1
|
Tulinska J, Kobylinska L, Lehotska Mikusova M, Babincova J, Mitina N, Rollerova E, Liskova A, Madrova N, Alacova R, Zaichenko A, Lesyk R, Horvathova M, Szabova M, Lukan N, Vari S. PEG-Polymeric Nanocarriers Alleviate the Immunosuppressive Effects of Free 4-Thiazolidinone-Based Chemotherapeutics on T Lymphocyte Function and Cytokine Production. Int J Nanomedicine 2024; 19:14021-14041. [PMID: 39742092 PMCID: PMC11687095 DOI: 10.2147/ijn.s479137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Our study aimed to assess the effects of anticancer 4-thiazolidinone-based free water-insoluble therapeutics Les-3288 and Les-3833 and their waterborne complexes with branched PEG-containing polymeric carriers (A24-PEG550 and A24-PEG750) on immune response. Methods Human peripheral blood was used to study in vitro lymphocyte proliferative function, leukocyte phagocytic activity and respiratory burst, and cytokine production. Results The binding of the polymer to the anticancer drug Les-3288, which is intended to mitigate the immunosuppressive effects of the free drug on the proliferative activity of T lymphocytes and T-dependent B cells, demonstrated comparable efficacy for both A24-PEG750 and A24-PEG550 nanocarriers. Furthermore, it was observed that the drug-polymer complex significantly increased the reduced levels of IFN-γ and TNF-α resulting from free Les-3288. Conversely, the reduced levels of IL-6 and IL-4 remained unchanged. Administration of either form of Les-3288 had no effect on the phagocytic activity of monocytes, granulocytes or the respiratory burst of granulocytes. Due to the reduced cell viability and increased cytotoxicity associated with Les-3833, tenfold lower doses were selected for the immune assays. The effects of free Les-3833 on lymphocyte proliferative function resulted in significant stimulation of T-dependent B cells. The binding of Les-3833 to the smaller carrier, A24-PEG550 was found to maintain the stimulatory effect on B lymphocytes. While no effect of free Les-3833 on the granulocyte phagocytic activity was observed, binding of Les-3833 to both polymeric carriers resulted in a decrease in granulocyte phagocytic activity and respiratory burst, with no observable effect on monocytes. Monitoring of cytokine production showed no significant effect of either form of Les-3833 on the production of IFN-γ and IL-6. In the context of TNF-α and IL-4, the positive effect of polymer binding on restoring suppressed cytokine levels induced by the Les-3833 free drug was slightly more favorable for A24-PEG750. Conclusion The drug complexation with novel PEGylated carriers is a promising way for efficient therapeutic development.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Julia Babincova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Natalia Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Eva Rollerova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Nikola Madrova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and BioOrganic Chemistry Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Sandor Vari
- International Research and Innovation in Medicine Program, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Velásquez F, Frazao M, Diez A, Villegas F, Álvarez-Bidwell M, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López F, Toro-Ascuy D, Ahumada M, Reyes-Cerpa S. Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1658. [PMID: 39452994 PMCID: PMC11510216 DOI: 10.3390/nano14201658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, has been the most severe health concern for the Chilean salmon industry. The efforts to control P. salmonis infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the treatments. Here, we developed a poly (D, L-lactide-glycolic acid) (PLGA)-nanosystem functionalized with Atlantic salmon IgM (PLGA-IgM) to specifically deliver florfenicol into infected cells. Polymeric nanoparticles (NPs) were prepared via the double emulsion solvent-evaporation method in the presence of florfenicol. Later, the PLGA-NPs were functionalized with Atlantic salmon IgM through carbodiimide chemistry. The nanosystem showed an average size of ~380-410 nm and a negative surface charge. Further, florfenicol encapsulation efficiency was close to 10%. We evaluated the internalization of the nanosystem and its impact on bacterial load in SHK-1 cells by using confocal microscopy and qPCR. The results suggest that stimulation with the nanosystem elicits a decrease in the bacterial load of P. salmonis when it infects Atlantic salmon macrophages. Overall, the IgM-functionalized PLGA-based nanosystem represents an alternative to the administration of antibiotics in salmon farming, complementing the delivery of antibiotics with the stimulation of the immune response of infected macrophages.
Collapse
Affiliation(s)
- Felipe Velásquez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Mateus Frazao
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Arturo Diez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Felipe Villegas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marcelo Álvarez-Bidwell
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - J. Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9170002, Chile; (E.V.-V.); (F.R.-L.)
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago 8250122, Chile
| | - Felipe Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9170002, Chile; (E.V.-V.); (F.R.-L.)
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 8380000, Chile;
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
3
|
Patil GS, Nangare SN, Patil DA, Borhade DD, Patil GB. Design of quetiapine fumarate loaded polyethylene glycol decorated graphene oxide nanosheets: Invitro-exvivo characterization. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:848-864. [PMID: 38685472 DOI: 10.1016/j.pharma.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Quetiapine Fumarate (QF) is an atypical antipsychotic with poor oral bioavailability (9%) due to its low permeability and pH-dependent solubility. Therefore, this study aims to design QF-loaded polyethylene glycol (PEG) functionalized graphene oxide nanosheets (GON) for nasal delivery of QF. In brief, GO was synthesized using a modified Hummers process, followed by ultra-sonication to produce GON. Subsequently, PEG-functionalized GON was prepared using carbodiimide chemistry (PEG-GON). QF was then decorated onto the cage of PEG-GON using the π-π stacking phenomenon (QF@PEG-GON). The QF@PEG-GON nanocomposite underwent several spectral characterizations, in vitro drug release, mucoadhesion study, ex vivo diffusion study, etc. The surface morphology of QF@PEG-GON nanocomposite validates the cracked nature of the nanocomposite, whereas the diffractograms and thermogram of nanocomposite confirm the conversion of QF into an amorphous form with uniform distribution in PEG-GON. Moreover, an ex vivo study of PEG-GON demonstrates superior mucoadhesion capacity due to its surface functional groups and hydrophilicity. The percent drug loading content and percent entrapment efficiency of the nanocomposite were found to be 9.2±0.62% and 92.3±1.02%, respectively. The developed nanocomposite exhibited 43.82±1.65% drug release within 24h, with the Korsemeyer-Peppas model providing the best-fit release kinetics (R2: 0.8614). Here, the interlayer spacing of PEG-GON prevented prompt diffusion of the buffer, leading to a delayed release pattern. In conclusion, the anticipated QF@PEG-GON nanocomposite shows promise as a nanocarrier platform for nasal delivery of QF.
Collapse
Affiliation(s)
- Gaurav S Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Sopan N Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Dilip A Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Dinesh D Borhade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Ganesh B Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India.
| |
Collapse
|
4
|
Toader G, Podaru IA, Rusen E, Diacon A, Ginghina RE, Alexandru M, Zorila FL, Gavrila AM, Trica B, Rotariu T, Ionita M. Nafcillin-Loaded Photocrosslinkable Nanocomposite Hydrogels for Biomedical Applications. Pharmaceutics 2023; 15:1588. [PMID: 37376037 DOI: 10.3390/pharmaceutics15061588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Skin infections are frequently treated via intravenous or oral administration of antibiotics, which can lead to serious adverse effects and may sometimes contribute to the proliferation of resistant bacterial strains. Skin represents a convenient pathway for delivering therapeutic compounds, ensured by the high number of blood vessels and amount of lymphatic fluids in the cutaneous tissues, which are systematically connected to the rest of the body. This study provides a novel, straightforward method to obtain nafcillin-loaded photocrosslinkable nanocomposite hydrogels and demonstrates their performance as drug carriers and antimicrobial efficacy against Gram-positive bacteria. The novel formulations obtained, based on polyvinylpyrrolidone, tri(ethylene glycol) divinyl ether crosslinker, hydrophilic bentonite nanoclay, and/or two types of photoactive (TiO2 and ZnO) nanofillers, were characterized using various analytical methods (transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), mechanical tests (tension, compression, and shear), ultraviolet-visible spectroscopy (UV-Vis), swelling investigations, and via specific microbiological assays ("agar disc diffusion method" and "time-kill test"). The results reveal that the nanocomposite hydrogel possessed high mechanical resistance, good swelling abilities, and good antimicrobial activity, demonstrating a decrease in the bacteria growth between 3log10 and 2log10 after one hour of direct contact with S. aureus.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Ionela Alice Podaru
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Aurel Diacon
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Raluca Elena Ginghina
- Research and Innovation Centre for CBRN Defense and Ecology, 225 Şos. Olteniţei, 041327 Bucharest, Romania
| | - Mioara Alexandru
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Magurele, Romania
| | - Florina Lucica Zorila
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Magurele, Romania
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Ana Mihaela Gavrila
- National Institute of Research, Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania
| | - Bogdan Trica
- National Institute of Research, Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania
| | - Traian Rotariu
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| |
Collapse
|
5
|
Feng W, Chittò M, Moriarty TF, Li G, Wang X. Targeted Drug Delivery Systems for Eliminating Intracellular Bacteria. Macromol Biosci 2023; 23:e2200311. [PMID: 36189899 DOI: 10.1002/mabi.202200311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Indexed: 01/19/2023]
Abstract
The intracellular survival of pathogenic bacteria requires a range of survival strategies and virulence factors. These infections are a significant clinical challenge, wherein treatment frequently fails because of poor antibiotic penetration, stability, and retention in host cells. Drug delivery systems (DDSs) are promising tools to overcome these shortcomings and enhance the efficacy of antibiotic therapy. In this review, the classification and the mechanisms of intracellular bacterial persistence are elaborated. Furthermore, the systematic design strategies applied to DDSs to eliminate intracellular bacteria are also described, and the strategies used for internalization, intracellular activation, bacterial targeting, and immune enhancement are highlighted. Finally, this overview provides guidance for constructing functionalized DDSs to effectively eliminate intracellular bacteria.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,AO Research Institute Davos, Davos, 7270, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, Davos, 7270, Switzerland
| | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Zelmer AR, Nelson R, Richter K, Atkins GJ. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res 2022; 10:53. [PMID: 35961964 PMCID: PMC9374758 DOI: 10.1038/s41413-022-00227-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.
Collapse
Affiliation(s)
- Anja R Zelmer
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renjy Nelson
- Department of Infectious Diseases, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia.,Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA, 5011, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
7
|
Nanotechnology in the Diagnosis and Treatment of Osteomyelitis. Pharmaceutics 2022; 14:pharmaceutics14081563. [PMID: 36015188 PMCID: PMC9412360 DOI: 10.3390/pharmaceutics14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infection remains one of the largest threats to global health. Among those infections that are especially troublesome, osteomyelitis, or inflammation of the bone, typically due to infection, is a particularly difficult condition to diagnose and treat. This difficulty stems not only from the biological complexities of opportunistic infections designed to avoid the onslaught of both the host immune system as well as exogenous antibiotics, but also from changes in the host vasculature and the heterogeneity of infectious presentations. While several groups have attempted to classify and stage osteomyelitis, controversy remains, often delaying diagnosis and treatment. Despite a host of preclinical treatment advances being incubated in academic and company research and development labs worldwide, clinical treatment strategies remain relatively stagnant, including surgical debridement and lengthy courses of intravenous antibiotics, both of which may compromise the overall health of the bone and the patient. This manuscript reviews the current methods for diagnosing and treating osteomyelitis and then contemplates the role that nanotechnology might play in the advancement of osteomyelitis treatment.
Collapse
|
8
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Hwang J, Mros S, Gamble AB, Tyndall JDA, McDowell A. Improving Antibacterial Activity of a HtrA Protease Inhibitor JO146 against Helicobacter pylori: A Novel Approach Using Microfluidics-Engineered PLGA Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14020348. [PMID: 35214080 PMCID: PMC8875321 DOI: 10.3390/pharmaceutics14020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticle drug delivery systems have emerged as a promising strategy for overcoming limitations of antimicrobial drugs such as stability, bioavailability, and insufficient exposure to the hard-to-reach bacterial drug targets. Although size is a vital colloidal feature of nanoparticles that governs biological interactions, the absence of well-defined size control technology has hampered the investigation of optimal nanoparticle size for targeting bacterial cells. Previously, we identified a lead antichlamydial compound JO146 against the high temperature requirement A (HtrA) protease, a promising antibacterial target involved in protein quality control and virulence. Here, we reveal that JO146 was active against Helicobacter pylori with a minimum bactericidal concentration of 18.8–75.2 µg/mL. Microfluidic technology using a design of experiments approach was utilized to formulate JO146-loaded poly(lactic-co-glycolic) acid nanoparticles and explore the effect of the nanoparticle size on drug delivery. JO146-loaded nanoparticles of three different sizes (90, 150, and 220 nm) were formulated with uniform particle size distribution and drug encapsulation efficiency of up to 25%. In in vitro microdilution inhibition assays, 90 nm nanoparticles improved the minimum bactericidal concentration of JO146 two-fold against H. pylori compared to the free drug alone, highlighting that controlled engineering of nanoparticle size is important in drug delivery optimization.
Collapse
Affiliation(s)
- Jimin Hwang
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Allan B. Gamble
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
| | - Joel D. A. Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
- Correspondence:
| |
Collapse
|
10
|
Alavi SE, Koohi Moftakhari Esfahani M, Raza A, Adelnia H, Ebrahimi Shahmabadi H. PEG-grafted liposomes for enhanced antibacterial and antibiotic activities: An in vivo study. NANOIMPACT 2022; 25:100384. [PMID: 35559890 DOI: 10.1016/j.impact.2022.100384] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus (S. aureus) biofilm-associated infections are a primary concern for public health worldwide. Current therapeutics cannot penetrate the biofilms efficiently, resulting in low drug concentrations at the infected sites and increasing the frequency of drug usage. To solve this issue, nanotechnology platforms seem to be a promising approach. In this study, the potential therapeutic effects of (PEG)ylated liposome (PEG-Lip) for the delivery of nafcillin (NF) antibiotic were assessed. The results demonstrated that NF-loaded liposome (Lip-NF) and NF-loaded PEG-Lip (PEG-Lip-NF) released 76.4 and 62% of the loaded NF, respectively, in a controlled manner after 50 h. Also, it was found that PEG-Lip-NF, compared to Lip-NF and NF, was more effective against a methicillin-susceptible S. aureus (MSSA; minimum inhibitory concentration (MIC): 1.0 ± 0.03, 0.5 ± 0.02, and 0.25 ± 0.01 μg/mL; and minimum biofilm inhibitory concentration (MBIC50): 4.0 ± 0.18, 1.0 ± 0.04, and 0.5 ± 0.02 μg/mL for NF, Lip-NF, and PEG-Lip-NF, respectively). PEG-Lip-NF, compared to NF and Lip-NF, could also more efficiently decrease the side effects of NF through improving human MG-63 osteoblast cell viability (cell viability at 100 μM of NF: 76, 68, and 38% for PEG-Lip-NF, Lip-NF, and NF, respectively). PEG-Lip-NF, compared to control, NF, and Lip-NF groups, was more efficacious by 45, 25, and 10%, respectively, to decrease the virulence of MSSA bacteremia through inhibiting the weight loss of the infected mice. Also, PEG-Lip-NF and Lip-NF, compared to control and NF groups, caused a considerable decrease in the mortality rate in a murine model of bacteremia (number of dead mice: 0, 0, 2, and 8 out of 15 for PEG-Lip-NF, Lip-NF, NF, and control groups, respectively). Overall, the results of this study demonstrated that the loading of NF into PEG-Lip is a promising strategy to decrease the side effects of NF with improved antibacterial effects for the treatment of MSSA biofilm-associated infections.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Hossein Adelnia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
11
|
Moreno-Lanceta A, Medrano-Bosch M, Edelman ER, Melgar-Lesmes P. Polymeric Nanoparticles for Targeted Drug and Gene Delivery Systems. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:561-608. [DOI: 10.1007/978-3-031-12658-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Saha P, Bose S, Javed MN, Srivastava AK. Clinical potential of nanotechnlogy as smart therapeutics: A step toward targeted drug delivery. ADVANCES IN NANOTECHNOLOGY-BASED DRUG DELIVERY SYSTEMS 2022:133-154. [DOI: 10.1016/b978-0-323-88450-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
13
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
14
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
15
|
Nair KG, Ravikumar Y, Sukumaran SK, Velmurugan R. Fabrication, Optimization and Characterization of Paclitaxel and Spirulina Loaded Nanoparticles for Enhanced Oral Bioavailability. CURRENT NANOSCIENCE 2020; 16:723-733. [DOI: 10.2174/1573413716666200203115101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/22/2019] [Accepted: 01/16/2020] [Indexed: 08/29/2023]
Abstract
Background:
Paclitaxel and spirulina when administered as nanoparticles, are potentially
useful.
Methods:
Nanoformualtions of Paclitaxel and Spirulina for gastric cancer were formulated and optimized
with Central composite rotatable design (CCRD) using Response surface methodology
(RSM).
Results:
The significant findings were the optimal formulation of polymer concentration 48 mg,
surfactant concentration 45% and stirring time of 60 min gave rise to the EE of (98.12 ± 1.3)%, DL
of (15.61 ± 1.9)%, mean diameter of (198 ± 4.7) nm. The release of paclitaxel and spirulina from the
nanoparticle matrix at pH 6.2 was almost 45% and 80% in 5 h and 120 h, respectively. The oral
bioavailability for the paclitaxel spirulina nanoparticles developed is 24.0% at 10 mg/kg paclitaxel
dose, which is 10 times of that for oral pure paclitaxel. The results suggest that RSM-CCRD could
efficiently be applied for the modeling of nanoparticles. The paclitaxel and spirulina release rate in
the tumor cells may be higher than in normal cells. Paclitaxel spirulina nanoparticle formulation may
have higher bioavailability and longer sustainable therapeutic time as compared with pure paclitaxel.
Conclusion:
Paclitaxel-Spirulina co-loaded nanoparticles could be effectively useful in gastric cancer
as chemotherapeutic formulation.
Collapse
Affiliation(s)
- Keerthi G.S. Nair
- School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies, Chennai 600117, India
| | - Yamuna Ravikumar
- School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies, Chennai 600117, India
| | - Sathesh Kumar Sukumaran
- School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies, Chennai 600117, India
| | - Ramaiyan Velmurugan
- School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies, Chennai 600117, India
| |
Collapse
|
16
|
The effect of chitosan and PEG polymers on stabilization of GF-17 structure: A molecular dynamics study. Carbohydr Polym 2020; 237:116124. [PMID: 32241401 DOI: 10.1016/j.carbpol.2020.116124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023]
Abstract
We examine the interactions of chitosan and polyethylene glycol (PEG) with antimicrobial peptide GF-17 to identify a suitable carrier to improve the peptide drug delivery systems. To this end, the molecular dynamics simulations are used to determine the interactions of a typical antimicrobial peptide GF-17 with the chitosan and PEG polymers. The findings indicate the great potential of the peptide to maintain its secondary structure in the adjacent to chitosan polymers. During the interaction with chitosan polymers, the structure of the peptide has smaller fluctuations compared to the PEG polymers. Also, in the presence of both the polymers, the PEG polymers are situated closer to the peptide than chitosan polymers. Moreover, the analysis indicates that the acidic residues and phenylalanine play a crucial role in peptide-polymer interactions. This research provides a valuable insight into the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.
Collapse
|
17
|
Leite DM, Sousa DM, Lamghari M, Pêgo AP. Exploring Poly(Ethylene Glycol)-Poly(Trimethylene Carbonate) Nanoparticles as Carriers of Hydrophobic Drugs to Modulate Osteoblastic Activity. J Pharm Sci 2020; 109:1594-1604. [PMID: 31935391 DOI: 10.1016/j.xphs.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Current treatment options for bone-related disorders rely on a systemic administration of therapeutic agents that possess low solubility and intracellular bioavailability, as well as a high pharmacokinetic variability, which in turn lead to major off-target side effects. Hence, there is an unmet need of developing drug delivery systems that can improve the clinical efficacy of such therapeutic agents. Nanoparticle delivery systems might serve as promising carriers of hydrophobic molecules. Here, we propose 2 nanoparticle-based delivery systems based on monomethoxy poly(ethylene glycol)-poly(trimethyl carbonate) (mPEG-PTMC) and poly(lactide-co-glycolide) for the intracellular controlled release of a small hydrophobic drug (dexamethasone) to osteoblast cells in vitro. mPEG-PTMC self-assembles into stable nanoparticles in the absence of surfactant and shows a greater entrapment capacity of dexamethasone, while assuring bioactivity in MC3T3-E1 and bone marrow stromal cells cultured under apoptotic and osteogenic conditions, respectively. The mPEG-PTMC nanoparticles represent a potential vector for the intracellular delivery of hydrophobic drugs in the framework of bone-related diseases.
Collapse
Affiliation(s)
- Diana M Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Araújo RS, Garcia GM, Vilela JMC, Andrade MS, Oliveira LAM, Kano EK, Lange CC, Brito MAVPE, Brandão HDM, Mosqueira VCF. Cloxacillin benzathine-loaded polymeric nanocapsules: Physicochemical characterization, cell uptake, and intramammary antimicrobial effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110006. [PMID: 31499941 DOI: 10.1016/j.msec.2019.110006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/30/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
The present work shows the development and evaluation of the veterinary antibiotic cloxacillin benzathine (CLOXB) loaded into poly-ε-caprolactone (PCL) nanocapsules (NC), as a potential new treatment strategy to manage bovine intramammary infections, such as mastitis. Staphylococcus aureus-induced mastitis is often a recurrent disease due to the persistence of bacteria within infected cells. CLOXB-PCL NC were prepared by interfacial deposition of preformed biodegradable polymer followed by solvent displacement method. The mean diameter of NC varied from 241 to 428 nm and from 326 to 375 nm, when determined by dynamic light scattering and by atomic force microscopy, respectively. The zeta potential of NC was negative and varied from -28 to -51 mV. In vitro release studies from the NC were performed in two media under sink conditions: PBS with 1% polyethylene glycol or milk. A reversed-phase HPLC method was developed to determine the NC entrapment efficiency and kinetics of CLOXB release from the NC. Free CLOXB dissolution occurred very fast in both media, while drug release from the NC was slower and incomplete (below 50%) after 9 h. CLOXB release kinetics from polymeric NC was fitted with the Korsmeyer-Peppas model indicating that CLOXB release is governed by diffusion following Fick's law. The fluorescence confocal microscopy images of macrophage-like J774A.1 cells reveal NC uptake and internalization in vitro. In addition, antimicrobial effect of the intramammary administration of CLOXB-PCL NC in cows with mastitis resulted in no clinical signs of toxicity and allowed complete pathogen elimination after treatment. The in vivo results obtained in this work suggest that CLOXB-PCL NC could be a promising formulation for the treatment of intramammary infections in cattle, considering their physicochemical properties, release profiles and effects on bovine mastitis control.
Collapse
Affiliation(s)
- Raquel Silva Araújo
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil.
| | - Giani Martins Garcia
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil
| | | | | | | | - Eunice Kazue Kano
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil.
| | - Carla Christine Lange
- Embrapa Gado de Leite, Rua Eugênio do Nascimento, 610 Dom Bosco, Juiz de Fora, MG 36038-330, Brazil.
| | | | - Humberto de Mello Brandão
- Embrapa Gado de Leite, Rua Eugênio do Nascimento, 610 Dom Bosco, Juiz de Fora, MG 36038-330, Brazil.
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil.
| |
Collapse
|
19
|
Ziquan W, Delu Z, Jiangling Y, Yangyang B, Yuntao G, Zhulong M, Jian F, Lei P. Research Progress on Diagnosis and Treatment of Chronic Osteomyelitis. ACTA ACUST UNITED AC 2019; 34:211-220. [DOI: 10.24920/003493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Jiang L, Lin J, Taggart CC, Bengoechea JA, Scott CJ. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infections. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2018; 3:111-121. [PMID: 30443410 PMCID: PMC6220773 DOI: 10.1002/jin2.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
One of the most important health concerns in society is the development of nosocomial infections caused by multidrug-resistant pathogens. The purpose of this review is to discuss the issues in current antibiotic therapies and the ongoing progress of developing new strategies for the treatment of ESKAPE pathogen infections, which is acronymized for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. We not only examine the current issues caused by multidrug resistance but we also examine the barrier effects such as biofilm and intracellular localization exploited by these pathogens to avoid antibiotic exposure. Recent innovations in nanomedicine approaches and antibody antibiotic conjugates are reviewed as potential novel approaches for the treatment of bacterial infection, which ultimately may expand the useful life span of current antibiotics.
Collapse
Affiliation(s)
- Lai Jiang
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Jia Lin
- School of PharmacyQueen's University BelfastBelfastUK
| | - Clifford C. Taggart
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - José A. Bengoechea
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Christopher J. Scott
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
21
|
Carbone EJ, Rajpura K, Allen BN, Cheng E, Ulery BD, Lo KWH. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:37-47. [PMID: 27562211 DOI: 10.1016/j.nano.2016.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Bone-targeted drug delivery is an active research area because successful clinical applications of this technology can significantly advance the treatment of bone injuries and disorders. Molecules with bone-targeting potential have been actively investigated as promising moieties in targeted drug delivery systems. In general, bone-targeting molecules are characterized by their high affinity for bone and their predisposition to persist in bone tissue for prolonged periods, while maintaining low systemic concentrations. Proteins, such as monoclonal antibodies, have shown promise as bone-targeting molecules; however, they suffer from several limitations including large molecular size, high production cost, and undesirable immune responses. A viable alternative associated with significantly less side effects is the use of small molecule-based targeting moieties. This review provides a summary of recent findings regarding small molecule compounds with bone-targeting capacity, as well as nanoscale targeted drug delivery approaches employing these molecules.
Collapse
Affiliation(s)
- Erica J Carbone
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT, USA
| | - Brittany N Allen
- Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - Emily Cheng
- Department of Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Bret D Ulery
- Department of Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; Division of Endocrinology, Department of Medicine, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
22
|
Limirio PHJO, Rocha FS, Batista JD, Guimarães-Henriques JC, de Melo GB, Dechichi P. The Effect of Local Delivery Doxycycline and Alendronate on Bone Repair. AAPS PharmSciTech 2016; 17:872-7. [PMID: 26381914 DOI: 10.1208/s12249-015-0411-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the local effect of 10% doxycycline and 1% alendronate combined with poly(lactic-co-glycolic acid) (PLGA) on bone repair. Thirty rats were divided into three groups, as follows: control group (CG), drug group (DG), and vehicle-PLGA group (VG). Bone defect was created in the right femur and filled with the following: blood clot (CG); PLGA gel, 10% doxycycline and 1% alendronate (DG); or vehicle-PLGA (VG). The animals were euthanized 7 or 15 days after surgery. Bone density, bone matrix and number of osteoclasts were quantified. At 7 days, the findings showed increased density in DG (177.75 ± 76.5) compared with CG (80.37 ± 27.4), but no difference compared with VG (147.1 ± 41.5); no statistical difference in bone neoformation CG (25.6 ± 4.8), VG (27.8 ± 4), and DG (18.9 ± 7.8); and decrease osteoclasts in DG (4.6 ± 1.9) compared with CG (26.7 ± 7.4) and VG (17.3 ± 2.7). At 15 days, DG (405.1 ± 63.1) presented higher density than CG (213.2 ± 60.9) and VG (283.4 ± 85.8); there was a significant increase in percentage of bone neoformation in DG (31.5 ± 4.2) compared with CG (23 ± 4), but no difference compared with VG (25.1 ± 2.9). There was a decreased number of osteoclasts in DG (20.7 ± 4.7) and VG (29.5 ± 5.4) compared with CG (40 ± 9.4). The results suggest that the association of 10% doxycycline and 1% alendronate with PLGA-accelerated bone repair.
Collapse
|
23
|
Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules 2016; 21:E207. [PMID: 26867191 PMCID: PMC6273611 DOI: 10.3390/molecules21020207] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.
Collapse
Affiliation(s)
- Maria Justina Roxana Virlan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Cristina M Sabliov
- Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA.
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| |
Collapse
|
24
|
Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections. Sci Rep 2016; 6:19525. [PMID: 26776881 PMCID: PMC4726118 DOI: 10.1038/srep19525] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/14/2015] [Indexed: 02/08/2023] Open
Abstract
Drug-loaded nanoparticles (NPs) can improve infection treatment by ensuring drug concentration at the right place within the therapeutic window. Poly(lactic-co-glycolic acid) (PLGA) NPs are able to enhance drug localization in target site and to sustainably release the entrapped molecule, reducing the secondary effects caused by systemic antibiotic administration. We have loaded auranofin, a gold compound traditionally used for treatment of rheumatoid arthritis, into PLGA NPs and their efficiency as antibacterial agent against two Gram-positive pathogens, Streptococcus pneumoniae and Streptococcus pyogenes was evaluated. Auranofin-PLGA NPs showed a strong bactericidal effect as cultures of multiresistant pneumococcal strains were practically sterilized after 6 h of treatment with such auranofin-NPs at 0.25 μM. Moreover, this potent bactericidal effect was also observed in S. pneumoniae and S. pyogenes biofilms, where the same concentration of auranofin-NPs was capable of decreasing the bacterial population about 4 logs more than free auranofin. These results were validated using a zebrafish embryo model demonstrating that treatment with auranofin loaded into NPs achieved a noticeable survival against pneumococcal infections. All these approaches displayed a clear superiority of loaded auranofin PLGA nanocarriers compared to free administration of the drug, which supports their potential application for the treatment of streptococcal infections.
Collapse
|
25
|
Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224:86-102. [PMID: 26772877 DOI: 10.1016/j.jconrel.2016.01.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels. Moreover, drugs are also subject to certain problems that decrease their efficacy. This requires the use of high doses, and frequent administrations must be implemented, causing adverse side effects or toxicity. The use of nanoparticle systems can help to overcome such problems and increase drug efficacy. Accordingly, there is considerable current interest in their use as antimicrobial agents against different pathogens like bacteria, virus, fungi or parasites, multidrug-resistant strains and biofilms; as targeting vectors towards specific tissues; as vaccines and as theranostic systems. This review begins with an overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticles within the field of infectious diseases.
Collapse
|
26
|
Abstract
Infection in orthopaedic trauma patients is a common problem associated with significant financial and psychosocial costs, and increased morbidity. This review outlines technologies to diagnose and prevent orthopaedic infection, examines implant-related infection and its management, and discusses the treatment of post-traumatic osteomyelitis. The gold standard for diagnosing infection has a number of disadvantages, and thus new technologies to diagnose infection are being explored, including multilocus polymerase chain reaction with electrospray ionization-mass spectrometry and optical imaging. Numerous strategies have been employed to prevent orthopaedic infection, including use of antibiotic-impregnated implant coatings and cement; however, further research is required to optimize these technologies. Biofilm formation on orthopaedic implants is attributed to the glycocalyx-mediated surface mode of bacterial growth and is usually treated through a secondary surgery involving irrigation, debridement and the appropriate use of antibiotics, or complete removal of the infected implant. Research into the treatment of post-traumatic osteomyelitis has focused on developing an optimal local antibiotic delivery vehicle, such as antibiotic-impregnated polymethylmethacrylate (PMMA) cement beads or bioabsorbable bone substitute (BBS) delivery systems. As these new technologies to diagnose, prevent and treat orthopaedic infection advance, the incidence of infection will decrease and patient care will be optimized.
Collapse
|
27
|
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis. Front Cell Infect Microbiol 2015; 5:85. [PMID: 26636047 PMCID: PMC4660271 DOI: 10.3389/fcimb.2015.00085] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.
Collapse
Affiliation(s)
- Jérôme Josse
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| |
Collapse
|
28
|
Cong Y, Quan C, Liu M, Liu J, Huang G, Tong G, Yin Y, Zhang C, Jiang Q. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:629-43. [DOI: 10.1080/09205063.2015.1053170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Bozhkova SA, Novokshonova AA, Konev VA. Current trends in local antibacterial therapy of periprosthetic infection and osteomyelitis. ACTA ACUST UNITED AC 2015. [DOI: 10.21823/2311-2905-2015-0-3-92-107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
30
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|
31
|
Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 2014; 78:63-76. [PMID: 24548540 DOI: 10.1016/j.addr.2014.02.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/29/2022]
Abstract
Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.
Collapse
Affiliation(s)
- Meng-Hua Xiong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Bao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan-Hua Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
32
|
Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:156010. [PMID: 25126544 PMCID: PMC4122152 DOI: 10.1155/2014/156010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to optimize lorazepam loaded PLGA nanoparticles (Lzp-PLGA-NPs) by investigating the effect of process variables on the response using Box-Behnken design. Effect of four independent factors, that is, polymer, surfactant, drug, and aqueous/organic ratio, was studied on two dependent responses, that is, z-average and % drug entrapment. Lzp-PLGA-NPs were successfully developed by nanoprecipitation method using PLGA as polymer, poloxamer as surfactant and acetone as organic phase. NPs were characterized for particle size, zeta potential, % drug entrapment, drug release behavior, TEM, and cell viability. Lzp-PLGA-NPs were characterized for drug polymer interaction using FTIR. The developed NPs showed nearly spherical shape with z-average 167–318 d·nm, PDI below 0.441, and −18.4 mV zeta potential with maximum % drug entrapment of 90.1%. In vitro drug release behavior followed Korsmeyer-Peppas model and showed initial burst release of 21.7 ± 1.3% with prolonged drug release of 69.5 ± 0.8% from optimized NPs up to 24 h. In vitro drug release data was found in agreement with ex vivo permeation data through sheep nasal mucosa. In vitro cell viability study on Vero cell line confirmed the safety of optimized NPs. Optimized Lzp-PLGA-NPs were radiolabelled with Technitium-99m for scintigraphy imaging and biodistribution studies in Sprague-Dawley rats to establish nose-to-brain pathway.
Collapse
|
33
|
Effects of antibiotic physicochemical properties on their release kinetics from biodegradable polymer microparticles. Pharm Res 2014; 31:3379-89. [PMID: 24874603 DOI: 10.1007/s11095-014-1427-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE This study investigated the effects of the physicochemical properties of antibiotics on the morphology, loading efficiency, size, release kinetics, and antibiotic efficacy of loaded poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (MPs) at different loading percentages. METHODS Cefazolin, ciprofloxacin, clindamycin, colistin, doxycycline, and vancomycin were loaded at 10 and 20 wt% into PLGA MPs using a water-in-oil-in water double emulsion fabrication protocol. Microparticle morphology, size, loading efficiency, release kinetics, and antibiotic efficacy were assessed. RESULTS The results from this study demonstrate that the chemical nature of loaded antibiotics, especially charge and molecular weight, influence the incorporation into and release of antibiotics from PLGA MPs. Drugs with molecular weights less than 600 Da displayed biphasic release while those with molecular weights greater than 1,000 Da displayed triphasic release kinetics. Large molecular weight drugs also had a longer delay before release than smaller molecular weight drugs. The negatively charged antibiotic cefazolin had lower loading efficiency than positively charged antibiotics. Microparticle size appeared to be mainly controlled by fabrication parameters, and partition and solubility coefficients did not appear to have an obvious effect on loading efficiency or release. Released antibiotics maintained their efficacy against susceptible strains over the duration of release. Duration of release varied between 17 and 49 days based on the type of antibiotic loaded. CONCLUSIONS The data from this study indicate that the chemical nature of antibiotics affects properties of antibiotic-loaded PLGA MPs and allows for general prediction of loading and release kinetics.
Collapse
|
34
|
Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014; 43:485-96. [PMID: 24721232 DOI: 10.1016/j.ijantimicag.2014.02.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
In the field of antibiotherapy, intracellular infections remain difficult to eradicate mainly due to the poor intracellular penetration of most of the commonly used antibiotics. Bacteria have quickly understood that their intracellular localisation allows them to be protected from the host immune system, but also from the action of antimicrobial agents. In addition, in most cases pathogens nestle in professional phagocytic cells, and can even use them as a 'Trojan horse' to induce a secondary site of infection thereby causing persistent or recurrent infections. Thus, new strategies had to be considered in order to counteract these problems. Amongst them, nanocarriers loaded with antibiotics represent a promising approach. Nowadays, it is possible to encapsulate, incorporate or even conjugate biologically active molecules into different families of nanocarriers such as liposomes or nanoparticles in order to deliver antibiotics intracellularly and hence to treat infections. This review gives an overview of the variety of nanocarriers developed to deliver antibiotics directly into infected cells.
Collapse
Affiliation(s)
- Nadia Abed
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
35
|
Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Zaki NM. Augmented cytotoxicity of hydroxycamptothecin-loaded nanoparticles in lung and colon cancer cells by chemosensitizing pharmaceutical excipients. Drug Deliv 2013; 21:265-75. [DOI: 10.3109/10717544.2013.838808] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Mobarak DH, Salah S, Elkheshen SA. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol 2013; 19:891-900. [PMID: 24032531 DOI: 10.3109/10837450.2013.836293] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Poly lactic-co-glycolic acid (PLGA 502 H) nanoparticles incorporating ciprofloxacin HCl (CP) were prepared by double emulsion solvent diffusion technique. METHODS The influence of the application of probe sonication besides the high pressure homogenization in the preparation of the secondary emulsion and its application during the solidification step were studied. Their effect on the particle size, Zeta potential and the percent encapsulation efficiency of the drug (EE %) were investigated. The effect of the addition of polyvinyl alcohol (PVA) during the preparation of the primary emulsion was studied. Moreover, the effect of the addition of 0.1 M sodium chloride and/or adjusting the external and extracting phases to pH 7.4 were investigated. The selected formula was examined using IR, X-ray, DSC and SEM and in vitro drug release. RESULTS These formulations showed an appropriate particle size ranges between 135.7-187.85 nm, a mean zeta potential ranging from -0.839 to -6.81 mV and a mean EE% which ranged from 35% to 69%. CONCLUSION The presented data revealed the superiority of using probe sonication besides high pressure homogenization during the formation of secondary emulsion. Moreover, the results indicated that the tested factors had a pronounced significant effect on the EE%.
Collapse
Affiliation(s)
- Doaa H Mobarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University , Cairo , Egypt and
| | | | | |
Collapse
|
38
|
Gu W, Wu C, Chen J, Xiao Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 2013; 8:2305-17. [PMID: 23836972 PMCID: PMC3699134 DOI: 10.2147/ijn.s44393] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.
Collapse
Affiliation(s)
- Wenyi Gu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
39
|
Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5780-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Ishak RA, Awad GA, Zaki NM, El-Shamy AEHA, Mortada ND. A comparative study of chitosan shielding effect on nano-carriers hydrophilicity and biodistribution. Carbohydr Polym 2013; 94:669-76. [DOI: 10.1016/j.carbpol.2013.01.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/04/2012] [Accepted: 01/23/2013] [Indexed: 01/28/2023]
|
41
|
Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 2012; 7:4053-63. [PMID: 22915848 PMCID: PMC3418173 DOI: 10.2147/ijn.s34341] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Indexed: 11/23/2022] Open
Abstract
Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 μg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.
Collapse
|
42
|
Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.04.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161:505-22. [PMID: 22353619 DOI: 10.1016/j.jconrel.2012.01.043] [Citation(s) in RCA: 2382] [Impact Index Per Article: 183.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 02/06/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers. Among the different polymers developed to formulate polymeric nanoparticles, PLGA has attracted considerable attention due to its attractive properties: (i) biodegradability and biocompatibility, (ii) FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, (iii) well described formulations and methods of production adapted to various types of drugs e.g. hydrophilic or hydrophobic small molecules or macromolecules, (iv) protection of drug from degradation, (v) possibility of sustained release, (vi) possibility to modify surface properties to provide stealthness and/or better interaction with biological materials and (vii) possibility to target nanoparticles to specific organs or cells. This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases. This review focuses on the understanding of specific characteristics exploited by PLGA-based nanoparticles to target a specific organ or tissue or specific cells.
Collapse
|
44
|
Murugeshu A, Astete C, Leonardi C, Morgan T, Sabliov CM. Chitosan/PLGA particles for controlled release of α-tocopherol in the GI tract via oral administration. Nanomedicine (Lond) 2011; 6:1513-28. [DOI: 10.2217/nnm.11.44] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: The physiochemical properties, controlled release characteristics, stability and cellular uptake of chitosan (Chi)/poly(D,L-lactide-co-glycolide) (PGLA) and PLGA particles with entrapped α-tocopherol were investigated to understand the behavior of these nanoparticles in the GI tract. Materials & Methods: Chi/PLGA and PLGA particles stabilized by lecithin were synthesized and fully characterized for oral gastrointestinal delivery via transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography and fluorescence microscopy. Results: Particle stability was pH- and system-dependent. In vitro release profiles showed a higher percentage of drug released in the intestinal domain by Chi/PLGA as opposed to the PLGA nanoparticles. Fluorescent counterparts of these particles were confirmed to associate with the surface of the intestinal villi, and penetrate deep in the endothelial lining of rabbit intestinal explants, indicating uptake. Conclusion: In vitro and ex vivo results showed that PLGA and Chi/PLGA nanoparticles were efficiently taken up by the GI tract and could be optimized to deliver αtocopherol to the intestine and improve its bioavailability.
Collapse
Affiliation(s)
- Abitha Murugeshu
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Carlos Astete
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Claudia Leonardi
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Timothy Morgan
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
45
|
Abstract
High-energy penetrating extremity injuries are often associated with severe open fractures that have varying degrees of soft-tissue contamination and tenuous soft-tissue coverage. The result is a relatively high prevalence of chronic osteomyelitis compared with that in civilian trauma patients. Diagnosing chronic osteomyelitis requires a careful history and thorough physical and radiographic examinations. Cross-sectional imaging can help delineate the extent of bony involvement, and scintigraphy can be used as a diagnostic tool and to gauge response to treatment. Clinical staging also directs surgical management. Adequacy of débridement remains the most important clinical predictor of success; thus, adopting an oncologic approach to complete (ie, wide) excision is important. Reconstruction can be safely performed by a variety of methods; however, proper staging and patient selection remain critical to a successful outcome. Although systemic and depot delivery of antibiotics plays a supporting role in the treatment of chronic osteomyelitis, the ideal dosing regimens, and the duration of treatment, remain controversial.
Collapse
|
46
|
El-Husseiny M, Patel S, MacFarlane RJ, Haddad FS. Biodegradable antibiotic delivery systems. ACTA ACUST UNITED AC 2011; 93:151-7. [DOI: 10.1302/0301-620x.93b2.24933] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- M. El-Husseiny
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| | - S. Patel
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| | - R. J. MacFarlane
- Whiston Hospital, Warrington Road, Prescot, Merseyside L355DR, UK
| | - F. S. Haddad
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| |
Collapse
|
47
|
Zecheru T, Rotariu T, Rusen E, Mărculescu B, Miculescu F, Alexandrescu L, Antoniac I, Stancu IC. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2793-2804. [PMID: 20652374 DOI: 10.1007/s10856-010-4129-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.
Collapse
|
48
|
Abstract
Musculoskeletal infection is a clinical problem with significant direct healthcare costs. The prevalence of infection after closed, elective surgery is frequently estimated to be less than 2%, but in severe injuries, posttraumatic infection rates have been reported as 10% or greater. Although clinical infections are found outside the realm of medical devices, it is clear that the enormous increase of infections associated with the use of implants presents a major challenge worldwide. This review summarizes recent advances in the understanding, diagnosis, and treatment of musculoskeletal infections.
Collapse
|