1
|
Abrego AM, Khan W, Wright CE, Islam MR, Ghajar MH, Bai X, Tandon N, Seymour JP. Sensing local field potentials with a directional and scalable depth electrode array. J Neural Eng 2023; 20:016041. [PMID: 36630716 DOI: 10.1088/1741-2552/acb230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Objective. A variety of electrophysiology tools are available to the neurosurgeon for diagnosis, functional therapy, and neural prosthetics. However, no tool can currently address these three critical needs: (a) access to all cortical regions in a minimally invasive manner; (b) recordings with microscale, mesoscale, and macroscale resolutions simultaneously; and (c) access to spatially distant multiple brain regions that constitute distributed cognitive networks.Approach.We modeled, designed, and demonstrated a novel device for recording local field potentials (LFPs) with the form factor of a stereo-electroencephalographic electrode and combined with radially distributed microelectrodes.Main results. Electro-quasistatic models demonstrate that the lead body amplifies and shields LFP sources based on direction, enablingdirectional sensitivity andscalability, referred to as thedirectional andscalable (DISC) array.In vivo,DISC demonstrated significantly improved signal-to-noise ratio, directional sensitivity, and decoding accuracy from rat barrel cortex recordings during whisker stimulation. Critical for future translation, DISC demonstrated a higher signal to noise ratio (SNR) than virtual ring electrodes and a noise floor approaching that of large ring electrodes in an unshielded environment after common average referencing. DISC also revealed independent, stereoscopic current source density measures whose direction was verified after histology.Significance. Directional sensitivity of LFPs may significantly improve brain-computer interfaces and many diagnostic procedures, including epilepsy foci detection and deep brain targeting.
Collapse
Affiliation(s)
- Amada M Abrego
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
| | - Wasif Khan
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
| | - Christopher E Wright
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America
| | - M Rabiul Islam
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
| | - Mohammad H Ghajar
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
| | - Xiaokang Bai
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
| | - Nitin Tandon
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
| | - John P Seymour
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77030, United States of America
| |
Collapse
|
2
|
Bouadi O, Tay TL. More Than Cell Markers: Understanding Heterogeneous Glial Responses to Implantable Neural Devices. Front Cell Neurosci 2021; 15:658992. [PMID: 33912015 PMCID: PMC8071943 DOI: 10.3389/fncel.2021.658992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ouzéna Bouadi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Faculty of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany.,Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|