1
|
Ding L, Zou Q, Zhu J, Wang Y, Yang Y. Dynamical intracranial EEG functional network controllability localizes the seizure onset zone and predicts the epilepsy surgical outcome. J Neural Eng 2025; 22:026015. [PMID: 40009882 DOI: 10.1088/1741-2552/adba8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Objective. Seizure onset zone (SOZ) localization and SOZ resection outcome prediction are critical for the surgical treatment of drug-resistant epilepsy but have mainly relied on manual inspection of intracranial electroencephalography (iEEG) monitoring data, which can be both inaccurate and time-consuming. Therefore, automating SOZ localization and surgical outcome prediction by using appropriate iEEG neural features and machine learning models has become an emerging topic. However, current channel-wise local features, graph-theoretic network features, and system-theoretic network features cannot fully capture the spatial, temporal, and neural dynamical aspects of epilepsy, hindering accurate SOZ localization and surgical outcome prediction.Approach. Here, we develop a method for computing dynamical functional network controllability from multi-channel iEEG signals, which from a control-theoretic viewpoint, has the ability to simultaneously capture the spatial, temporal, functional, and dynamical aspects of epileptic brain networks. We then apply multiple machine learning models to use iEEG functional network controllability for localizing SOZ and predicting surgical outcomes in drug-resistant epilepsy patients and compare with existing neural features. We finally combine iEEG functional network controllability with representative local, graph-theoretic, and system-theoretic features to leverage complementary information for further improving performance.Main results. We find that iEEG functional network controllability at SOZ channels is significantly higher than that of other channels. We further show that machine learning models using iEEG functional network controllability successfully localize SOZ and predict surgical outcomes, significantly outperforming existing local, graph-theoretic, and system-theoretic features. We finally demonstrate that there exists complementary information among different types of neural features and fusing them further improves performance.Significance. Our results suggest that iEEG functional network controllability is an effective feature for automatic SOZ localization and surgical outcome prediction in epilepsy treatment.
Collapse
Affiliation(s)
- Ling Ding
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
| | - Qingyu Zou
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
| | - Yueming Wang
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yuxiao Yang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- State Key Laboratory of Brain-machine Intelligence, Hangzhou 310058, People's Republic of China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
| |
Collapse
|
2
|
Fang H, Berman SA, Wang Y, Yang Y. Robust adaptive deep brain stimulation control of in-silico non-stationary Parkinsonian neural oscillatory dynamics. J Neural Eng 2024; 21:036043. [PMID: 38834058 DOI: 10.1088/1741-2552/ad5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Objective. Closed-loop deep brain stimulation (DBS) is a promising therapy for Parkinson's disease (PD) that works by adjusting DBS patterns in real time from the guidance of feedback neural activity. Current closed-loop DBS mainly uses threshold-crossing on-off controllers or linear time-invariant (LTI) controllers to regulate the basal ganglia (BG) Parkinsonian beta band oscillation power. However, the critical cortex-BG-thalamus network dynamics underlying PD are nonlinear, non-stationary, and noisy, hindering accurate and robust control of Parkinsonian neural oscillatory dynamics.Approach. Here, we develop a new robust adaptive closed-loop DBS method for regulating the Parkinsonian beta oscillatory dynamics of the cortex-BG-thalamus network. We first build an adaptive state-space model to quantify the dynamic, nonlinear, and non-stationary neural activity. We then construct an adaptive estimator to track the nonlinearity and non-stationarity in real time. We next design a robust controller to automatically determine the DBS frequency based on the estimated Parkinsonian neural state while reducing the system's sensitivity to high-frequency noise. We adopt and tune a biophysical cortex-BG-thalamus network model as an in-silico simulation testbed to generate nonlinear and non-stationary Parkinsonian neural dynamics for evaluating DBS methods.Main results. We find that under different nonlinear and non-stationary neural dynamics, our robust adaptive DBS method achieved accurate regulation of the BG Parkinsonian beta band oscillation power with small control error, bias, and deviation. Moreover, the accurate regulation generalizes across different therapeutic targets and consistently outperforms current on-off and LTI DBS methods.Significance. These results have implications for future designs of closed-loop DBS systems to treat PD.
Collapse
Affiliation(s)
- Hao Fang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
| | - Stephen A Berman
- College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Yueming Wang
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- Qiushi Academy for Advanced Studies, Hangzhou 310058, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- State Key Laboratory of Brain-machine Intelligence, Hangzhou 310058, People's Republic of China
| | - Yuxiao Yang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, People's Republic of China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, People's Republic of China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- State Key Laboratory of Brain-machine Intelligence, Hangzhou 310058, People's Republic of China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Hangzhou 310058, People's Republic of China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
3
|
Sadras N, Pesaran B, Shanechi MM. Event detection and classification from multimodal time series with application to neural data. J Neural Eng 2024; 21:026049. [PMID: 38513289 DOI: 10.1088/1741-2552/ad3678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
The detection of events in time-series data is a common signal-processing problem. When the data can be modeled as a known template signal with an unknown delay in Gaussian noise, detection of the template signal can be done with a traditional matched filter. However, in many applications, the event of interest is represented in multimodal data consisting of both Gaussian and point-process time series. Neuroscience experiments, for example, can simultaneously record multimodal neural signals such as local field potentials (LFPs), which can be modeled as Gaussian, and neuronal spikes, which can be modeled as point processes. Currently, no method exists for event detection from such multimodal data, and as such our objective in this work is to develop a method to meet this need. Here we address this challenge by developing the multimodal event detector (MED) algorithm which simultaneously estimates event times and classes. To do this, we write a multimodal likelihood function for Gaussian and point-process observations and derive the associated maximum likelihood estimator of simultaneous event times and classes. We additionally introduce a cross-modal scaling parameter to account for model mismatch in real datasets. We validate this method in extensive simulations as well as in a neural spike-LFP dataset recorded during an eye-movement task, where the events of interest are eye movements with unknown times and directions. We show that the MED can successfully detect eye movement onset and classify eye movement direction. Further, the MED successfully combines information across data modalities, with multimodal performance exceeding unimodal performance. This method can facilitate applications such as the discovery of latent events in multimodal neural population activity and the development of brain-computer interfaces for naturalistic settings without constrained tasks or prior knowledge of event times.
Collapse
Affiliation(s)
- Nitin Sadras
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Thomas Lord Department of Computer Science, Alfred E. Mann Department of Biomedical Engineering, and the Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
4
|
Chen W, Wang Y, Yang Y. Efficient Estimation of Directed Connectivity in Nonlinear and Nonstationary Spiking Neuron Networks. IEEE Trans Biomed Eng 2024; 71:841-854. [PMID: 37756180 DOI: 10.1109/tbme.2023.3319956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Studying directed connectivity within spiking neuron networks can help understand neural mechanisms. Existing methods assume linear time-invariant neural dynamics with a fixed time lag in information transmission, while spiking networks usually involve complex dynamics that are nonlinear and nonstationary, and have varying time lags. METHODS We develop a Gated Recurrent Unit (GRU)-Point Process (PP) method to estimate directed connectivity within spiking networks. We use a GRU to describe the dependency of the target neuron's current firing rate on the source neurons' past spiking events and a PP to relate the target neuron's firing rate to its current 0-1 spiking event. The GRU model uses recurrent states and gate/activation functions to deal with varying time lags, nonlinearity, and nonstationarity in a parameter-efficient manner. We estimate the model using maximum likelihood and compute directed information as our measure of directed connectivity. RESULTS We conduct simulations using artificial spiking networks and a biophysical model of Parkinson's disease to show that GRU-PP systematically addresses varying time lags, nonlinearity, and nonstationarity, and estimates directed connectivity with high accuracy and data efficiency. We also use a non-human-primate dataset to show that GRU-PP correctly identifies the biophysically-plausible stronger PMd-to-M1 connectivity than M1-to-PMd connectivity during reaching. In all experiments, the GRU-PP consistently outperforms state-of-the-art methods. CONCLUSION The GRU-PP method efficiently estimates directed connectivity in varying time lag, nonlinear, and nonstationary spiking neuron networks. SIGNIFICANCE The proposed method can serve as a directed connectivity analysis tool for investigating complex spiking neuron network dynamics.
Collapse
|
5
|
Ahmadipour P, Sani OG, Pesaran B, Shanechi MM. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity. J Neural Eng 2024; 21:026001. [PMID: 38016450 PMCID: PMC10913727 DOI: 10.1088/1741-2552/ad1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Objective.Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain-machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales.Approach.Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient learning for modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical SID method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and with spiking and local field potential population activity recorded during a naturalistic reach and grasp behavior.Main results.We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson-Gaussian observations, multiscale SID had a much lower training time while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity and behavior.Significance.Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest, such as for online adaptive BMIs to track non-stationary dynamics or for reducing offline training time in neuroscience investigations.
Collapse
Affiliation(s)
- Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Thomas Lord Department of Computer Science, Alfred E. Mann Department of Biomedical Engineering, and the Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Ahuja A, Agrawal S, Acharya S, Batra N, Daiya V. Advancements in Wearable Digital Health Technology: A Review of Epilepsy Management. Cureus 2024; 16:e57037. [PMID: 38681418 PMCID: PMC11047798 DOI: 10.7759/cureus.57037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
This review explores recent advancements in wearable digital health technology specifically designed to manage epilepsy. Epilepsy presents unique challenges in monitoring and management due to the unpredictable nature of seizures. Wearable devices offer continuous monitoring and real-time data collection, providing insights into seizure patterns and trends. Wearable technology is important in epilepsy management because it enables early detection, prediction, and personalized intervention, empowering patients and healthcare providers. Key findings highlight the potential of wearable devices to improve seizure detection accuracy, enhance patient empowerment through real-time monitoring, and facilitate data-driven decision-making in clinical practice. However, further research is needed to validate the accuracy and reliability of these devices across diverse patient populations and clinical settings. Collaborative efforts between researchers, clinicians, technology developers, and patients are essential to drive innovation and advancements in wearable digital health technology for epilepsy management, ultimately improving outcomes and quality of life for individuals with this neurological condition.
Collapse
Affiliation(s)
- Abhinav Ahuja
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Nitesh Batra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Varun Daiya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
7
|
Vahidi P, Sani OG, Shanechi MM. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. Proc Natl Acad Sci U S A 2024; 121:e2212887121. [PMID: 38335258 PMCID: PMC10873612 DOI: 10.1073/pnas.2212887121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/03/2023] [Indexed: 02/12/2024] Open
Abstract
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Collapse
Affiliation(s)
- Parsa Vahidi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Omid G. Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Maryam M. Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA90089
- Thomas Lord Department of Computer Science and Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
8
|
Sadras N, Sani OG, Ahmadipour P, Shanechi MM. Post-stimulus encoding of decision confidence in EEG: toward a brain-computer interface for decision making. J Neural Eng 2023; 20:056012. [PMID: 37524073 DOI: 10.1088/1741-2552/acec14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.When making decisions, humans can evaluate how likely they are to be correct. If this subjective confidence could be reliably decoded from brain activity, it would be possible to build a brain-computer interface (BCI) that improves decision performance by automatically providing more information to the user if needed based on their confidence. But this possibility depends on whether confidence can be decoded right after stimulus presentation and before the response so that a corrective action can be taken in time. Although prior work has shown that decision confidence is represented in brain signals, it is unclear if the representation is stimulus-locked or response-locked, and whether stimulus-locked pre-response decoding is sufficiently accurate for enabling such a BCI.Approach.We investigate the neural correlates of confidence by collecting high-density electroencephalography (EEG) during a perceptual decision task with realistic stimuli. Importantly, we design our task to include a post-stimulus gap that prevents the confounding of stimulus-locked activity by response-locked activity and vice versa, and then compare with a task without this gap.Main results.We perform event-related potential and source-localization analyses. Our analyses suggest that the neural correlates of confidence are stimulus-locked, and that an absence of a post-stimulus gap could cause these correlates to incorrectly appear as response-locked. By preventing response-locked activity from confounding stimulus-locked activity, we then show that confidence can be reliably decoded from single-trial stimulus-locked pre-response EEG alone. We also identify a high-performance classification algorithm by comparing a battery of algorithms. Lastly, we design a simulated BCI framework to show that the EEG classification is accurate enough to build a BCI and that the decoded confidence could be used to improve decision making performance particularly when the task difficulty and cost of errors are high.Significance.Our results show feasibility of non-invasive EEG-based BCIs to improve human decision making.
Collapse
Affiliation(s)
- Nitin Sadras
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Neuroscience Graduate Program University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
9
|
Wahl T, Riedinger J, Duprez M, Hutt A. Delayed closed-loop neurostimulation for the treatment of pathological brain rhythms in mental disorders: a computational study. Front Neurosci 2023; 17:1183670. [PMID: 37476837 PMCID: PMC10354341 DOI: 10.3389/fnins.2023.1183670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Mental disorders are among the top most demanding challenges in world-wide health. A large number of mental disorders exhibit pathological rhythms, which serve as the disorders characteristic biomarkers. These rhythms are the targets for neurostimulation techniques. Open-loop neurostimulation employs stimulation protocols, which are rather independent of the patients health and brain state in the moment of treatment. Most alternative closed-loop stimulation protocols consider real-time brain activity observations but appear as adaptive open-loop protocols, where e.g., pre-defined stimulation sets in if observations fulfil pre-defined criteria. The present theoretical work proposes a fully-adaptive closed-loop neurostimulation setup, that tunes the brain activities power spectral density (PSD) according to a user-defined PSD. The utilized brain model is non-parametric and estimated from the observations via magnitude fitting in a pre-stimulus setup phase. Moreover, the algorithm takes into account possible conduction delays in the feedback connection between observation and stimulation electrode. All involved features are illustrated on pathological α- and γ-rhythms known from psychosis. To this end, we simulate numerically a linear neural population brain model and a non-linear cortico-thalamic feedback loop model recently derived to explain brain activity in psychosis.
Collapse
Affiliation(s)
- Thomas Wahl
- ICube, MLMS, MIMESIS Team, Inria Nancy - Grand Est, University of Strasbourg, Strasbourg, France
| | - Joséphine Riedinger
- ICube, MLMS, MIMESIS Team, Inria Nancy - Grand Est, University of Strasbourg, Strasbourg, France
- INSERM U1114, Neuropsychologie Cognitive et Physiopathologie de la Schizophrénie, Strasbourg, France
| | - Michel Duprez
- ICube, MLMS, MIMESIS Team, Inria Nancy - Grand Est, University of Strasbourg, Strasbourg, France
| | - Axel Hutt
- ICube, MLMS, MIMESIS Team, Inria Nancy - Grand Est, University of Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Ahmadipour P, Sani OG, Pesaran B, Shanechi MM. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542509. [PMID: 37398400 PMCID: PMC10312539 DOI: 10.1101/2023.05.26.542509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain-machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales. Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical subspace identification method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and spike-LFP population activity recorded during a naturalistic reach and grasp behavior. We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson-Gaussian observations, multiscale SID had a much lower computational cost while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity. Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest.
Collapse
|
11
|
Vahidi P, Sani OG, Shanechi MM. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532554. [PMID: 36993213 PMCID: PMC10055042 DOI: 10.1101/2023.03.14.532554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other regions. To avoid misinterpreting temporally-structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of a specific behavior. We first show how training dynamical models of neural activity while considering behavior but not input, or input but not behavior may lead to misinterpretations. We then develop a novel analytical learning method that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the new capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of task while other methods can be influenced by the change in task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the three subjects and two tasks whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Collapse
|
12
|
Fang H, Yang Y. Predictive neuromodulation of cingulo-frontal neural dynamics in major depressive disorder using a brain-computer interface system: A simulation study. Front Comput Neurosci 2023; 17:1119685. [PMID: 36950505 PMCID: PMC10025398 DOI: 10.3389/fncom.2023.1119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Deep brain stimulation (DBS) is a promising therapy for treatment-resistant major depressive disorder (MDD). MDD involves the dysfunction of a brain network that can exhibit complex nonlinear neural dynamics in multiple frequency bands. However, current open-loop and responsive DBS methods cannot track the complex multiband neural dynamics in MDD, leading to imprecise regulation of symptoms, variable treatment effects among patients, and high battery power consumption. Methods Here, we develop a closed-loop brain-computer interface (BCI) system of predictive neuromodulation for treating MDD. We first use a biophysically plausible ventral anterior cingulate cortex (vACC)-dorsolateral prefrontal cortex (dlPFC) neural mass model of MDD to simulate nonlinear and multiband neural dynamics in response to DBS. We then use offline system identification to build a dynamic model that predicts the DBS effect on neural activity. We next use the offline identified model to design an online BCI system of predictive neuromodulation. The online BCI system consists of a dynamic brain state estimator and a model predictive controller. The brain state estimator estimates the MDD brain state from the history of neural activity and previously delivered DBS patterns. The predictive controller takes the estimated MDD brain state as the feedback signal and optimally adjusts DBS to regulate the MDD neural dynamics to therapeutic targets. We use the vACC-dlPFC neural mass model as a simulation testbed to test the BCI system and compare it with state-of-the-art open-loop and responsive DBS treatments of MDD. Results We demonstrate that our dynamic model accurately predicts nonlinear and multiband neural activity. Consequently, the predictive neuromodulation system accurately regulates the neural dynamics in MDD, resulting in significantly smaller control errors and lower DBS battery power consumption than open-loop and responsive DBS. Discussion Our results have implications for developing future precisely-tailored clinical closed-loop DBS treatments for MDD.
Collapse
Affiliation(s)
- Hao Fang
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States
| | - Yuxiao Yang
- Ministry of Education (MOE) Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Yuxiao Yang
| |
Collapse
|
13
|
Song CY, Hsieh HL, Pesaran B, Shanechi MM. Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations. J Neural Eng 2022; 19. [PMID: 36261030 DOI: 10.1088/1741-2552/ac9b94] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
Objective.Realizing neurotechnologies that enable long-term neural recordings across multiple spatial-temporal scales during naturalistic behaviors requires new modeling and inference methods that can simultaneously address two challenges. First, the methods should aggregate information across all activity scales from multiple recording sources such as spiking and field potentials. Second, the methods should detect changes in the regimes of behavior and/or neural dynamics during naturalistic scenarios and long-term recordings. Prior regime detection methods are developed for a single scale of activity rather than multiscale activity, and prior multiscale methods have not considered regime switching and are for stationary cases.Approach.Here, we address both challenges by developing a switching multiscale dynamical system model and the associated filtering and smoothing methods. This model describes the encoding of an unobserved brain state in multiscale spike-field activity. It also allows for regime-switching dynamics using an unobserved regime state that dictates the dynamical and encoding parameters at every time-step. We also design the associated switching multiscale inference methods that estimate both the unobserved regime and brain states from simultaneous spike-field activity.Main results.We validate the methods in both extensive numerical simulations and prefrontal spike-field data recorded in a monkey performing saccades for fluid rewards. We show that these methods can successfully combine the spiking and field potential observations to simultaneously track the regime and brain states accurately. Doing so, these methods lead to better state estimation compared with single-scale switching methods or stationary multiscale methods. Also, for single-scale linear Gaussian observations, the new switching smoother can better generalize to diverse system settings compared to prior switching smoothers.Significance.These modeling and inference methods effectively incorporate both regime-detection and multiscale observations. As such, they could facilitate investigation of latent switching neural population dynamics and improve future brain-machine interfaces by enabling inference in naturalistic scenarios where regime-dependent multiscale activity and behavior arise.
Collapse
Affiliation(s)
- Christian Y Song
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Han-Lin Hsieh
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Departments of Neurosurgery, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.,Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
14
|
Schmidt D, English G, Gent TC, Yanik MF, von der Behrens W. Machine learning reveals interhemispheric somatosensory coherence as indicator of anesthetic depth. Front Neuroinform 2022; 16:971231. [PMID: 36172256 PMCID: PMC9510780 DOI: 10.3389/fninf.2022.971231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to identify features in mouse electrocorticogram recordings that indicate the depth of anesthesia as approximated by the administered anesthetic dosage. Anesthetic depth in laboratory animals must be precisely monitored and controlled. However, for the most common lab species (mice) few indicators useful for monitoring anesthetic depth have been established. We used electrocorticogram recordings in mice, coupled with peripheral stimulation, in order to identify features of brain activity modulated by isoflurane anesthesia and explored their usefulness in monitoring anesthetic depth through machine learning techniques. Using a gradient boosting regressor framework we identified interhemispheric somatosensory coherence as the most informative and reliable electrocorticogram feature for determining anesthetic depth, yielding good generalization and performance over many subjects. Knowing that interhemispheric somatosensory coherence indicates the effectively administered isoflurane concentration is an important step for establishing better anesthetic monitoring protocols and closed-loop systems for animal surgeries.
Collapse
Affiliation(s)
- Dominik Schmidt
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Gwendolyn English
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
| | - Thomas C. Gent
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Anaesthesiology Section, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
- *Correspondence: Wolfger von der Behrens
| |
Collapse
|
15
|
Fang H, Yang Y. Designing and Validating a Robust Adaptive Neuromodulation Algorithm for Closed-Loop Control of Brain States. J Neural Eng 2022; 19. [PMID: 35576912 DOI: 10.1088/1741-2552/ac7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Neuromodulation systems that use closed-loop brain stimulation to control brain states can provide new therapies for brain disorders. To date, closed-loop brain stimulation has largely used linear time-invariant controllers. However, nonlinear time-varying brain network dynamics and external disturbances can appear during real-time stimulation, collectively leading to real-time model uncertainty. Real-time model uncertainty can degrade the performance or even cause instability of time-invariant controllers. Three problems need to be resolved to enable accurate and stable control under model uncertainty. First, an adaptive controller is needed to track the model uncertainty. Second, the adaptive controller additionally needs to be robust to noise and disturbances. Third, theoretical analyses of stability and robustness are needed as prerequisites for stable operation of the controller in practical applications. APPROACH We develop a robust adaptive neuromodulation algorithm that solves the above three problems. First, we develop a state-space brain network model that explicitly includes nonlinear terms of real-time model uncertainty and design an adaptive controller to track and cancel the model uncertainty. Second, to improve the robustness of the adaptive controller, we design two linear filters to increase steady-state control accuracy and reduce sensitivity to high-frequency noise and disturbances. Third, we conduct theoretical analyses to prove the stability of the neuromodulation algorithm and establish a trade-off between stability and robustness, which we further use to optimize the algorithm design. Finally, we validate the algorithm using comprehensive Monte Carlo simulations that span a broad range of model nonlinearity, uncertainty, and complexity. MAIN RESULTS The robust adaptive neuromodulation algorithm accurately tracks various types of target brain state trajectories, enables stable and robust control, and significantly outperforms state-of-the-art neuromodulation algorithms. SIGNIFICANCE Our algorithm has implications for future designs of precise, stable, and robust closed-loop brain stimulation systems to treat brain disorders and facilitate brain functions.
Collapse
Affiliation(s)
- Hao Fang
- University of Central Florida, Research 1 Room 334, 313/316, University of Central Florida, 4353 Scorpius St., Orlando, Florida, 32816-2368, UNITED STATES
| | - Yuxiao Yang
- Department of Electrical and Computer Engineering, University of Central Florida, 4353 Scorpius St., Orlando, Florida, 32816-2368, UNITED STATES
| |
Collapse
|
16
|
Ward-Flanagan R, Lo AS, Clement EA, Dickson CT. A Comparison of Brain-State Dynamics across Common Anesthetic Agents in Male Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23073608. [PMID: 35408973 PMCID: PMC8998244 DOI: 10.3390/ijms23073608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Anesthesia is a powerful tool in neuroscientific research, especially in sleep research where it has the experimental advantage of allowing surgical interventions that are ethically problematic in natural sleep. Yet, while it is well documented that different anesthetic agents produce a variety of brain states, and consequently have differential effects on a multitude of neurophysiological factors, these outcomes vary based on dosages, the animal species used, and the pharmacological mechanisms specific to each anesthetic agent. Thus, our aim was to conduct a controlled comparison of spontaneous electrophysiological dynamics at a surgical plane of anesthesia under six common research anesthetics using a ubiquitous animal model, the Sprague-Dawley rat. From this direct comparison, we also evaluated which anesthetic agents may serve as pharmacological proxies for the electrophysiological features and dynamics of unconscious states such as sleep and coma. We found that at a surgical plane, pentobarbital, isoflurane and propofol all produced a continuous pattern of burst-suppression activity, which is a neurophysiological state characteristically observed during coma. In contrast, ketamine-xylazine produced synchronized, slow-oscillatory activity, similar to that observed during slow-wave sleep. Notably, both urethane and chloral hydrate produced the spontaneous, cyclical alternations between forebrain activation (REM-like) and deactivation (non-REM-like) that are similar to those observed during natural sleep. Thus, choice of anesthesia, in conjunction with continuous brain state monitoring, are critical considerations in order to avoid brain-state confounds when conducting neurophysiological experiments.
Collapse
Affiliation(s)
- Rachel Ward-Flanagan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Alto S. Lo
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Elizabeth A. Clement
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-492-7860
| |
Collapse
|
17
|
Li Y, Xu S, Wang Y, Duan Y, Jia Q, Xie J, Yang X, Wang Y, Dai Y, Yang G, Yuan M, Wu X, Song Y, Wang M, Chen H, Wang Y, Cai X, Pei W. Wireless Closed-Loop Optical Regulation System for Seizure Detection and Suppression In Vivo. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.829751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are approximately 50 million people with epilepsy worldwide, even about 25% of whom cannot be effectively controlled by drugs or surgical treatment. A wireless closed-loop system for epilepsy detection and suppression is proposed in this study. The system is composed of an implantable optrode, wireless recording, wireless energy supply, and a control module. The system can monitor brain electrical activity in real time. When seizures are recognized, the optrode will be turned on. The preset photosensitive caged compounds are activated to inhibit the seizure. When seizures are inhibited or end, the optrode is turned off. The method demonstrates a practical wireless closed-loop epilepsy therapy system.
Collapse
|
18
|
Wang C, Pesaran B, Shanechi MM. Modeling multiscale causal interactions between spiking and field potential signals during behavior. J Neural Eng 2022; 19:10.1088/1741-2552/ac4e1c. [PMID: 35073530 PMCID: PMC11524050 DOI: 10.1088/1741-2552/ac4e1c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Objective.Brain recordings exhibit dynamics at multiple spatiotemporal scales, which are measured with spike trains and larger-scale field potential signals. To study neural processes, it is important to identify and model causal interactions not only at a single scale of activity, but also across multiple scales, i.e. between spike trains and field potential signals. Standard causality measures are not directly applicable here because spike trains are binary-valued but field potentials are continuous-valued. It is thus important to develop computational tools to recover multiscale neural causality during behavior, assess their performance on neural datasets, and study whether modeling multiscale causalities can improve the prediction of neural signals beyond what is possible with single-scale causality.Approach.We design a multiscale model-based Granger-like causality method based on directed information and evaluate its success both in realistic biophysical spike-field simulations and in motor cortical datasets from two non-human primates (NHP) performing a motor behavior. To compute multiscale causality, we learn point-process generalized linear models that predict the spike events at a given time based on the history of both spike trains and field potential signals. We also learn linear Gaussian models that predict the field potential signals at a given time based on their own history as well as either the history of binary spike events or that of latent firing rates.Main results.We find that our method reveals the true multiscale causality network structure in biophysical simulations despite the presence of model mismatch. Further, models with the identified multiscale causalities in the NHP neural datasets lead to better prediction of both spike trains and field potential signals compared to just modeling single-scale causalities. Finally, we find that latent firing rates are better predictors of field potential signals compared with the binary spike events in the NHP datasets.Significance.This multiscale causality method can reveal the directed functional interactions across spatiotemporal scales of brain activity to inform basic science investigations and neurotechnologies.
Collapse
Affiliation(s)
- Chuanmeizhi Wang
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Center for Neural Sciences, New York University, New York, NY, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
19
|
Güngör CB, Mercier PP, Töreyin H. Investigating well potential parameters on neural spike enhancement in a stochastic-resonance pre-emphasis algorithm. J Neural Eng 2021; 18. [PMID: 33915529 DOI: 10.1088/1741-2552/abfd0f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022]
Abstract
Objective.Background noise experienced during extracellular neural recording limits the number of spikes that can be reliably detected, which ultimately limits the performance of next-generation neuroscientific work. In this study, we aim to utilize stochastic resonance (SR), a technique that can help identify weak signals in noisy environments, to enhance spike detectability.Approach.Previously, an SR-based pre-emphasis algorithm was proposed, where a particle inside a 1D potential well is exerted by a force defined by the extracellular recording, and the output is obtained as the displacement of the particle. In this study, we investigate how the well shape and damping status impact the output signal-to-noise ratio (SNR). We compare the overdamped and underdamped solutions of shallow- and steep-wall monostable wells and bistable wells in terms of SNR improvement using two synthetic datasets. Then, we assess the spike detection performance when thresholding is applied on the output of the well shape-damping status configuration giving the best SNR enhancement.Main results.The SNR depends on the well-shape and damping-status type as well as the input noise level. The underdamped solution of the shallow-wall monostable well can yield to more than four orders of magnitude greater SNR improvement compared to other configurations for low noise intensities. Using this configuration also results in better spike detection sensitivity and positive predictivity than the state-of-the-art spike detection algorithms for a public synthetic dataset. For larger noise intensities, the overdamped solution of the steep-wall monostable well provides better spike enhancement than the others.Significance.The dependence of SNR improvement on the input signal noise level can be used to design a detector with multiple outputs, each more sensitive to a certain distance from the electrode. Such a detector can potentially enhance the performance of a successive spike sorting stage.
Collapse
Affiliation(s)
- Cihan Berk Güngör
- Department of Electrical and Computer Engineering, University of California-San Diego, La Jolla, CA, United States of America.,Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, United States of America
| | - Patrick P Mercier
- Department of Electrical and Computer Engineering, University of California-San Diego, La Jolla, CA, United States of America
| | - Hakan Töreyin
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
20
|
Abel JH, Badgeley MA, Baum TE, Chakravarty S, Purdon PL, Brown EN. Constructing a control-ready model of EEG signal during general anesthesia in humans. IFAC-PAPERSONLINE 2021; 53:15870-15876. [PMID: 34184002 PMCID: PMC8236287 DOI: 10.1016/j.ifacol.2020.12.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significant effort toward the automation of general anesthesia has been made in the past decade. One open challenge is in the development of control-ready patient models for closed-loop anesthesia delivery. Standard depth-of-anesthesia tracking does not readily capture inter-individual differences in response to anesthetics, especially those due to age, and does not aim to predict a relationship between a control input (infused anesthetic dose) and system state (commonly, a function of electroencephalography (EEG) signal). In this work, we developed a control-ready patient model for closed-loop propofol-induced anesthesia using data recorded during a clinical study of EEG during general anesthesia in ten healthy volunteers. We used principal component analysis to identify the low-dimensional state-space in which EEG signal evolves during anesthesia delivery. We parameterized the response of the EEG signal to changes in propofol target-site concentration using logistic models. We note that inter-individual differences in anesthetic sensitivity may be captured by varying a constant cofactor of the predicted effect-site concentration. We linked the EEG dose-response with the control input using a pharmacokinetic model. Finally, we present a simple nonlinear model predictive control in silico demonstration of how such a closed-loop system would work.
Collapse
Affiliation(s)
- John H. Abel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | - Marcus A. Badgeley
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Taylor E. Baum
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sourish Chakravarty
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N. Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
21
|
Chakravarty S, Waite AS, Abel JH, Brown EN. A simulation-based comparative analysis of PID and LQG control for closed-loop anesthesia delivery. IFAC-PAPERSONLINE 2021; 53:15898-15903. [PMID: 34184003 PMCID: PMC8236286 DOI: 10.1016/j.ifacol.2020.12.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Closed loop anesthesia delivery (CLAD) systems can help anesthesiologists efficiently achieve and maintain desired anesthetic depth over an extended period of time. A typical CLAD system would use an anesthetic marker, calculated from physiological signals, as real-time feedback to adjust anesthetic dosage towards achieving a desired set-point of the marker. Since control strategies for CLAD vary across the systems reported in recent literature, a comparative analysis of common control strategies can be useful. For a nonlinear plant model based on well-established models of compartmental pharmacokinetics and sigmoid-Emax pharmacodynamics, we numerically analyze the set-point tracking performance of three output-feedback linear control strategies: proportional-integral-derivative (PID) control, linear quadratic Gaussian (LQG) control, and an LQG with integral action (ILQG). Specifically, we numerically simulate multiple CLAD sessions for the scenario where the plant model parameters are unavailable for a patient and the controller is designed based on a nominal model and controller gains are held constant throughout a session. Based on the numerical analyses performed here, conditioned on our choice of model and controllers, we infer that in terms of accuracy and bias PID control performs better than ILQG which in turn performs better than LQG. In the case of noisy observations, ILQG can be tuned to provide a smoother infusion rate while achieving comparable steady state response with respect to PID. The numerical analysis framework and findings reported here can help CLAD developers in their choice of control strategies. This paper may also serve as a tutorial paper for teaching control theory for CLAD.
Collapse
Affiliation(s)
- Sourish Chakravarty
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital, Boston, MA
| | - Ayan S Waite
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital, Boston, MA
| | - John H Abel
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital, Boston, MA
| | - Emery N Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital, Boston, MA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA
| |
Collapse
|
22
|
Yang Y, Ahmadipour P, Shanechi MM. Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization. J Neural Eng 2021; 18. [PMID: 33254159 DOI: 10.1088/1741-2552/abcefd] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
Objective. Dynamic latent state models are widely used to characterize the dynamics of brain network activity for various neural signal types. To date, dynamic latent state models have largely been developed for stationary brain network dynamics. However, brain network dynamics can be non-stationary for example due to learning, plasticity or recording instability. To enable modeling these non-stationarities, two problems need to be resolved. First, novel methods should be developed that can adaptively update the parameters of latent state models, which is difficult due to the state being latent. Second, new methods are needed to optimize the adaptation learning rate, which specifies how fast new neural observations update the model parameters and can significantly influence adaptation accuracy.Approach. We develop a Rate Optimized-adaptive Linear State-Space Modeling (RO-adaptive LSSM) algorithm that solves these two problems. First, to enable adaptation, we derive a computation- and memory-efficient adaptive LSSM fitting algorithm that updates the LSSM parameters recursively and in real time in the presence of the latent state. Second, we develop a real-time learning rate optimization algorithm. We use comprehensive simulations of a broad range of non-stationary brain network dynamics to validate both algorithms, which together constitute the RO-adaptive LSSM.Main results. We show that the adaptive LSSM fitting algorithm can accurately track the broad simulated non-stationary brain network dynamics. We also find that the learning rate significantly affects the LSSM fitting accuracy. Finally, we show that the real-time learning rate optimization algorithm can run in parallel with the adaptive LSSM fitting algorithm. Doing so, the combined RO-adaptive LSSM algorithm rapidly converges to the optimal learning rate and accurately tracks non-stationarities.Significance. These algorithms can be used to study time-varying neural dynamics underlying various brain functions and enhance future neurotechnologies such as brain-machine interfaces and closed-loop brain stimulation systems.
Collapse
Affiliation(s)
- Yuxiao Yang
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.,These authors contributed equally to this work
| | - Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.,These authors contributed equally to this work
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
23
|
Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat Biomed Eng 2021; 5:324-345. [PMID: 33526909 DOI: 10.1038/s41551-020-00666-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
Direct electrical stimulation can modulate the activity of brain networks for the treatment of several neurological and neuropsychiatric disorders and for restoring lost function. However, precise neuromodulation in an individual requires the accurate modelling and prediction of the effects of stimulation on the activity of their large-scale brain networks. Here, we report the development of dynamic input-output models that predict multiregional dynamics of brain networks in response to temporally varying patterns of ongoing microstimulation. In experiments with two awake rhesus macaques, we show that the activities of brain networks are modulated by changes in both stimulation amplitude and frequency, that they exhibit damping and oscillatory response dynamics, and that variabilities in prediction accuracy and in estimated response strength across brain regions can be explained by an at-rest functional connectivity measure computed without stimulation. Input-output models of brain dynamics may enable precise neuromodulation for the treatment of disease and facilitate the investigation of the functional organization of large-scale brain networks.
Collapse
|
24
|
Abbaspourazad H, Choudhury M, Wong YT, Pesaran B, Shanechi MM. Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat Commun 2021; 12:607. [PMID: 33504797 PMCID: PMC7840738 DOI: 10.1038/s41467-020-20197-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Motor function depends on neural dynamics spanning multiple spatiotemporal scales of population activity, from spiking of neurons to larger-scale local field potentials (LFP). How multiple scales of low-dimensional population dynamics are related in control of movements remains unknown. Multiscale neural dynamics are especially important to study in naturalistic reach-and-grasp movements, which are relatively under-explored. We learn novel multiscale dynamical models for spike-LFP network activity in monkeys performing naturalistic reach-and-grasps. We show low-dimensional dynamics of spiking and LFP activity exhibited several principal modes, each with a unique decay-frequency characteristic. One principal mode dominantly predicted movements. Despite distinct principal modes existing at the two scales, this predictive mode was multiscale and shared between scales, and was shared across sessions and monkeys, yet did not simply replicate behavioral modes. Further, this multiscale mode's decay-frequency explained behavior. We propose that multiscale, low-dimensional motor cortical state dynamics reflect the neural control of naturalistic reach-and-grasp behaviors.
Collapse
Affiliation(s)
- Hamidreza Abbaspourazad
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mahdi Choudhury
- Center for Neural Science, New York University, New York City, NY, 10003, USA
| | - Yan T Wong
- Center for Neural Science, New York University, New York City, NY, 10003, USA
- Department of Physiology, and Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, 3800, Australia
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York City, NY, 10003, USA
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
25
|
Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat Neurosci 2020; 24:140-149. [PMID: 33169030 DOI: 10.1038/s41593-020-00733-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/02/2020] [Indexed: 11/09/2022]
Abstract
Neural activity exhibits complex dynamics related to various brain functions, internal states and behaviors. Understanding how neural dynamics explain specific measured behaviors requires dissociating behaviorally relevant and irrelevant dynamics, which is not achieved with current neural dynamic models as they are learned without considering behavior. We develop preferential subspace identification (PSID), which is an algorithm that models neural activity while dissociating and prioritizing its behaviorally relevant dynamics. Modeling data in two monkeys performing three-dimensional reach and grasp tasks, PSID revealed that the behaviorally relevant dynamics are significantly lower-dimensional than otherwise implied. Moreover, PSID discovered distinct rotational dynamics that were more predictive of behavior. Furthermore, PSID more accurately learned behaviorally relevant dynamics for each joint and recording channel. Finally, modeling data in two monkeys performing saccades demonstrated the generalization of PSID across behaviors, brain regions and neural signal types. PSID provides a general new tool to reveal behaviorally relevant neural dynamics that can otherwise go unnoticed.
Collapse
|
26
|
Patankar SP, Kim JZ, Pasqualetti F, Bassett DS. Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks. Netw Neurosci 2020; 4:1091-1121. [PMID: 33195950 PMCID: PMC7655114 DOI: 10.1162/netn_a_00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023] Open
Abstract
The human brain displays rich communication dynamics that are thought to be particularly well-reflected in its marked community structure. Yet, the precise relationship between community structure in structural brain networks and the communication dynamics that can emerge therefrom is not well understood. In addition to offering insight into the structure-function relationship of networked systems, such an understanding is a critical step toward the ability to manipulate the brain's large-scale dynamical activity in a targeted manner. We investigate the role of community structure in the controllability of structural brain networks. At the region level, we find that certain network measures of community structure are sometimes statistically correlated with measures of linear controllability. However, we then demonstrate that this relationship depends on the distribution of network edge weights. We highlight the complexity of the relationship between community structure and controllability by performing numerical simulations using canonical graph models with varying mesoscale architectures and edge weight distributions. Finally, we demonstrate that weighted subgraph centrality, a measure rooted in the graph spectrum, and which captures higher order graph architecture, is a stronger and more consistent predictor of controllability. Our study contributes to an understanding of how the brain's diverse mesoscale structure supports transient communication dynamics.
Collapse
Affiliation(s)
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|
27
|
Shanechi MM. Brain–machine interfaces from motor to mood. Nat Neurosci 2019; 22:1554-1564. [DOI: 10.1038/s41593-019-0488-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
|
28
|
Abbaspourazad H, Hsieh HL, Shanechi MM. A Multiscale Dynamical Modeling and Identification Framework for Spike-Field Activity. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1128-1138. [DOI: 10.1109/tnsre.2019.2913218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Wang C, Shanechi MM. Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks. IEEE Trans Neural Syst Rehabil Eng 2019; 27:857-866. [DOI: 10.1109/tnsre.2019.2908156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|