | - Junsheng Wang
- College of Information Science and Technology, Dalian Maritime University , Dalian 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| |
Collapse
|
14
|
Tarn MD, Elders LT, Peyman SA, Pamme N. Diamagnetic repulsion of particles for multilaminar flow assays. RSC Adv 2015. [DOI: 10.1039/c5ra21867e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A continuous multilaminar flow reaction was performed on functionalised polymer particlesviadiamagnetic repulsion forces, using a simple, inexpensive setup.
Collapse
|
15
|
Hale C, Darabi J. Magnetophoretic-based microfluidic device for DNA isolation. BIOMICROFLUIDICS 2014; 8:044118. [PMID: 25379103 PMCID: PMC4189304 DOI: 10.1063/1.4893772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
This paper presents a continuous flow microfluidic device for the separation of DNA from blood using magnetophoresis for biological applications and analysis. This microfluidic bio-separation device has several benefits, including decreased sample handling, smaller sample and reagent volumes, faster isolation time, and decreased cost to perform DNA isolation. One of the key features of this device is the use of short-range magnetic field gradients, generated by a micro-patterned nickel array on the bottom surface of the separation channel. In addition, the device utilizes an array of oppositely oriented, external permanent magnets to produce strong long-range field gradients at the interfaces between magnets, further increasing the effectiveness of the device. A comprehensive simulation is performed using COMSOL Multiphysics to study the effect of various parameters on the magnetic flux within the separation channel. Additionally, a microfluidic device is designed, fabricated, and tested to isolate DNA from blood. The results show that the device has the capability of separating DNA from a blood sample with a purity of 1.8 or higher, a yield of up to 33 μg of polymerase chain reaction ready DNA per milliliter of blood, and a volumetric throughput of up to 50 ml/h.
Collapse
Affiliation(s)
- C Hale
- Department of Mechanical Engineering, Southern Illinois University Edwardsville , Edwardsville, Illinois 62026, USA
| | - J Darabi
- Department of Mechanical Engineering, Southern Illinois University Edwardsville , Edwardsville, Illinois 62026, USA
| |
Collapse
|
16
|
Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM. Manipulation of micro- and nanostructure motion with magnetic fields. SOFT MATTER 2014; 10:1295-308. [PMID: 24652392 DOI: 10.1039/c3sm52294f] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this review we will focus on how magnetic fields can be used to manipulate the motion of various micro- and nanostructures in solution. We will distinguish between ferromagnetic, paramagnetic and diamagnetic materials. Furthermore, the use of various kinds of magnetic fields, such as homogeneous, inhomogeneous and rotating magnetic fields, is discussed. To date most research has focused on the use of ferro- and paramagnetic materials, but here we also describe the possibilities of magnetic manipulation of diamagnetic materials. Since the vast majority of soft matter is diamagnetic, this paves the way for many new applications to manipulate the motion of micro- and nanostructures.
Collapse
Affiliation(s)
- Roger S M Rikken
- High Field Magnet Laboratory (HFML), Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
WATARAI H, DUC HTT, LAN TTN, ZHANG T, TSUKAHARA S. Zero-velocity Magnetophoretic Method for the Determination of Particle Magnetic Susceptibility. ANAL SCI 2014; 30:745-9. [DOI: 10.2116/analsci.30.745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Hoang Trong Tien DUC
- Applied Physical Chemistry Laboratory, Chemistry Department, University of Science
| | - Tran Thi Ngoc LAN
- Applied Physical Chemistry Laboratory, Chemistry Department, University of Science
| | | | - Satoshi TSUKAHARA
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
18
|
Tarn MD, Lopez-Martinez MJ, Pamme N. On-chip processing of particles and cells via multilaminar flow streams. Anal Bioanal Chem 2013; 406:139-61. [DOI: 10.1007/s00216-013-7363-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Mark D Tarn
- Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | | | | |
Collapse
|
19
|
|
20
|
Tarn MD, Peyman SA, Pamme N. Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Adv 2013. [DOI: 10.1039/c3ra40237a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Watarai H. Continuous separation principles using external microaction forces. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:353-78. [PMID: 23772659 DOI: 10.1146/annurev-anchem-062012-092551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During the past decade, methods for the continuous separation of microparticles with microaction forces have rapidly advanced. Various action forces have been used in designs of both microchannel and capillary continuous separation systems, which depend on properties such as conductivity, permittivity, absorptivity, refractive index, magnetic susceptibility, and compressibility. Particle migration velocity has been used to characterize the particles. Biological cells have been the most interesting targets of these continuous separation methods.
Collapse
Affiliation(s)
- Hitoshi Watarai
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
22
|
Verbarg J, Kamgar-Parsi K, Shields AR, Howell PB, Ligler FS. Spinning magnetic trap for automated microfluidic assay systems. LAB ON A CHIP 2012; 12:1793-9. [PMID: 22344487 PMCID: PMC3641145 DOI: 10.1039/c2lc21189k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
While sophisticated analyses have been performed using lab-on-chip devices, in most cases the sample preparation is still performed off chip. The global need for easy-to-use, disposable testing devices necessitates that sample processing is automated and that transport complexity between the processing and analytical components is minimal. We describe a complete sample manipulation unit for performing automated target capture, efficient mixing with reagents, and controlled target release in a microfluidic channel, using an array of spinning magnets. The "MagTrap" device consists of 6 pairs of magnets in a rotating wheel, situated immediately beneath the microchannel. Rotation of the wheel in the direction opposite to the continuous flow entraps and concentrates the bead-target complexes and separates them from the original sample matrix. As the wheel rotates and the active pair of magnets moves away from the microchannel, the beads are released and briefly flow downstream before being trapped and pulled upstream by the next pair of magnets. This dynamic and continuous movement of the beads ensures that the full surface area of each bead is exposed to reagents and prevents aggregation. The release of the target-bead complexes for further analysis is facilitated by reversing the rotational direction of the wheel to sweep the beads downstream. Sample processing with the MagTrap was demonstrated for the detection of E. coli in a range of concentrations (1 × 10(3), 1 × 10(4) and 1 × 10(6) cells ml(-1)). Results show that sample processing with the MagTrap outperformed the standard manual protocols, improving the detection capability while simultaneously reducing the processing time.
Collapse
|
23
|
Liang L, Zhu J, Xuan X. Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows. BIOMICROFLUIDICS 2011; 5:34110-3411013. [PMID: 22662037 PMCID: PMC3364825 DOI: 10.1063/1.3618737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/07/2011] [Indexed: 05/04/2023]
Abstract
Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle's relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model.
Collapse
Affiliation(s)
- Litao Liang
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA
| | | | | |
Collapse
|
24
|
Rodríguez-Villarreal AI, Tarn MD, Madden LA, Lutz JB, Greenman J, Samitier J, Pamme N. Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. LAB ON A CHIP 2011; 11:1240-8. [PMID: 21186390 DOI: 10.1039/c0lc00464b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells.
Collapse
|
25
|
Suwa M, Watarai H. Magnetoanalysis of micro/nanoparticles: A review. Anal Chim Acta 2011; 690:137-47. [DOI: 10.1016/j.aca.2011.02.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 01/31/2023]
|
26
|
Ariga K, Richards GJ, Ishihara S, Izawa H, Hill JP. Intelligent chiral sensing based on supramolecular and interfacial concepts. SENSORS (BASEL, SWITZERLAND) 2010; 10:6796-820. [PMID: 22163577 PMCID: PMC3231122 DOI: 10.3390/s100706796] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/16/2022]
Abstract
Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | |
Collapse
|
27
|
Gijs MAM, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 2010; 110:1518-63. [PMID: 19961177 DOI: 10.1021/cr9001929] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland.
| | | | | |
Collapse
|
28
|
Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N. Diamagnetic repulsion—A versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 2009; 1216:9055-62. [DOI: 10.1016/j.chroma.2009.06.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
|