1
|
Dalrymple AN, Jones ST, Fallon JB, Shepherd RK, Weber DJ. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron Med 2025; 11:6. [PMID: 40083033 PMCID: PMC11907899 DOI: 10.1186/s42234-025-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improving the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades and improving the health and quality of life of many patient populations. Despite these successes, implanted neural interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsulation of the device. This review describes the challenges faced by developers of neural interface systems, particularly devices already in use in humans. The mechanical and technological failure modes of each component of an implant system is described. The acute and chronic reactions to devices in the peripheral and central nervous system and how they affect system performance are depicted. Further, physical challenges such as micro and macro movements are reviewed. The clinical implications of device failures are summarized and a guide for determining the severity of complication was developed and provided. Common methods to diagnose and examine mechanical, technological, and biological failure modes at various stages of development and testing are outlined, with an emphasis on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface systems.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA.
- NERVES Lab, University of Utah, Salt Lake City, UT, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Sonny T Jones
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- NERVES Lab, University of Utah, Salt Lake City, UT, USA
| | - James B Fallon
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Robert K Shepherd
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Ting JE, Hooper CA, Dalrymple AN, Weber DJ. Tonic Stimulation of Dorsal Root Ganglion Results in Progressive Decline in Recruitment of Aα/β-Fibers in Rats. Neuromodulation 2024; 27:1347-1359. [PMID: 39046395 PMCID: PMC11625011 DOI: 10.1016/j.neurom.2024.06.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES In this study, we aimed to characterize the recruitment and maintenance of action potential firing in Aα/β-fibers generated during tonic dorsal root ganglion stimulation (DRGS) applied over a range of clinically relevant stimulation parameters. MATERIALS AND METHODS We delivered electrical stimulation to the L5 dorsal root ganglion and recorded antidromic evoked compound action potentials (ECAPs) in the sciatic nerve during DRGS in Sprague Dawley rats. We measured charge thresholds to elicit ECAPs in Aα/β-fibers during DRGS applied at multiple pulse widths (50, 150, 300, 500 μs) and frequencies (5, 20, 50, 100 Hz). We measured the peak-to-peak amplitudes, latencies, and widths of ECAPs generated during 180 seconds of DRGS, and excitation threshold changes to investigate potential mechanisms of ECAP suppression. RESULTS Tonic DRGS produced ECAPs in Aα/β-fibers at charge thresholds below the motor threshold. Increasing the pulse width of DRGS led to a significant increase in the charge required to elicit ECAPs in Aα/β-fibers, while varying DRGS frequency did not influence ECAP thresholds. Over the course of 180 seconds, ECAP peak-to-peak amplitude decreased progressively in a frequency-dependent manner, where 5- and 100-Hz DRGS resulted in 22% and 87% amplitude reductions, respectively, and ECAP latencies increased from baseline measurements during DRGS at 10, 20, 50, and 100 Hz. Regardless of DRGS frequency, ECAP amplitudes recovered within 120 seconds after turning DRGS off. We determined that ECAP suppression may be attributed to increasing excitation thresholds for individual fibers during DRGS. Following 180 seconds of DRGS, an average of 7.33% increase in stimulation amplitude was required to restore the ECAP to baseline amplitude. CONCLUSIONS DRGS produces a progressive and frequency-dependent reduction in ECAP amplitude that occurs within and above the frequency range used clinically to relieve pain. If DRGS-mediated analgesia relies on Aβ-fiber activation, then the frequency or duty cycle of stimulation should be set to the lowest effective level to maintain sufficient activation of Aβ-fibers.
Collapse
Affiliation(s)
- Jordyn E Ting
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Yang S, Yang S, Li P, Gou S, Cheng Y, Jia Q, Du Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications. Front Bioeng Biotechnol 2024; 12:1476447. [PMID: 39574462 PMCID: PMC11579925 DOI: 10.3389/fbioe.2024.1476447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.
Collapse
Affiliation(s)
- Shu Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuchun Gou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Cheng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinggang Jia
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Zhanhong Du
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Boys AJ. There and Back Again: Building Systems That Integrate, Interface, and Interact with the Human Body. Adv Biol (Weinh) 2024; 8:e2300366. [PMID: 38400703 DOI: 10.1002/adbi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since Dr. Theodor Schwann posed the extension of Cell Theory to mammals in 1839, scientists have dreamt up ways to interface with and influence the cells. Recently, considerable ground in this area is gained, particularly in the scope of bioelectronics. New advances in this area have provided with a means to record electrical activity from cells, examining neural firing or epithelial barrier integrity, and stimulate cells through applied electrical fields. Many of these applications utilize invasive implantation systems to perform this interaction in close proximity to the cells in question. Traditionally, the body's immune system fights back against these systems through the foreign body response, limiting the efficacy of long-term interactions. New technologies in tissue engineering, biomaterials science, and bioelectronics offer the potential to circumvent the foreign body response and create stable long-term biological interfaces. Looking ahead, the next advancements in the biomedical sciences can truly integrate, interface, and interact with the human body.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
5
|
Bhowmick S, Graham RD, Verma N, Trevathan JK, Franke M, Nieuwoudt S, Fisher LE, Shoffstall AJ, Weber DJ, Ludwig KA, Lempka SF. Computational modeling of dorsal root ganglion stimulation using an Injectrode. J Neural Eng 2024; 21:026039. [PMID: 38502956 PMCID: PMC11007586 DOI: 10.1088/1741-2552/ad357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Objective.Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated Platinum/Iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, it is important to note that the effectiveness of stimulation through TES relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures.Approach.We employed a hybrid computational modeling approach to analyze the impact of Injectrode system design parameters on charge delivery and neural response to stimulation. We constructed multiple finite element method models of DRG stimulation, followed by the implementation of multi-compartment models of DRG neurons. By calculating potential distribution during monopolar stimulation, we simulated neural responses using various parameters based on prior acute experiments. Additionally, we developed a canonical monopolar stimulation and full-scale model of bipolar bilateral L5 DRG stimulation, allowing us to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds.Main results.Our findings were in accordance with acute experimental measurements and indicate that the minimally invasive Injectrode system predominantly engages large-diameter afferents (Aβ-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity.Significance.The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aβactivation from the undesired Aδ-fiber activation.
Collapse
Affiliation(s)
- Sauradeep Bhowmick
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States of America
| | - James K Trevathan
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States of America
| | | | | | - Lee E Fisher
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Andrew J Shoffstall
- Neuronoff Inc., Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
6
|
Bhowmick S, Graham RD, Verma N, Trevathan JK, Franke M, Nieuwoudt S, Fisher LE, Shoffstall AJ, Weber DJ, Ludwig KA, Lempka SF. Computational modeling of dorsal root ganglion stimulation using an Injectrode. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558675. [PMID: 37790562 PMCID: PMC10542492 DOI: 10.1101/2023.09.20.558675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Objective Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated platinum/iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, effectiveness of stimulation relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures. Approach We employed a hybrid computational modeling approach to analyze the impact of the Injectrode system design parameters on charge delivery and the neural response to stimulation. We constructed multiple finite element method models of DRG stimulation and multi-compartment models of DRG neurons. We simulated the neural responses using parameters based on prior acute preclinical experiments. Additionally, we developed multiple human-scale computational models of DRG stimulation to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds. Main results Our findings were in accordance with acute experimental measurements and indicated that the Injectrode system predominantly engages large-diameter afferents (Aβ-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity. Significance The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aβ activation from the undesired Aδ-fiber activation.
Collapse
|
7
|
Dewberry LS, Porche K, Koenig T, Allen KD, Otto KJ. High frequency alternating current neurostimulation decreases nocifensive behavior in a disc herniation model of lumbar radiculopathy. Bioelectron Med 2023; 9:15. [PMID: 37434246 DOI: 10.1186/s42234-023-00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate if kilohertz frequency alternating current (KHFAC) stimulation of peripheral nerve could serve as a treatment for lumbar radiculopathy. Prior work shows that KHFAC stimulation can treat sciatica resulting from chronic sciatic nerve constriction. Here, we evaluate if KHFAC stimulation is also beneficial in a more physiologic model of low back pain which mimics nucleus pulposus (NP) impingement of a lumbar dorsal root ganglion (DRG). METHODS To mimic a lumbar radiculopathy, autologous tail NP was harvested and placed upon the right L5 nerve root and DRG. During the same surgery, a cuff electrode was implanted around the sciatic nerve with wires routed to a headcap for delivery of KHFAC stimulation. Male Lewis rats (3 mo., n = 18) were separated into 3 groups: NP injury + KHFAC stimulation (n = 7), NP injury + sham cuff (n = 6), and sham injury + sham cuff (n = 5). Prior to surgery and for 2 weeks following surgery, animal tactile sensitivity, gait, and static weight bearing were evaluated. RESULTS KHFAC stimulation of the sciatic nerve decreased behavioral evidence of pain and disability. Without KHFAC stimulation, injured animals had heightened tactile sensitivity compared to baseline (p < 0.05), with tactile allodynia reversed during KHFAC stimulation (p < 0.01). Midfoot flexion during locomotion was decreased after injury but improved with KHFAC stimulation (p < 0.05). Animals also placed more weight on their injured limb when KHFAC stimulation was applied (p < 0.05). Electrophysiology measurements at end point showed decreased, but not blocked, compound nerve action potentials with KHFAC stimulation (p < 0.05). CONCLUSIONS KHFAC stimulation decreases hypersensitivity but does not cause additional gait compensations. This supports the idea that KHFAC stimulation applied to a peripheral nerve may be able to treat chronic pain resulting from sciatic nerve root inflammation.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Ken Porche
- Lillian S Wells Department of Neurosurgery at the University of Florida, College of Medicine, 1505 SW Archer Road Gainesville, FL, 32608, Gainesville, USA
| | - Travis Koenig
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
- Pain Research & Intervention Center of Excellence, University of Florida, CTSI 2004 Mowry Road, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, 1149 Newell Dr. L1-100, P.O. Box 100244, Gainesville, FL, USA.
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr, Gainesville, FL, 32611, USA.
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, P.O. Box 116005, Gainesville, FL, 32611, USA.
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr, P.O. Box 116400, Gainesville, FL, 32611, USA.
- Department of Neurology, 1149 Newell Dr, P.O. Box 100236, Gainesville, FL, L3-10032610, USA.
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, 1041 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Lam CM, Latif U, Sack A, Govindan S, Sanderson M, Vu DT, Smith G, Sayed D, Khan T. Advances in Spinal Cord Stimulation. Bioengineering (Basel) 2023; 10:185. [PMID: 36829678 PMCID: PMC9951889 DOI: 10.3390/bioengineering10020185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Neuromodulation, specifically spinal cord stimulation (SCS), has become a staple of chronic pain management for various conditions including failed back syndrome, chronic regional pain syndrome, refractory radiculopathy, and chronic post operative pain. Since its conceptualization, it has undergone several advances to increase safety and convenience for patients and implanting physicians. Current research and efforts are aimed towards novel programming modalities and modifications of existing hardware. Here we review the recent advances and future directions in spinal cord stimulation including a brief review of the history of SCS, SCS waveforms, new materials for SCS electrodes (including artificial skins, new materials, and injectable electrodes), closed loop systems, and neurorestorative devices.
Collapse
Affiliation(s)
- Christopher M. Lam
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Usman Latif
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Andrew Sack
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Susheel Govindan
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Miles Sanderson
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Dan T. Vu
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Gabriella Smith
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Talal Khan
- Department of Anesthesiology and Pain Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Cedeño DL, Vallejo R, Kelley CA, Platt DC, Litvak LM, Straka M, Dinsmoor DA. Spinal Evoked Compound Action Potentials in Rats With Clinically Relevant Stimulation Modalities. Neuromodulation 2023; 26:68-77. [PMID: 35961888 DOI: 10.1016/j.neurom.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Rats are commonly used for translational pain and spinal cord stimulation (SCS) research. Although many SCS parameters are configured identically between rats and humans, stimulation amplitudes in rats are often programmed relative to visual motor threshold (vMT). Alternatively, amplitudes may be programmed relative to evoked compound action potential (ECAP) thresholds (ECAPTs), a sensed measure of neural activation. The objective of this study was to characterize ECAPTs, evoked compound muscle action potential thresholds (ECMAPTs), and vMTs with clinically relevant SCS modalities. MATERIALS AND METHODS We implanted ten anesthetized rats with two quadripolar epidural SCS leads: one for stimulating in the lumbar spine, and another for sensing ECAPs in the thoracic spine. We then delivered two SCS paradigms to the rats. The first used 50-Hz SCS with 50-, 100-, 150-, and 200-μs pulse widths (PWs), whereas the second used a 50-Hz, 150-μs PW low-rate program (LRP) multiplexed to a 1200-Hz, 50-μs PW high-rate program (HRP). We increased SCS amplitudes up to the vMT in the first paradigm, and in the second, we increased HRP amplitudes up to the HRP ECAPT with a fixed amplitude (70% of the vMT) LRP. For each test case, we captured ECAPTs, ECMAPTs, and vMTs from each rat. RESULTS vMTs were 3.0 ± 0.7 times greater than ECAPTs, with vMTs marginally (3.0 ± 3.6%) greater than ECMAPTs (mean ± SD) across all PWs with the first paradigm. With the second paradigm, we noted a negligible increase (3.6 ± 6.2%) on the LRP ECAP as HRP amplitudes were increased. CONCLUSIONS Our results demonstrate reasonable levels of neural activation in anesthetized rats with SCS amplitudes appropriately programmed relative to vMT or ECMAPT when using clinically relevant SCS modalities. Furthermore, we demonstrate the feasibility of ECAP recording in rats with multiplexed HRP SCS.
Collapse
|
10
|
Verma N, Le T, Mudge J, Nicksic PJ, Xistris L, Kasole M, Shoffstall AJ, Poore SO, Ludwig KA, Dingle AM. Efficacy of bone stimulators in large-animal models and humans may be limited by weak electric fields reaching fracture. Sci Rep 2022; 12:21798. [PMID: 36526728 PMCID: PMC9758190 DOI: 10.1038/s41598-022-26215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Noninvasive electronic bone growth stimulators (EBGSs) have been in clinical use for decades. However, systematic reviews show inconsistent and limited clinical efficacy. Further, noninvasive EBGS studies in small animals, where the stimulation electrode is closer to the fracture site, have shown promising efficacy, which has not translated to large animals or humans. We propose that this is due to the weaker electric fields reaching the fracture site when scaling from small animals to large animals and humans. To address this gap, we measured the electric field strength reaching the bone during noninvasive EBGS therapy in human and sheep cadaver legs and in finite element method (FEM) models of human and sheep legs. During application of 1100 V/m with an external EBGS, only 21 V/m reached the fracture site in humans. Substantially weaker electric fields reached the fracture site during the later stages of healing and at increased bone depths. To augment the electric field strength reaching the fracture site during noninvasive EBGS therapy, we introduced the Injectrode, an injectable electrode that spans the distance between the bone and subcutaneous tissue. Our study lays the groundwork to improve the efficacy of noninvasive EBGSs by increasing the electric field strength reaching the fracture site.
Collapse
Affiliation(s)
- Nishant Verma
- grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI USA
| | - Todd Le
- grid.14003.360000 0001 2167 3675Division of Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Jonah Mudge
- grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI USA
| | - Peter J. Nicksic
- grid.14003.360000 0001 2167 3675Division of Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Lillian Xistris
- grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Division of Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Maisha Kasole
- grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI USA
| | - Andrew J. Shoffstall
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA ,grid.410349.b0000 0004 5912 6484Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH USA
| | - Samuel O. Poore
- grid.14003.360000 0001 2167 3675Division of Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Kip A. Ludwig
- grid.14003.360000 0001 2167 3675Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI USA
| | - Aaron M. Dingle
- grid.14003.360000 0001 2167 3675Division of Plastic Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
11
|
Using evoked compound action potentials to quantify differential neural activation with burst and conventional, 40 Hz spinal cord stimulation in ovines. Pain Rep 2022; 7:e1047. [DOI: 10.1097/pr9.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
|
12
|
Verma N, Graham RD, Mudge J, Trevathan JK, Franke M, Shoffstall AJ, Williams J, Dalrymple AN, Fisher LE, Weber DJ, Lempka SF, Ludwig KA. Augmented Transcutaneous Stimulation Using an Injectable Electrode: A Computational Study. Front Bioeng Biotechnol 2021; 9:796042. [PMID: 34988068 PMCID: PMC8722711 DOI: 10.3389/fbioe.2021.796042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Minimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n = 4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jonah Mudge
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Justin Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Ashley N. Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lee E. Fisher
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Douglas J. Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|