1
|
Umehara E, Cajas RA, Conceição GB, Antar GM, Andricopulo AD, de Moraes J, Lago JHG. In Vitro and In Vivo Evaluation of the Antischistosomal Activity of Polygodial and 9-Deoxymuzigadial Isolated from Drimys brasiliensis Branches. Molecules 2025; 30:267. [PMID: 39860137 PMCID: PMC11767830 DOI: 10.3390/molecules30020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the present study, the hexane extract from branches of Drimys brasiliensis (Winteraceae) displayed potent activity against Schistosoma mansoni parasites (100% mortality of the worms at 200 μg/mL). Bioactivity-guided fractionation afforded, in addition to the previously reported bioactive sesquiterpene 3,6-epidioxy-bisabola-1,10-diene, two chemically related drimane sesquiterpenes-polygodial (1) and 9-deoxymuzigadial (2). The anti-S. mansoni effects for compounds 1 and 2 were determined in vitro, with compound 1 demonstrating significant potency (EC50 value of 10 μM for both male and female worms), while 2 was inactive. Cytotoxicity assays against Vero cells revealed no toxicity for either compound (CC50 > 200 μM). Additionally, an in silico analysis was conducted using the SwissADME platform for 1, revealing that this natural sesquiterpene exhibited adherence to several ADME parameters and no PAINS violations. Finally, in vivo studies with S. mansoni-infected mice treated with compound 1 demonstrated a 44.0% reduction in worm burden, accompanied by decreases in egg production of 71.8% in feces and 69.5% in intestines. These findings highlight the potential of polygodial (1) as a promising prototype for schistosomiasis treatment.
Collapse
Affiliation(s)
- Eric Umehara
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil;
| | - Rayssa A. Cajas
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
| | - Gabriel B. Conceição
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
| | - Guilherme M. Antar
- Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, São Mateus 29932-540, ES, Brazil;
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil;
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo 08230-030, SP, Brazil
| | - João Henrique G. Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil;
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
2
|
Balaghi N, Fernandez-Gonzalez R. Waves of change: Dynamic actomyosin networks in embryonic development. Curr Opin Cell Biol 2024; 91:102435. [PMID: 39378575 DOI: 10.1016/j.ceb.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. https://twitter.com/negberry
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
3
|
Chowdhury D, Schadschneider A, Nishinari K. Physics of collective transport and traffic phenomena in biology: Progress in 20 years. Phys Life Rev 2024; 51:409-422. [PMID: 39571466 DOI: 10.1016/j.plrev.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Enormous progress has been made in the last 20 years since the publication of our review [1] in this journal on transport and traffic phenomena in biology. In this brief article we present a glimpse of the major advances during this period. First, we present similarities and differences between collective intracellular transport of a single micron-size cargo by multiple molecular motors and that of a cargo particle by a team of ants on the basis of the common principle of load-sharing. Second, we sketch several models all of which are biologically motivated extensions of the Asymmetric Simple Exclusion Process (ASEP); some of these models represent the traffic of molecular machines, like RNA polymerase (RNAP) and ribosome, that catalyze template-directed polymerization of RNA and proteins, respectively, whereas few other models capture the key features of the traffic of ants on trails. More specifically, using the ASEP-based models we demonstrate the effects of traffic of RNAPs and ribosomes on random and 'programmed' errors in gene expression as well as on some other subcellular processes. We recall a puzzling empirical result on the single-lane traffic of predatory ants Leptogenys processionalis as well as recent attempts to account for this puzzle. We also mention some surprising effects of lane-changing rules observed in a ASEP-based model for 3-lane traffic of army ants. Finally, we explain the conceptual similarities between the pheromone-mediated indirect communication, called stigmergy, between ants on a trail and the floor-field-mediated interaction between humans in a pedestrian traffic. For the floor-field model of human pedestrian traffic we present a major theoretical result that is relevant from the perspective of all types of traffic phenomena.
Collapse
Affiliation(s)
- Debashish Chowdhury
- Department of Physics, DIT University, Mussoorie Diversion Road, Dehradun 248009, India.
| | | | - Katsuhiro Nishinari
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Kuznetsov AV. Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion. J Biomech Eng 2024; 146:111002. [PMID: 38888293 DOI: 10.1115/1.4065743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
5
|
Dallon JC, Evans E, Grant CP, Portet S. Steady state distributions of moving particles in one dimension: with an eye towards axonal transport. J Math Biol 2024; 89:56. [PMID: 39476169 DOI: 10.1007/s00285-024-02157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/03/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Axonal transport, propelled by motor proteins, plays a crucial role in maintaining the homeostasis of functional and structural components over time. To establish a steady-state distribution of moving particles, what conditions are necessary for axonal transport? This question is pertinent, for instance, to both neurofilaments and mitochondria, which are structural and functional cargoes of axonal transport. In this paper we prove four theorems regarding steady state distributions of moving particles in one dimension on a finite domain. Three of the theorems consider cases where particles approach a uniform distribution at large time. Two consider periodic boundary conditions and one considers reflecting boundary conditions. The other theorem considers reflecting boundary conditions where the velocity is space dependent. If the theoretical results hold in the complex setting of the cell, they would imply that the uniform distribution of neurofilaments observed under healthy conditions appears to require a continuous distribution of neurofilament velocities. Similarly, the spatial distribution of axonal mitochondria may be linked to spatially dependent transport velocities that remain invariant over time.
Collapse
Affiliation(s)
- J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA.
| | - Emily Evans
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA
| | - Christopher P Grant
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA
| | - Stephanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Jain A, Wade P, Stolnik S, Hume AN, Kerr ID, Coyle B, Rawson F. Tackling Anticancer Drug Resistance and Endosomal Escape in Aggressive Brain Tumors Using Bioelectronics. ACS OMEGA 2024; 9:42923-42931. [PMID: 39464448 PMCID: PMC11500143 DOI: 10.1021/acsomega.4c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Resistance mechanisms in brain tumors, such as medulloblastoma and glioblastoma, frequently involve the entrapment of chemotherapeutic agents within endosomes and the extracellular expulsion of drugs. These barriers to effective treatment are exacerbated in nanotechnology-based drug delivery systems, where therapeutic nanoparticles often remain confined within endosomes, thus diminishing their therapeutic efficacy. Addressing this challenge necessitates the development of novel strategies to enhance the efficiency of cancer therapies. This study tests the hypothesis that external electrical stimuli can modulate intracellular trafficking of chemotherapeutic drugs in common malignant brain tumors in children (medulloblastoma) and adults (glioblastoma) by using gold nanoparticles (GNPs). In our experiments, alternating current (AC) stimulation ranging from 1 kHz to 5 MHz and at a strength of 1 V/cm significantly reduced cell viability in drug-resistant medulloblastoma and enhanced delivery of GNPs in glioblastoma. Low-frequency AC resulted in a 50% increase in apoptosis compared to controls and an 8-fold increase in cell death in cisplatin-resistant medulloblastoma cells, accompanied by a substantial reduction in EC50 from 2.5 to 0.3 μM. Similarly, vincristine-resistant cells demonstrated a 4-fold enhancement in drug sensitivity. Furthermore, high-frequency AC facilitated a significant increase from 20 to 75% in the endosomal escape of GNPs in glioblastoma cells. These findings underscore the potential of AC to selectively disrupt cancer cell resistance mechanisms and bolster the efficacy of nanoparticle-based therapies. The results indicate the effectiveness of AC stimulation in circumventing the limitations inherent in current nanotechnology-based drug delivery systems but also illustrates its transformative potential for treating aggressive, drug-resistant brain tumors.
Collapse
Affiliation(s)
- Akhil Jain
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
- Bioelectronics
Laboratory, Division of Regenerative Medicine and Cellular Therapies,
School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Philippa Wade
- Children’s
Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Snow Stolnik
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Alistair N. Hume
- School
of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Ian D. Kerr
- School
of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Beth Coyle
- Children’s
Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Frankie Rawson
- Bioelectronics
Laboratory, Division of Regenerative Medicine and Cellular Therapies,
School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
7
|
Tang W, Wang J, Jiang A, Sun Y. Stiffening of the Cytoplasm in Response to Intracellularly Applied Forces. NANO LETTERS 2024. [PMID: 39377302 DOI: 10.1021/acs.nanolett.4c03979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cells constantly encounter mechanical forces that regulate various cellular functions, such as migration, division, and differentiation. Understanding how cells respond to forces at the intracellular level is essential for elucidating the mechanical adaptability of living cells. This study investigates how the cytoplasm alters its mechanical properties in response to forces applied inside a cell. The mechanical properties were measured through in situ characterization using magnetic tweezers to apply mechanical forces on magnetic beads internalized into cells. The findings reveal that the cytoplasm stiffens within seconds when force is applied to the cytoplasm. Macromolecular crowding and cytoskeletal structures, particularly F-actin, were found to significantly contribute to cytoplasm stiffening. The stiffening response was also observed across multiple length scales by using magnetic beads of varying diameters. These results highlight the rapid adaptation of the cytoplasm to mechanical forces applied to the inside of a cell.
Collapse
Affiliation(s)
- Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Jintian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Aojun Jiang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto, M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| |
Collapse
|
8
|
Sanchez-Fernandez A, Insua I, Montenegro J. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function. Commun Chem 2024; 7:223. [PMID: 39349583 PMCID: PMC11442845 DOI: 10.1038/s42004-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Sarpangala N, Randell B, Gopinathan A, Kogan O. Tunable intracellular transport on converging microtubule morphologies. BIOPHYSICAL REPORTS 2024; 4:100171. [PMID: 38996867 PMCID: PMC11345624 DOI: 10.1016/j.bpr.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
A common type of cytoskeletal morphology involves multiple microtubules converging with their minus ends at the microtubule organizing center (MTOC). The cargo-motor complex will experience ballistic transport when bound to microtubules or diffusive transport when unbound. This machinery allows for sequestering and subsequent dispersal of dynein-transported cargo. The general principles governing dynamics, efficiency, and tunability of such transport in the MTOC vicinity are not fully understood. To address this, we develop a one-dimensional model that includes advective transport toward an attractor (such as the MTOC) and diffusive transport that allows particles to reach absorbing boundaries (such as cellular membranes). We calculated the mean first passage time (MFPT) for cargo to reach the boundaries as a measure of the effectiveness of sequestering (large MFPT) and diffusive dispersal (low MFPT). We show that the MFPT experiences a dramatic growth, transitioning from a low to high MFPT regime (dispersal to sequestering) over a window of cargo on-/off-rates that is close to in vivo values. Furthermore, increasing either the on-rate (attachment) or off-rate (detachment) can result in optimal dispersal when the attractor is placed asymmetrically. Finally, we also describe a regime of rare events where the MFPT scales exponentially with motor velocity and the escape location becomes exponentially sensitive to the attractor positioning. Our results suggest that structures such as the MTOC allow for the sensitive control of the spatial and temporal features of transport and corresponding function under physiological conditions.
Collapse
Affiliation(s)
| | - Brooke Randell
- University of California, Santa Cruz, Santa Cruz, California
| | | | - Oleg Kogan
- Queens College of CUNY, Queens, New York.
| |
Collapse
|
10
|
Desai N, Liao W, Lauga E. Natural convection in the cytoplasm: Theoretical predictions of buoyancy-driven flows inside a cell. PLoS One 2024; 19:e0307765. [PMID: 39052656 PMCID: PMC11271965 DOI: 10.1371/journal.pone.0307765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The existence of temperature gradients within eukaryotic cells has been postulated as a source of natural convection in the cytoplasm, i.e. bulk fluid motion as a result of temperature-difference-induced density gradients. Recent computations have predicted that a temperature differential of ΔT ≈ 1 K between the cell nucleus and the cell membrane could be strong enough to drive significant intracellular material transport. We use numerical computations and theoretical calculations to revisit this problem in order to further understand the impact of temperature gradients on flow generation and advective transport within cells. Surprisingly, our computations yield flows that are an order of magnitude weaker than those obtained previously for the same relative size and position of the nucleus with respect to the cell membrane. To understand this discrepancy, we develop a semi-analytical solution of the convective flow inside a model cell using a bi-spherical coordinate framework, for the case of an axisymmetric cell geometry (i.e. when the displacement of the nucleus from the cell centre is aligned with gravity). We also calculate exact solutions for the flow when the nucleus is located concentrically inside the cell. The results from both theoretical analyses agree with our numerical results, thus providing a robust estimate of the strength of cytoplasmic natural convection and demonstrating that these are much weaker than previously predicted. Finally, we investigate the ability of the aforementioned flows to redistribute solute within a cell. Our calculations reveal that, in all but unrealistic cases, cytoplasmic convection has a negligible contribution toward enhancing the diffusion-dominated mass transfer of cellular material.
Collapse
Affiliation(s)
- Nikhil Desai
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Weida Liao
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Häfner G, Müller M. Reaction-Driven Diffusiophoresis of Liquid Condensates: Potential Mechanisms for Intracellular Organization. ACS NANO 2024; 18:16530-16544. [PMID: 38875706 PMCID: PMC11223496 DOI: 10.1021/acsnano.3c12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
The cellular environment, characterized by its intricate composition and spatial organization, hosts a variety of organelles, ranging from membrane-bound ones to membraneless structures that are formed through liquid-liquid phase separation. Cells show precise control over the position of such condensates. We demonstrate that organelle movement in external concentration gradients, diffusiophoresis, is distinct from the one of colloids because fluxes can remain finite inside the liquid-phase droplets and movement of the latter arises from incompressibility. Within cellular domains diffusiophoresis naturally arises from biochemical reactions that are driven by a chemical fuel and produce waste. Simulations and analytical arguments within a minimal model of reaction-driven phase separation reveal that the directed movement stems from two contributions: Fuel and waste are refilled or extracted at the boundary, resulting in concentration gradients, which (i) induce product fluxes via incompressibility and (ii) result in an asymmetric forward reaction in the droplet's surroundings (as well as asymmetric backward reaction inside the droplet), thereby shifting the droplet's position. We show that the former contribution dominates and sets the direction of the movement, toward or away from fuel source and waste sink, depending on the product molecules' affinity toward fuel and waste, respectively. The mechanism thus provides a simple means to organize condensates with different composition. Particle-based simulations and systems with more complex reaction cycles corroborate the robustness and universality of this mechanism.
Collapse
Affiliation(s)
- Gregor Häfner
- Georg-August
Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcus Müller
- Georg-August
Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Kuznetsov IA, Kuznetsov AV. Mitochondrial transport in symmetric and asymmetric axons with multiple branching junctions: a computational study. Comput Methods Biomech Biomed Engin 2024; 27:1071-1090. [PMID: 37424316 PMCID: PMC10776827 DOI: 10.1080/10255842.2023.2226787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Mitochondrial aging has been proposed to be involved in a variety of neurodegenerative disorders, such as Parkinson's disease. Here, we explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study examined mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We investigated how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. Additionally, we studied whether mitochondrial concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch versus the lower branch. Furthermore, we explored whether the distributions of mitochondrial mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is unevenly split at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on the mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of PA, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Joshi K, York HM, Wright CS, Biswas RR, Arumugam S, Iyer-Biswas S. Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics. Annu Rev Biophys 2024; 53:193-220. [PMID: 38346244 DOI: 10.1146/annurev-biophys-030422-044448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.
Collapse
Affiliation(s)
- Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Rudro R Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
- Single Molecule Science, University of New South Wales, Sydney, New South Wales, Australia
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, Victoria, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
14
|
Park JS, Lee IB, Hong SC, Cho M. Label-Free Interference Imaging of Intracellular Trafficking. Acc Chem Res 2024; 57:1565-1576. [PMID: 38781567 DOI: 10.1021/acs.accounts.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Intracellular cargo trafficking is a highly regulated process responsible for transporting vital cellular components to their designated destinations. This intricate journey has been a central focus of cellular biology for many years. Early investigations leaned heavily on biochemical and genetic approaches, offering valuable insight into molecular mechanisms of cellular trafficking. However, while informative, these methods lack the capacity to capture the dynamic nature of intracellular trafficking. The advent of fluorescent protein tagging techniques transformed our ability to monitor the complete lifecycle of intracellular cargos, advancing our understanding. Yet, a central question remains: How do these cargos manage to navigate through traffic challenges, such as congestion, within the crowded cellular environment? Fluorescence-based imaging, though valuable, has inherent limitations when it comes to addressing the aforementioned question. It is prone to photobleaching, making long-term live-cell imaging challenging. Furthermore, they render unlabeled cellular constituents invisible, thereby missing critical environmental information. Notably, the unlabeled majority likely exerts a significant influence on the observed behavior of labeled molecules. These considerations underscore the necessity of developing complementary label-free imaging methods to overcome the limitations of fluorescence imaging or to integrate them synergistically.In this Account, we outline how label-free interference-based imaging has the potential to revolutionize the study of intracellular traffic by offering unprecedented levels of detail. We begin with a brief introduction to our previous findings in live-cell research enabled by interferometric scattering (iSCAT) microscopy, showcasing its aptitude and adeptness in elucidating intricate nanoscale intracellular structures. As we delved deeper into our exploration, we succeeded in the label-free visualization of the entire lifespan of nanoscale protein complexes known as nascent adhesions (NAs) and the dynamic events associated with adhesions within living cells. Our continuous efforts have led to the development of Dynamic Scattering-particle Localization Interference Microscopy (DySLIM), a generalized concept of cargo-localization iSCAT (CL-iSCAT). This label-free, high-speed imaging method, armed with iSCAT detection sensitivity, empowers us to capture quantitative and biophysical insights into cargo transport, providing a realistic view of the intricate nanoscale logistics occurring within living cells. Our in vivo studies demonstrate that intracellular cargos regularly contend with substantial traffic within the crowded cellular environment. Simultaneously, they employ inherent strategies for efficient cargo transport, such as collective migration and hitchhiking, to enhance overall transport rates─intriguingly paralleling the principle and practice of urban traffic management. We also highlight the synergistic benefits of combining DySLIM with chemical-selective fluorescent methods. This Account concludes with a "Conclusions and Outlook" section, outlining promising directions for future research and developments, with a particular emphasis on the functional application of iSCAT live-cell imaging. We aim to inspire further investigation into the efficient transport strategies employed by cells to surmount transportation challenges, shedding light on their significance in cellular phenomena.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
15
|
Schmit JD, Michaels TCT. Physical limits to acceleration of enzymatic reactions inside phase-separated compartments. Phys Rev E 2024; 109:064401. [PMID: 39020956 DOI: 10.1103/physreve.109.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
We present a theoretical analysis of phase-separated compartments to facilitate enzymatic chemical reactions. While phase separation can facilitate reactions by increasing local concentration, it can also hinder the mobility of reactants. In particular, we find that the attractive interactions that concentrate reactants within the dense phase can inhibit reactions by lowering the mobility of the reactants. This mobility loss severely limits the potential to enhance reaction rates. Phase separation provides greater benefit in situations where multiple sequential reactions occur and/or high order reactions, provided the enzymes are unsaturated, transport to the condensate is not limiting, and the reactants are mobile. We show that mobility can be maintained if recruitment to the condensed phase is driven by multiple attractive moieties that can bind and release independently. However, the spacers necessary to ensure independence between stickers are prone to entangle with the dense phase scaffold. We find an optimal sticker affinity that balances the need for rapid binding/unbinding kinetics and minimal entanglement. Reaction rates can be accelerated by shrinking the size of the dense phase with a corresponding increase in the number of stickers. Our results showcase the potential capabilities of phase-separated compartments to act as biochemical reaction crucibles within living cells.
Collapse
|
16
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
17
|
Xu X, Wang W, Qiao L, Fu Y, Ge X, Zhao K, Zhanghao K, Guan M, Chen X, Li M, Jin D, Xi P. Ultra-high spatio-temporal resolution imaging with parallel acquisition-readout structured illumination microscopy (PAR-SIM). LIGHT, SCIENCE & APPLICATIONS 2024; 13:125. [PMID: 38806501 PMCID: PMC11133488 DOI: 10.1038/s41377-024-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Structured illumination microscopy (SIM) has emerged as a promising super-resolution fluorescence imaging technique, offering diverse configurations and computational strategies to mitigate phototoxicity during real-time imaging of biological specimens. Traditional efforts to enhance system frame rates have concentrated on processing algorithms, like rolling reconstruction or reduced frame reconstruction, or on investments in costly sCMOS cameras with accelerated row readout rates. In this article, we introduce an approach to elevate SIM frame rates and region of interest (ROI) coverage at the hardware level, without necessitating an upsurge in camera expenses or intricate algorithms. Here, parallel acquisition-readout SIM (PAR-SIM) achieves the highest imaging speed for fluorescence imaging at currently available detector sensitivity. By using the full frame-width of the detector through synchronizing the pattern generation and image exposure-readout process, we have achieved a fundamentally stupendous information spatial-temporal flux of 132.9 MPixels · s-1, 9.6-fold that of the latest techniques, with the lowest SNR of -2.11 dB and 100 nm resolution. PAR-SIM demonstrates its proficiency in successfully reconstructing diverse cellular organelles in dual excitations, even under conditions of low signal due to ultra-short exposure times. Notably, mitochondrial dynamic tubulation and ongoing membrane fusion processes have been captured in live COS-7 cell, recorded with PAR-SIM at an impressive 408 Hz. We posit that this novel parallel exposure-readout mode not only augments SIM pattern modulation for superior frame rates but also holds the potential to benefit other complex imaging systems with a strategic controlling approach.
Collapse
Affiliation(s)
- Xinzhu Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, USA
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Wenyi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- Airy Technologies Co., Ltd., Beijing, 100086, China
| | - Liang Qiao
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Airy Technologies Co., Ltd., Beijing, 100086, China
| | - Yunzhe Fu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Xichuan Ge
- Airy Technologies Co., Ltd., Beijing, 100086, China
| | - Kun Zhao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, USA
| | - Karl Zhanghao
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Meiling Guan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Xin Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Meiqi Li
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
- School of Life Science, Peking University, Beijing, 100871, China
| | - Dayong Jin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China.
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
- Airy Technologies Co., Ltd., Beijing, 100086, China.
| |
Collapse
|
18
|
Zhang M, Zhang Z, Niu X, Ti H, Zhou Y, Gao B, Li Y, Liu J, Chen X, Li H. Interplay Between Intracellular Transport Dynamics and Liquid‒Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308338. [PMID: 38447188 PMCID: PMC11109639 DOI: 10.1002/advs.202308338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Liquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.
Collapse
Affiliation(s)
- Ming‐Li Zhang
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Ziheng Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xue‐Zhi Niu
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Hui‐Ying Ti
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Yu‐Xuan Zhou
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Bo Gao
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics and Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Ji‐Long Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiaosong Chen
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| |
Collapse
|
19
|
Qiu H, Wu X, Ma X, Li S, Cai Q, Ganzella M, Ge L, Zhang H, Zhang M. Short-distance vesicle transport via phase separation. Cell 2024; 187:2175-2193.e21. [PMID: 38552623 DOI: 10.1016/j.cell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/28/2024]
Abstract
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Collapse
Affiliation(s)
- Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qixu Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
20
|
Bu W, Di J, Zhao J, Liu R, Wu Y, Ran J, Li T. Dynein Light Intermediate Chains Exhibit Different Arginine Methylation Patterns. J Clin Lab Anal 2024; 38:e25030. [PMID: 38525916 PMCID: PMC11033342 DOI: 10.1002/jcla.25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.
Collapse
Affiliation(s)
- Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Jie Di
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Junkui Zhao
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Te Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
21
|
Luchniak A, Roy PS, Kumar A, Schneider IC, Gelfand VI, Jernigan RL, Gupta ML. Tubulin CFEOM mutations both inhibit or activate kinesin motor activity. Mol Biol Cell 2024; 35:ar32. [PMID: 38170592 PMCID: PMC10916880 DOI: 10.1091/mbc.e23-01-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Kinesin-mediated transport along microtubules is critical for axon development and health. Mutations in the kinesin Kif21a, or the microtubule subunit β-tubulin, inhibit axon growth and/or maintenance resulting in the eye-movement disorder congenital fibrosis of the extraocular muscles (CFEOM). While most examined CFEOM-causing β-tubulin mutations inhibit kinesin-microtubule interactions, Kif21a mutations activate the motor protein. These contrasting observations have led to opposed models of inhibited or hyperactive Kif21a in CFEOM. We show that, contrary to other CFEOM-causing β-tubulin mutations, R380C enhances kinesin activity. Expression of β-tubulin-R380C increases kinesin-mediated peroxisome transport in S2 cells. The binding frequency, percent motile engagements, run length and plus-end dwell time of Kif21a are also elevated on β-tubulin-R380C compared with wildtype microtubules in vitro. This conserved effect persists across tubulins from multiple species and kinesins from different families. The enhanced activity is independent of tail-mediated kinesin autoinhibition and thus utilizes a mechanism distinct from CFEOM-causing Kif21a mutations. Using molecular dynamics, we visualize how β-tubulin-R380C allosterically alters critical structural elements within the kinesin motor domain, suggesting a basis for the enhanced motility. These findings resolve the disparate models and confirm that inhibited or increased kinesin activity can both contribute to CFEOM. They also demonstrate the microtubule's role in regulating kinesins and highlight the importance of balanced transport for cellular and organismal health.
Collapse
Affiliation(s)
- Anna Luchniak
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Ambuj Kumar
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Ian C. Schneider
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011
| | - Vladimir I. Gelfand
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Mohan L. Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
22
|
Wang D, Jiang P, Wu X, Zhang Y, Wang C, Li M, Liu M, Yin J, Zhu G. Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan Cryptosporidium parvum. mBio 2024; 15:e0315823. [PMID: 38265238 PMCID: PMC10865969 DOI: 10.1128/mbio.03158-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
23
|
Aguilella-Arzo M, Hoogerheide DP, Doucet M, Wang H, Aguilella VM. Charged Biological Membranes Repel Large Neutral Molecules by Surface Dielectrophoresis and Counterion Pressure. J Am Chem Soc 2024; 146:2701-2710. [PMID: 38291994 PMCID: PMC10835712 DOI: 10.1021/jacs.3c12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024]
Abstract
Macromolecular crowding is the usual condition of cells. The implications of the crowded cellular environment for protein stability and folding, protein-protein interactions, and intracellular transport drive a growing interest in quantifying the effects of crowding. While the properties of crowded solutions have been extensively studied, less attention has been paid to the interaction of crowders with the cellular boundaries, i.e., membranes. However, membranes are key components of cells and most subcellular organelles, playing a central role in regulating protein channel and receptor functions by recruiting and binding charged and neutral solutes. While membrane interactions with charged solutes are dominated by electrostatic forces, here we show that significant charge-induced forces also exist between membranes and neutral solutes. Using neutron reflectometry measurements and molecular dynamics simulations of poly(ethylene glycol) (PEG) polymers of different molecular weights near charged and neutral membranes, we demonstrate the roles of surface dielectrophoresis and counterion pressure in repelling PEG from charged membrane surfaces. The resulting depletion zone is expected to have consequences for drug design and delivery, the activity of proteins near membrane surfaces, and the transport of small molecules along the membrane surface.
Collapse
Affiliation(s)
- Marcel Aguilella-Arzo
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071, Castellón, Spain
| | - David P. Hoogerheide
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Mathieu Doucet
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hanyu Wang
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vicente M. Aguilella
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071, Castellón, Spain
| |
Collapse
|
24
|
Sittewelle M, Royle SJ. Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci Alliance 2024; 7:e202302406. [PMID: 37857498 PMCID: PMC10587482 DOI: 10.26508/lsa.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
During membrane trafficking, a vesicle formed at the donor compartment must travel to the acceptor membrane before fusing. For large carriers, it is established that this transport is motor-driven; however, the mode by which small vesicles, which outnumber larger carriers, are transported is poorly characterized. Here, we show that intracellular nanovesicles (INVs), a substantial class of small vesicles, are highly mobile within cells and that this mobility depends almost entirely on passive diffusion (0.1-0.3 μm2 s-1). Using single particle tracking, we describe how other small trafficking vesicles have a similar diffusive mode of transport that contrasts with the motor-dependent movement of larger endolysosomal carriers. We also demonstrate that a subset of INVs is involved in exocytosis and that delivery of cargo to the plasma membrane during exocytosis is decreased when diffusion of INVs is specifically restricted. Our results suggest that passive diffusion is sufficient to explain the majority of small vesicle transport.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
25
|
Kuznetsov IA, Kuznetsov AV. Effect of mitochondrial circulation on mitochondrial age density distribution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3770. [PMID: 37688421 PMCID: PMC10841163 DOI: 10.1002/cnm.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes. Utilizing the developed model, we studied how the percentage of returning mitochondria affects the mean age and age density distributions of mitochondria at different distances from the soma. We also investigated whether turning off the mitochondrial anchoring switch can reduce the mean age of mitochondria. For this purpose, we studied the effect of reducing the value of a parameter that characterizes the probability of mitochondria transition to the stationary (anchored) state. The reduction in mitochondria mean age observed when the anchoring probability is reduced suggests that some injured neurons may be saved if the percentage of stationary mitochondria is decreased. The replacement of possibly damaged stationary mitochondria with newly synthesized ones may restore the energy supply in an injured axon. We also performed a sensitivity study of the mean age of stationary mitochondria to the parameter that determines what portion of mitochondria re-enter the axon and the parameter that determines the probability of mitochondria transition to the stationary state. The sensitivity of the mean age of stationary mitochondria to the mitochondria stopping probability increases linearly with the number of compartments in the axon. High stopping probability in long axons can significantly increase mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
26
|
Park JS, Lee IB, Moon HM, Hong SC, Cho M. Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment. Nat Commun 2023; 14:7160. [PMID: 37963891 PMCID: PMC10645962 DOI: 10.1038/s41467-023-42347-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
A eukaryotic cell is a microscopic world within which efficient material transport is essential. Yet, how a cell manages to deliver cellular cargos efficiently in a crowded environment remains poorly understood. Here, we used interferometric scattering microscopy to track unlabeled cargos in directional motion in a massively parallel fashion. Our label-free, cargo-tracing method revealed not only the dynamics of cargo transportation but also the fine architecture of the actively used cytoskeletal highways and the long-term evolution of the associated traffic at sub-diffraction resolution. Cargos frequently run into a blocked road or experience a traffic jam. Still, they have effective strategies to circumvent those problems: opting for an alternative mode of transport and moving together in tandem or migrating collectively. All taken together, a cell is an incredibly complex and busy space where the principle and practice of transportation intriguingly parallel those of our macroscopic world.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Physics, Korea University, Seoul, Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Chemistry, Korea University, Seoul, Korea.
| |
Collapse
|
27
|
Chen Y, Wang X, Wang W. Langevin picture of subdiffusion in nonuniformly expanding medium. CHAOS (WOODBURY, N.Y.) 2023; 33:113133. [PMID: 38029759 DOI: 10.1063/5.0166613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Anomalous diffusion phenomena have been observed in many complex physical and biological systems. One significant advance recently is the physical extension of particle's motion in a static medium to a uniformly and even nonuniformly expanding medium. The dynamic mechanism of the anomalous diffusion in the nonuniformly expanding medium has only been investigated by the approach of continuous-time random walk. To study more physical observables and to supplement the physical models of the anomalous diffusion in the expanding mediums, we characterize the nonuniformly expanding medium with a spatiotemporal dependent scale factor a(x,t) and build the Langevin picture describing the particle's motion in the nonuniformly expanding medium. Besides the existing comoving and physical coordinates, by introducing a new coordinate and assuming that a(x,t) is separable at a long-time limit, we build the relation between the nonuniformly expanding medium and the uniformly expanding one and further obtain the moments of the comoving and physical coordinates. Different forms of the scale factor a(x,t) are considered to uncover the combined effects of the particle's intrinsic diffusion and the nonuniform expansion of medium. The theoretical analyses and simulations provide the foundation for studying more anomalous diffusion phenomena in the expanding mediums.
Collapse
Affiliation(s)
- Yao Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xudong Wang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Wanli Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
28
|
Ledesma-Durán A, Juárez-Valencia LH. Diffusion coefficients and MSD measurements on curved membranes and porous media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:70. [PMID: 37578670 DOI: 10.1140/epje/s10189-023-00329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
We study some geometric aspects that influence the transport properties of particles that diffuse on curved surfaces. We compare different approaches to surface diffusion based on the Laplace-Beltrami operator adapted to predict concentration along entire membranes, confined subdomains along surfaces, or within porous media. Our goal is to summarize, firstly, how diffusion in these systems results in different types of diffusion coefficients and mean square displacement measurements, and secondly, how these two factors are affected by the concavity of the surface, the shape of the possible barriers or obstacles that form the available domains, the sinuosity, tortuosity, and constrictions of the trajectories and even how the observation plane affects the measurements of the diffusion. In addition to presenting a critical and organized comparison between different notions of MSD, in this review, we test the correspondence between theoretical predictions and numerical simulations by performing finite element simulations and illustrate some situations where diffusion theory can be applied. We briefly reviewed computational schemes for understanding surface diffusion and finally, discussed how this work contributes to understanding the role of surface diffusion transport properties in porous media and their relationship to other transport processes.
Collapse
Affiliation(s)
- Aldo Ledesma-Durán
- Departmento de Matemáticas, Universidad Autónoma Metropolitana, CDMX, Mexico
| | | |
Collapse
|
29
|
Scott ZC, Koning K, Vanderwerp M, Cohen L, Westrate LM, Koslover EF. Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics. Biophys J 2023; 122:3191-3205. [PMID: 37401053 PMCID: PMC10432226 DOI: 10.1016/j.bpj.2023.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of "hot spots" where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.
Collapse
Affiliation(s)
| | - Katherine Koning
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Molly Vanderwerp
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | | | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California.
| |
Collapse
|
30
|
Kuznetsov IA, Kuznetsov AV. Mitochondrial Transport in Symmetric and Asymmetric Axons with Multiple Branching Junctions: A Computational Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529604. [PMID: 36865162 PMCID: PMC9980112 DOI: 10.1101/2023.02.22.529604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study looked at mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We examined how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. We also studied whether mitochondria concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch and what proportion of flux enters the lower branch. Additionally, we explored whether the distributions of mitochondria mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is split unevenly at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on mitochondria age. Mitochondria aging is the focus of this study as recent research suggests it may be involved in neurodegenerative disorders, such as Parkinson's disease.
Collapse
|
31
|
Penolazzi L, Notarangelo MP, Lambertini E, Vultaggio-Poma V, Tarantini M, Di Virgilio F, Piva R. Unorthodox localization of P2X7 receptor in subcellular compartments of skeletal system cells. Front Cell Dev Biol 2023; 11:1180774. [PMID: 37215083 PMCID: PMC10192554 DOI: 10.3389/fcell.2023.1180774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Identifying the subcellular localization of a protein within a cell is often an essential step in understanding its function. The main objective of this report was to determine the presence of the P2X7 receptor (P2X7R) in healthy human cells of skeletal system, specifically osteoblasts (OBs), chondrocytes (Chs) and intervertebral disc (IVD) cells. This receptor is a member of the ATP-gated ion channel family, known to be a main sensor of extracellular ATP, the prototype of the danger signal released at sites of tissue damage, and a ubiquitous player in inflammation and cancer, including bone and cartilaginous tissues. Despite overwhelming data supporting a role in immune cell responses and tumor growth and progression, a complete picture of the pathophysiological functions of P2X7R, especially when expressed by non-immune cells, is lacking. Here we show that human wild-type P2X7R (P2X7A) was expressed in different samples of human osteoblasts, chondrocytes and intervertebral disc cells. By fluorescence microscopy (LM) and immunogold transmission electron microscopy we localized P2X7R not only in the canonical sites (plasma membrane and cytoplasm), but also in the nucleus of all the 3 cell types, especially IVD cells and OBs. P2X7R mitochondrial immunoreactivity was predominantly detected in OBs and IVD cells, but not in Chs. Evidence of subcellular localization of P2X7R may help to i. understand the participation of P2X7R in as yet unidentified signaling pathways in the joint and bone microenvironment, ii. identify pathologies associated with P2X7R mislocalization and iii. design specific targeted therapies.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
32
|
Kuznetsov IA, Kuznetsov AV. ATP diffusional gradients are sufficient to maintain bioenergetic homeostasis in synaptic boutons lacking mitochondria. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3696. [PMID: 36872253 DOI: 10.1002/cnm.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 05/13/2023]
Abstract
Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria. Our results demonstrate that the difference in ATP concentration between a bouton containing a mitochondrion and a neighboring bouton lacking a mitochondrion is only approximately 0.4%, which is still 3.75 times larger than the ATP concentration minimally required to support synaptic vesicle release. This work therefore suggests that passive diffusion of ATP is sufficient to maintain the functionality of boutons which do not contain mitochondria.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
33
|
Arbel-Goren R, McKeithen-Mead SA, Voglmaier D, Afremov I, Teza G, Grossman A, Stavans J. Target search by an imported conjugative DNA element for a unique integration site along a bacterial chromosome during horizontal gene transfer. Nucleic Acids Res 2023; 51:3116-3129. [PMID: 36762480 PMCID: PMC10123120 DOI: 10.1093/nar/gkad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that can transfer by conjugation to recipient cells. Some ICEs integrate into a unique site in the genome of their hosts. We studied quantitatively the process by which an ICE searches for its unique integration site in the Bacillus subtilis chromosome. We followed the motion of both ICEBs1 and the chromosomal integration site in real time within individual cells. ICEBs1 exhibited a wide spectrum of dynamical behaviors, ranging from rapid sub-diffusive displacements crisscrossing the cell, to kinetically trapped states. The chromosomal integration site moved sub-diffusively and exhibited pronounced dynamical asymmetry between longitudinal and transversal motions, highlighting the role of chromosomal structure and the heterogeneity of the bacterial interior in the search. The successful search for and subsequent recombination into the integration site is a key step in the acquisition of integrating mobile genetic elements. Our findings provide new insights into intracellular transport processes involving large DNA molecules.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Dominik Voglmaier
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idana Afremov
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alan D Grossman
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Choi AA, Xiang L, Li W, Xu K. Single-Molecule Displacement Mapping Indicates Unhindered Intracellular Diffusion of Small (≲1 kDa) Solutes. J Am Chem Soc 2023; 145:10.1021/jacs.3c00597. [PMID: 37027457 PMCID: PMC10558625 DOI: 10.1021/jacs.3c00597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
While fundamentally important, the intracellular diffusion of small (≲1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400 μs separation, we extend single-molecule displacement/diffusivity mapping (SMdM), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm2/s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ∼60-70% of that in vitro, up to ∼250 μm2/s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments.
Collapse
Affiliation(s)
- Alexander A. Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Limin Xiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Rayens NT, Cook KJ, McKinley SA, Payne CK. Palmitate-mediated disruption of the endoplasmic reticulum decreases intracellular vesicle motility. Biophys J 2023; 122:1355-1363. [PMID: 36869590 PMCID: PMC10111363 DOI: 10.1016/j.bpj.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Essential cellular processes such as metabolism, protein synthesis, and autophagy require the intracellular transport of membrane-bound vesicles. The importance of the cytoskeleton and associated molecular motors for transport is well documented. Recent research has suggested that the endoplasmic reticulum (ER) may also play a role in vesicle transport through a tethering of vesicles to the ER. We use single-particle tracking fluorescence microscopy and a Bayesian change-point algorithm to characterize vesicle motility in response to the disruption of the ER, actin, and microtubules. This high-throughput change-point algorithm allows us to efficiently analyze thousands of trajectory segments. We find that palmitate-mediated disruption of the ER leads to a significant decrease in vesicle motility. A comparison with the disruption of actin and microtubules shows that disruption of the ER has a significant impact on vesicle motility, greater than the disruption of actin. Vesicle motility was dependent on cellular region, with greater motility in the cell periphery than the perinuclear region, possibly due to regional differences in actin and the ER. Overall, these results suggest that the ER is an important factor in vesicle transport.
Collapse
Affiliation(s)
- Nathan T Rayens
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Keisha J Cook
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina
| | - Scott A McKinley
- Department of Mathematics, Tulane University, New Orleans, Louisiana
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
36
|
Park HH, Choi AA, Xu K. Size-Dependent Suppression of Molecular Diffusivity in Expandable Hydrogels: A Single-Molecule Study. J Phys Chem B 2023; 127:3333-3339. [PMID: 37011131 DOI: 10.1021/acs.jpcb.3c00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
By repurposing the recently popularized expansion microscopy to control the meshwork size of hydrogels, we examine the size-dependent suppression of molecular diffusivity in the resultant tuned hydrogel nanomatrices over a wide range of polymer fractions of ∼0.14-7 wt %. With our recently developed single-molecule displacement/diffusivity mapping (SMdM) microscopy methods, we thus show that with a fixed meshwork size, larger molecules exhibit more impeded diffusion and that, for the same molecule, diffusion is progressively more suppressed as the meshwork size is reduced; this effect is more prominent for the larger molecules. Moreover, we show that the meshwork-induced obstruction of diffusion is uncoupled from the suppression of diffusion due to increased solution viscosities. Thus, the two mechanisms, respectively, being diffuser-size-dependent and independent, may separately scale down molecular diffusivity to produce the final diffusion slowdown in complex systems like the cell.
Collapse
Affiliation(s)
- Ha H Park
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexander A Choi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Rosenkranz AA, Slastnikova TA. Prospects of Using Protein Engineering for Selective Drug Delivery into a Specific Compartment of Target Cells. Pharmaceutics 2023; 15:pharmaceutics15030987. [PMID: 36986848 PMCID: PMC10055131 DOI: 10.3390/pharmaceutics15030987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A large number of proteins are successfully used to treat various diseases. These include natural polypeptide hormones, their synthetic analogues, antibodies, antibody mimetics, enzymes, and other drugs based on them. Many of them are demanded in clinical settings and commercially successful, mainly for cancer treatment. The targets for most of the aforementioned drugs are located at the cell surface. Meanwhile, the vast majority of therapeutic targets, which are usually regulatory macromolecules, are located inside the cell. Traditional low molecular weight drugs freely penetrate all cells, causing side effects in non-target cells. In addition, it is often difficult to elaborate a small molecule that can specifically affect protein interactions. Modern technologies make it possible to obtain proteins capable of interacting with almost any target. However, proteins, like other macromolecules, cannot, as a rule, freely penetrate into the desired cellular compartment. Recent studies allow us to design multifunctional proteins that solve these problems. This review considers the scope of application of such artificial constructs for the targeted delivery of both protein-based and traditional low molecular weight drugs, the obstacles met on the way of their transport to the specified intracellular compartment of the target cells after their systemic bloodstream administration, and the means to overcome those difficulties.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
38
|
Hou D, Xu Y, Yan J, Zeng Q, Wang Z, Chen Y. Intracellularly Self-Assembled 2D Materials Induce Apoptotic Cell Death by Impeding Cytosolic Transport. ACS NANO 2023; 17:3055-3063. [PMID: 36688625 DOI: 10.1021/acsnano.2c11876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using a photochemically isomerizable cucurbit[6]uril derivative as a building block, we succeeded in generating a large number of oversized 2D materials within the cytosol of a living cell via controlled self-assembly. Fluorescence recovery after a photobleaching assay indicated that the resulting 2D material pieces posed discernible hindrance to not only diffusive spreading but also motor-driven motion of intracellular components in the cytosol, which eventually induced apoptotic cell death. Such behavior was seldom observed in previous 2D material-bearing cells prepared by endocytosis, as the total lateral size constituted by the endocytosed 2D materials per cell failed to exceed a threshold level, leading to a tortuosity of transport path inadequate to impede cytosolic transport in an appreciable manner. By varying the initial concentration of the building block, the existence of such a threshold was experimentally demonstrated from the relationship between the flow cytometry side scatter of the treated cells and corresponding cell viability. With the otherwise well-regulated cytosolic transport dynamics of living cells being physically altered, therapeutics with a new mechanism of action that counteracts drug resistance or intracellular platforms that advance our understanding of subcellular pathology of certain intractable diseases are in sight.
Collapse
Affiliation(s)
- Delong Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jun Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Qi Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhonghui Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
39
|
Bourke AM, Schwarz A, Schuman EM. De-centralizing the Central Dogma: mRNA translation in space and time. Mol Cell 2023; 83:452-468. [PMID: 36669490 DOI: 10.1016/j.molcel.2022.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
As our understanding of the cell interior has grown, we have come to appreciate that most cellular operations are localized, that is, they occur at discrete and identifiable locations or domains. These cellular domains contain enzymes, machines, and other components necessary to carry out and regulate these localized operations. Here, we review these features of one such operation: the localization and translation of mRNAs within subcellular compartments observed across cell types and organisms. We describe the conceptual advantages and the "ingredients" and mechanisms of local translation. We focus on the nature and features of localized mRNAs, how they travel and get localized, and how this process is regulated. We also evaluate our current understanding of protein synthesis machines (ribosomes) and their cadre of regulatory elements, that is, the translation factors.
Collapse
Affiliation(s)
- Ashley M Bourke
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
40
|
Wang X, Chen Y. Langevin picture of anomalous diffusion processes in expanding medium. Phys Rev E 2023; 107:024105. [PMID: 36932587 DOI: 10.1103/physreve.107.024105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The expanding medium is very common in many different fields, such as biology and cosmology. It brings a nonnegligible influence on particle's diffusion, which is quite different from the effect of an external force field. The dynamic mechanism of a particle's motion in an expanding medium has only been investigated in the framework of a continuous-time random walk. To focus on more diffusion processes and physical observables, we build the Langevin picture of anomalous diffusion in an expanding medium, and conduct detailed analyses in the framework of the Langevin equation. With the help of a subordinator, both subdiffusion process and superdiffusion process in the expanding medium are discussed. We find that the expanding medium with different changing rate (exponential form and power-law form) leads to quite different diffusion phenomena. The particle's intrinsic diffusion behavior also plays an important role. Our detailed theoretical analyses and simulations present a panoramic view of investigating anomalous diffusion in an expanding medium under the framework of the Langevin equation.
Collapse
Affiliation(s)
- Xudong Wang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yao Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
41
|
Choi AA, Xiang L, Li W, Xu K. Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (<~1 kDa) solutes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525579. [PMID: 36747694 PMCID: PMC9900885 DOI: 10.1101/2023.01.26.525579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While fundamentally important, the intracellular diffusion of small (<~1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400-μs separation, we extend single-molecule displacement/diffusivity mapping (SM d M), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm 2 /s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ~60-70% of that in vitro , up to ~250 μm 2 /s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water, but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments. Abstract Graphic
Collapse
|
42
|
Pönisch W, Michaels TCT, Weber CA. Aggregation controlled by condensate rheology. Biophys J 2023; 122:197-214. [PMID: 36369755 PMCID: PMC9822804 DOI: 10.1016/j.bpj.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Biomolecular condensates in living cells can exhibit a complex rheology, including viscoelastic and glassy behavior. This rheological behavior of condensates was suggested to regulate polymerization of cytoskeletal filaments and aggregation of amyloid fibrils. Here, we theoretically investigate how the rheological properties of condensates can control the formation of linear aggregates. To this end, we propose a kinetic theory for linear aggregation in coexisting phases, which accounts for the aggregate size distribution and the exchange of aggregates between inside and outside of condensates. The rheology of condensates is accounted in our model via aggregate mobilities that depend on aggregate size. We show that condensate rheology determines whether aggregates of all sizes or dominantly small aggregates are exchanged between condensate inside and outside on the timescale of aggregation. As a result, the ratio of aggregate numbers inside to outside of condensates differs significantly. Strikingly, we also find that weak variations in the rheological properties of condensates can lead to a switch-like change of the number of aggregates. These results suggest a possible physical mechanism for how living cells could control linear aggregation in a switch-like fashion through variations in condensate rheology.
Collapse
Affiliation(s)
- Wolfram Pönisch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Thomas C T Michaels
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom; Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom; Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | - Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Faculty of Mathematics, Natural Sciences, and Materials Engineering, Institute of Physics, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
43
|
Sheung JY, Garamella J, Kahl SK, Lee BY, McGorty RJ, Robertson-Anderson RM. Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites. FRONTIERS IN PHYSICS 2022; 10:1055441. [PMID: 37547053 PMCID: PMC10403238 DOI: 10.3389/fphy.2022.1055441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
Collapse
Affiliation(s)
- Janet Y. Sheung
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Jonathan Garamella
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | - Stella K. Kahl
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
| | - Brian Y. Lee
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Ryan J. McGorty
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | | |
Collapse
|
44
|
Kuznetsov IA, Kuznetsov AV. Effects of axon branching and asymmetry between the branches on transport, mean age, and age density distributions of mitochondria in neurons: A computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3648. [PMID: 36125402 PMCID: PMC9643662 DOI: 10.1002/cnm.3648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
We report a computational study of mitochondria transport in a branched axon with two branches of different sizes. For comparison, we also investigate mitochondria transport in an axon with symmetric branches and in a straight (unbranched) axon. The interest in understanding mitochondria transport in branched axons is motivated by the large size of arbors of dopaminergic neurons, which die in Parkinson's disease. Since the failure of energy supply of multiple demand sites located in various axonal branches may be a possible reason for the death of these neurons, we were interested in investigating how branching affects mitochondria transport. Besides investigating mitochondria fluxes between the demand sites and mitochondria concentrations, we also studied how the mean age of mitochondria and mitochondria age densities depend on the distance from the soma. We established that if the axon splits into two branches of unequal length, the mean ages of mitochondria and age density distributions in the demand sites are affected by how the mitochondria flux splits at the branching junction (what portion of mitochondria enter the shorter branch and what portion enter the longer branch). However, if the axon splits into two branches of equal length, the mean ages and age densities of mitochondria are independent of how the mitochondria flux splits at the branching junction. This even holds for the case when all mitochondria enter one branch, which is equivalent to a straight axon. Because the mitochondrial membrane potential (which many researchers view as a proxy for mitochondrial health) decreases with mitochondria age, the independence of mitochondria age on whether the axon is symmetrically branched or straight (providing the two axons are of the same length), and on how the mitochondria flux splits at the branching junction, may explain how dopaminergic neurons can sustain very large arbors and still maintain mitochondrial health across branch extremities.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrey V. Kuznetsov
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
45
|
Transport in the Brain Extracellular Space: Diffusion, but Which Kind? Int J Mol Sci 2022; 23:ijms232012401. [PMID: 36293258 PMCID: PMC9604357 DOI: 10.3390/ijms232012401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of transport of substances in the brain parenchyma have been a hot topic in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to the previous notion that diffusion is the main mechanism. However, when discussing the issue of “diffusion or non-diffusion”, much less attention was given to the question that diffusion itself can have a different character. In our opinion, some of the recently published results do not fit into the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical approaches on transport processes in complex random media such as concepts of diffusive diffusivity and time-dependent homogenization, which expands the understanding of the forms of transport of substances based on diffusion.
Collapse
|
46
|
Chelladurai R, Debnath K, Jana NR, Basu JK. Spontaneous formation and growth kinetics of lipid nanotubules induced by passive nanoparticles. SOFT MATTER 2022; 18:7082-7090. [PMID: 36043324 DOI: 10.1039/d2sm00900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid nanotubules (LNTs) are conduits that form on the membranes of cells and organelles, and they are ubiquitous in all forms of life from archaea and bacteria to plants and mammals. The formation, shape and dynamics of these LNTs are critical for cellular functions, supporting the transport of myriad cellular cargoes as well as communication within and between cells, and they are also widely believed to be responsible for exploitation of host cells by pathogens for the spread of infection and diseases. In vitro kinetic control of LNT formation can considerably enhance the scope of utilization of these structures for disease control and therapy. Here we report a new paradigm for spontaneous lipid nanotubulation, capturing the dynamical regimes of growth, stabilization and retraction of the tubes through the binding of synthetic nanoparticles on supported lipid bilayers (SLBs). The tubulation is determined by the spontaneous binding-unbinding of nanoparticles on the LNTs. The presented methodology could be used to rectify malfunctioning cellular tubules or to prevent the pathogenic spread of diseases through inhibition of cell-to-cell nanotubule formation.
Collapse
Affiliation(s)
| | - Koushik Debnath
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Nikhil R Jana
- Indian Association for the Cultivation of Science, Kolkata, India
| | | |
Collapse
|
47
|
Mankovich AG, Freeman BC. Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules 2022; 12:biom12081077. [PMID: 36008972 PMCID: PMC9406046 DOI: 10.3390/biom12081077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The highly conserved molecular chaperone heat shock protein 90 (Hsp90) is well-known for maintaining metastable proteins and mediating various aspects of intracellular protein dynamics. Intriguingly, high-throughput interactome studies suggest that Hsp90 is associated with a variety of other pathways. Here, we will highlight the potential impact of Hsp90 in protein transport. Currently, a limited number of studies have defined a few mechanistic contributions of Hsp90 to protein transport, yet the relevance of hundreds of additional connections between Hsp90 and factors known to aide this process remains unresolved. These interactors broadly support transport pathways including endocytic and exocytic vesicular transport, the transfer of polypeptides across membranes, or unconventional protein secretion. In resolving how Hsp90 contributes to the protein transport process, new therapeutic targets will likely be obtained for the treatment of numerous human health issues, including bacterial infection, cancer metastasis, and neurodegeneration.
Collapse
|
48
|
Arceo XG, Koslover EF, Zid BM, Brown AI. Mitochondrial mRNA localization is governed by translation kinetics and spatial transport. PLoS Comput Biol 2022; 18:e1010413. [PMID: 35984860 PMCID: PMC9432724 DOI: 10.1371/journal.pcbi.1010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
For many nuclear-encoded mitochondrial genes, mRNA localizes to the mitochondrial surface co-translationally, aided by the association of a mitochondrial targeting sequence (MTS) on the nascent peptide with the mitochondrial import complex. For a subset of these co-translationally localized mRNAs, their localization is dependent on the metabolic state of the cell, while others are constitutively localized. To explore the differences between these two mRNA types we developed a stochastic, quantitative model for MTS-mediated mRNA localization to mitochondria in yeast cells. This model includes translation, applying gene-specific kinetics derived from experimental data; and diffusion in the cytosol. Even though both mRNA types are co-translationally localized we found that the steady state number, or density, of ribosomes along an mRNA was insufficient to differentiate the two mRNA types. Instead, conditionally-localized mRNAs have faster translation kinetics which modulate localization in combination with changes to diffusive search kinetics across metabolic states. Our model also suggests that the MTS requires a maturation time to become competent to bind mitochondria. Our work indicates that yeast cells can regulate mRNA localization to mitochondria by controlling mitochondrial volume fraction (influencing diffusive search times) and gene translation kinetics (adjusting mRNA binding competence) without the need for mRNA-specific binding proteins. These results shed light on both global and gene-specific mechanisms that enable cells to alter mRNA localization in response to changing metabolic conditions.
Collapse
Affiliation(s)
- Ximena G. Arceo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Aidan I. Brown
- Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
49
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
50
|
Gerber T, Loureiro C, Schramma N, Chen S, Jain A, Weber A, Weigert A, Santel M, Alim K, Treutlein B, Camp JG. Spatial transcriptomic and single-nucleus analysis reveals heterogeneity in a gigantic single-celled syncytium. eLife 2022; 11:e69745. [PMID: 35195068 PMCID: PMC8865844 DOI: 10.7554/elife.69745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
In multicellular organisms, the specification, coordination, and compartmentalization of cell types enable the formation of complex body plans. However, some eukaryotic protists such as slime molds generate diverse and complex structures while remaining in a multinucleate syncytial state. It is unknown if different regions of these giant syncytial cells have distinct transcriptional responses to environmental encounters and if nuclei within the cell diversify into heterogeneous states. Here, we performed spatial transcriptome analysis of the slime mold Physarum polycephalum in the plasmodium state under different environmental conditions and used single-nucleus RNA-sequencing to dissect gene expression heterogeneity among nuclei. Our data identifies transcriptome regionality in the organism that associates with proliferation, syncytial substructures, and localized environmental conditions. Further, we find that nuclei are heterogenous in their transcriptional profile and may process local signals within the plasmodium to coordinate cell growth, metabolism, and reproduction. To understand how nuclei variation within the syncytium compares to heterogeneity in single-nucleus cells, we analyzed states in single Physarum amoebal cells. We observed amoebal cell states at different stages of mitosis and meiosis, and identified cytokinetic features that are specific to nuclei divisions within the syncytium. Notably, we do not find evidence for predefined transcriptomic states in the amoebae that are observed in the syncytium. Our data shows that a single-celled slime mold can control its gene expression in a region-specific manner while lacking cellular compartmentalization and suggests that nuclei are mobile processors facilitating local specialized functions. More broadly, slime molds offer the extraordinary opportunity to explore how organisms can evolve regulatory mechanisms to divide labor, specialize, balance competition with cooperation, and perform other foundational principles that govern the logic of life.
Collapse
Affiliation(s)
- Tobias Gerber
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Cristina Loureiro
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - Nico Schramma
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
| | - Siyu Chen
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Physics Department, Technical University of MunichMünchenGermany
| | - Akanksha Jain
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - Anne Weber
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
| | - Anne Weigert
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Physics Department, Technical University of MunichMünchenGermany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of Biosystems Science and Engineering, ETH ZürichBaselSwitzerland
| | - J Gray Camp
- Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation CenterBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|