1
|
Biological Characteristics of Polyurethane-Based Bone-Replacement Materials. Polymers (Basel) 2023; 15:polym15040831. [PMID: 36850115 PMCID: PMC9966979 DOI: 10.3390/polym15040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
A study is presented on four polymers of the polyurethane family, obtained using a two-stage process. The first composition is the basic polymer; the others differ from it by the presence of a variety of fillers, introduced to provide radiopacity. The fillers used were 15% bismuth oxide (Composition 2), 15% tantalum pentoxide (Composition 3), or 15% zirconium oxide (Composition 4). Using a test culture of human fibroblasts enabled the level of cytotoxicity of the compositions to be determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, along with variations in the characteristics of the cells resulting from their culture directly on the specimens. The condition of cells on the surfaces of the specimens was assessed using fluorescence microscopy. It was shown that introducing 15% bismuth, tantalum, or zinc compounds as fillers produced a range of effects on the biological characteristics of the compositions. With the different fillers, the levels of toxicity differed and the cells' proliferative activity or adhesion was affected. However, in general, all the studied compositions may be considered cytocompatible in respect of their biological characteristics and are promising for further development as bases for bone-substituting materials. The results obtained also open up prospects for further investigations of polyurethane compounds.
Collapse
|
2
|
Chakraborty U, Bhanjana G, Kaur N, Kaur G, Kaushik AK, Kumar S, Chaudhary GR. Design and testing of nanobiomaterials for orthopedic implants. ENGINEERED NANOSTRUCTURES FOR THERAPEUTICS AND BIOMEDICAL APPLICATIONS 2023:227-271. [DOI: 10.1016/b978-0-12-821240-0.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Alvarez Echazú MI, Perna O, Olivetti CE, Antezana PE, Municoy S, Tuttolomondo MV, Galdopórpora JM, Alvarez GS, Olmedo DG, Desimone MF. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects. Macromol Biosci 2022; 22:e2100383. [PMID: 34984818 DOI: 10.1002/mabi.202100383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Indexed: 12/31/2022]
Abstract
Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth. Nevertheless, some queries remain unanswered. This review discusses the recent advances achieved by some synthetic and natural biomaterials to mimic the native structure of bone and the manufacturing technology applied to obtain biomaterial candidates. The focus of this review is placed in the recent advances in the development of biomaterial-based therapy for bone defects in different types of bone. In this context, this review gives an overview of the potentialities of synthetic and natural biomaterials: polyurethanes, polyesters, hyaluronic acid, collagen, titanium, and silica as successful candidates for the treatment of bone defects.
Collapse
Affiliation(s)
- María I Alvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina.,Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina
| | - Oriana Perna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Christian E Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Pablo E Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - María V Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Juan M Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Gisela S Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Daniel G Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina.,CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| |
Collapse
|
4
|
Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111228. [PMID: 33254956 DOI: 10.1016/j.msec.2020.111228] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
Collapse
Affiliation(s)
- Bushra Naureen
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A S M A Haseeb
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - W J Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Nanotechnology and catalyst (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Nanotailored hyaluronic acid modified methylcellulose as an injectable scaffold with enhanced physico-rheological and biological aspects. Carbohydr Polym 2020; 237:116146. [PMID: 32241450 DOI: 10.1016/j.carbpol.2020.116146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
Abstract
The collaborative endeavor in tissue engineering is to fabricate a bio-mimetic extracellular matrix to assist tissue regeneration. Thus, a novel injectable tissue scaffold was fabricated by exploring nanotailored hyaluronic acid (nHA) and methylcellulose (MC) (nHAMC) along with pristine HA based MC scaffold (HAMC). nHA with particle size ∼22 ± 5.3 nm were obtained and nHAMC displayed a honeycomb-like 3D microporous architecture. Nano-HA bestowed better gel strength, physico-rheological and biological properties than HA. It creditably reduced the high content of salt to reduce the gelation temperature of MC. The properties ameliorated with increased in-corporation of nano-HA. The addition of salt showed more prominent effect on gelation temperature of nHAMC than in HAMC; and salting-out effect was dependent on nHA/HA content. Biocompatible nHAMC assisted adequate cell adherence and proliferation with more extended protrusions with better migration rate than control. Thus, biomodulatory effect of nanotailored glycosaminoglycan could be asserted to design an efficient thermo-responsive scaffold.
Collapse
|
6
|
Lei B, Guo B, Rambhia KJ, Ma PX. Hybrid polymer biomaterials for bone tissue regeneration. Front Med 2019; 13:189-201. [PMID: 30377934 PMCID: PMC6445757 DOI: 10.1007/s11684-018-0664-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
Collapse
Affiliation(s)
- Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kunal J Rambhia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter X Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Mallakpour S, Azimi F. Using sonochemistry for the production of poly(vinyl alcohol)/MWCNT–vitamin B1 nanocomposites: exploration of morphology, thermal and mechanical properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj00116f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functionalized MWCNTs with vitamin B1 as a green material were applied for the enhancement of poly(vinyl alcohol) properties.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry, Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
- Research Institute for Nanotechnology and Advanced Materials
| | - Faezeh Azimi
- Chemistry Group
- Pardis College
- Isfahan University of Technology
- Isfahan 84156-83111
- Islamic Republic of Iran
| |
Collapse
|
8
|
Zhu Q, Li X, Fan Z, Xu Y, Niu H, Li C, Dang Y, Huang Z, Wang Y, Guan J. Biomimetic polyurethane/TiO 2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:79-87. [PMID: 29407160 PMCID: PMC5805475 DOI: 10.1016/j.msec.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1μm. SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with unmodified nTiO2. PEU modified nTiO2 significantly increased Young's modulus and tensile stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young's modulus and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. The above results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Qingxia Zhu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA; Department of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 333001, China
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Chao Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Zheng Huang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yun Wang
- Division of Periodontology, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:736-747. [PMID: 28866223 DOI: 10.1016/j.msec.2017.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier.
Collapse
Affiliation(s)
- M Marzec
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - J Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - I Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; Centre for Preclinical Research and Technology, Banacha 1b, 02-097 Warsaw, Poland
| | - H Janik
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
10
|
Gajendiran M, Choi J, Kim SJ, Kim K, Shin H, Koo HJ, Kim K. Conductive biomaterials for tissue engineering applications. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Gogoi S, Maji S, Mishra D, Devi KSP, Maiti TK, Karak N. Nano-Bio Engineered Carbon Dot-Peptide Functionalized Water Dispersible Hyperbranched Polyurethane for Bone Tissue Regeneration. Macromol Biosci 2016; 17. [PMID: 27683231 DOI: 10.1002/mabi.201600271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/24/2016] [Indexed: 01/18/2023]
Abstract
The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application.
Collapse
Affiliation(s)
- Satyabrat Gogoi
- Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam, 784028, India
| | - Somnath Maji
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Debasish Mishra
- School of Bio-Sciences and Technology, Vellore Institute of Technology University, Vellore, 632014, India
| | - K Sanjana P Devi
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Napaam, 784028, India
| |
Collapse
|
12
|
Nie J, Wang Z, Zhou Y, Wang S, Li H, Zhao H, Qin A, Hu Q, Sun JZ, Tang BZ. High strength chitosan rod reinforced by non-covalent functionalized multiwalled carbon nanotubes via an in situ precipitation method. RSC Adv 2016. [DOI: 10.1039/c6ra20413a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High strength CS/MWCNTs composite rods preparedvia in situprecipitation & PaPA functionalization, with a 3D sophisticated structure and uniformly dispersed MWCNTs.
Collapse
|