1
|
Davis ZG, Koch DW, Watson SL, Scull GM, Brown AC, Schnabel LV, Fisher MB. Controlled Stiffness of Direct-Write, Near-Field Electrospun Gelatin Fibers Generates Differences in Tenocyte Morphology and Gene Expression. J Biomech Eng 2024; 146:091008. [PMID: 38529730 PMCID: PMC11080953 DOI: 10.1115/1.4065163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Tendinopathy is a leading cause of mobility issues. Currently, the cell-matrix interactions involved in the development of tendinopathy are not fully understood. In vitro tendon models provide a unique tool for addressing this knowledge gap as they permit fine control over biochemical, micromechanical, and structural aspects of the local environment to explore cell-matrix interactions. In this study, direct-write, near-field electrospinning of gelatin solution was implemented to fabricate micron-scale fibrous scaffolds that mimic native collagen fiber size and orientation. The stiffness of these fibrous scaffolds was found to be controllable between 1 MPa and 8 MPa using different crosslinking methods (EDC, DHT, DHT+EDC) or through altering the duration of crosslinking with EDC (1 h to 24 h). EDC crosslinking provided the greatest fiber stability, surviving up to 3 weeks in vitro. Differences in stiffness resulted in phenotypic changes for equine tenocytes with low stiffness fibers (∼1 MPa) promoting an elongated nuclear aspect ratio while those on high stiffness fibers (∼8 MPa) were rounded. High stiffness fibers resulted in the upregulation of matrix metalloproteinase (MMPs) and proteoglycans (possible indicators for tendinopathy) relative to low stiffness fibers. These results demonstrate the feasibility of direct-written gelatin scaffolds as tendon in vitro models and provide evidence that matrix mechanical properties may be crucial factors in cell-matrix interactions during tendinopathy formation.
Collapse
Affiliation(s)
- Zachary G. Davis
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Drew W. Koch
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
- North Carolina State University
| | - Samantha L. Watson
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695
| | - Grant M. Scull
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
| | - Lauren V. Schnabel
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695
- North Carolina State University
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695; Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
2
|
Liang C, Fan Z, Zhang Z, Wang P, Deng H, Tao J. Electrospinning technology: a promising approach for tendon-bone interface tissue engineering. RSC Adv 2024; 14:26077-26090. [PMID: 39161449 PMCID: PMC11332360 DOI: 10.1039/d4ra04043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
The regeneration of tendon-bone interface tissue has become a topic of great interest in recent years. However, the complex nature of this interface has posed challenges in finding suitable solutions. Tissue engineering, with its potential to improve clinical outcomes and play a crucial role in musculoskeletal function, has been increasingly explored for tendon-bone interface regeneration. This review focuses on the research advancements of electrospinning technology in interface tissue engineering. By utilizing electrospinning, researchers have been able to fabricate scaffolds with tailored properties to promote the regeneration and integration of tendon and bone tissues. The review discusses the unique structure and function of the tendon-bone interface, the mechanisms involved in its healing, and the limitations currently faced in achieving successful regeneration. Additionally, it highlights the potential of electrospinning technology in scaffold fabrication and its role in facilitating the development of functional and integrated tendon-bone interface tissues. Overall, this review provides valuable insights into the application of electrospinning technology for tendon-bone interface tissue engineering, emphasizing its significance in addressing the challenges associated with regeneration in this complex interface.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zaiwei Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zirui Zhang
- Department of Rehabilitation Medicine, The 960th Hospital of the Chinese People's Liberation Army Jinan 250000 China
| | - Pinkai Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Hui Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Jun Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| |
Collapse
|
3
|
Zhang Y, Xue Y, Ren Y, Li X, Liu Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers (Basel) 2023; 15:polym15061566. [PMID: 36987348 PMCID: PMC10054061 DOI: 10.3390/polym15061566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold's superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering.
Collapse
Affiliation(s)
- Yiming Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Yueguang Xue
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yan Ren
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Li
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
4
|
Turhan EA, Akbaba S, Tezcaner A, Evis Z. Boron nitride nanofiber/Zn-doped hydroxyapatite/polycaprolactone scaffolds for bone tissue engineering applications. BIOMATERIALS ADVANCES 2023; 148:213382. [PMID: 36963343 DOI: 10.1016/j.bioadv.2023.213382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers. It is found that incorporation of both Zn HA and BNNF in PCL fibers resulted in higher calcium phosphate (CaP) precipitation on the scaffolds. Also, in vitro cell culture studies showed that presence of both Zn HA and BNNF also had synergistic effect for enhanced proliferation and osteogenic activity of Saos-2 cells. Mechanical properties of PCL-Zn HA-BNNF were found similar to that of non-load bearing bones. Furthermore, the presence of Zn HA and BNNF had synergistic effects to cell attachment, proliferation and spreading without causing cytotoxic effect on cells. The highest ALP activity was obtained in the PCL-Zn HA- BNNF group at days 7 and 14 due to release of zinc, calcium, phosphate and boron. Considering its mechanical and bioactivity properties, PCL-Zn HA-BNNF composite scaffolds hold promise as non-load bearing bone substitutes.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Boron Research Institute, Turkish Energy Nuclear and Mineral Research Agency, Ankara 06520, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
5
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Rocha J, Araújo JC, Fangueiro R, Ferreira DP. Wetspun Polymeric Fibrous Systems as Potential Scaffolds for Tendon and Ligament Repair, Healing and Regeneration. Pharmaceutics 2022; 14:2526. [PMID: 36432717 PMCID: PMC9699541 DOI: 10.3390/pharmaceutics14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tendon and ligament traumatic injuries are among the most common diagnosed musculoskeletal problems. Such injuries limit joint mobility, reduce musculoskeletal performance, and most importantly, lower people's comfort. Currently, there are various treatments that are used to treat this type of injury, from surgical to conservative treatments. However, they're not entirely effective, as reinjures are frequent and, in some cases, fail to re-establish the lost functionality. Tissue engineering (TE) approaches aim to overcome these disadvantages by stimulating the regeneration and formation of artificial structures that resemble the original tissue. Fabrication and design of artificial fibrous scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of the tissues. Recently, polymeric nanofibers produced by wetspinning have been largely investigated to mimic, repair, and replace the damaged tissue. Wetspun fibrous structures are extensively used due to their exceptional properties, such as the ability to mimic the native tissue, their biodegradability and biocompatibility, and good mechanical properties. In this review, the tendon and ligament structure and biomechanics are presented. Then, promising wetspun multifunctional fibrous structures based on biopolymers, more specifically polyhydroxyalkanoates (PHA), polycaprolactone (PCL), and polyethylenes, will be discussed, as well as reinforcing agents such as cellulose nanocrystals (CNC), nanoparticles, and growth factors.
Collapse
Affiliation(s)
- Joana Rocha
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Joana C Araújo
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| |
Collapse
|
7
|
Bahú JO, Melo de Andrade LR, Crivellin S, Khouri NG, Sousa SO, Fernandes LMI, Souza SDA, Concha LSC, Schiavon MIRB, Benites CI, Severino P, Souto EB, Concha VOC. Rotary Jet Spinning (RJS): A Key Process to Produce Biopolymeric Wound Dressings. Pharmaceutics 2022; 14:pharmaceutics14112500. [PMID: 36432691 PMCID: PMC9699276 DOI: 10.3390/pharmaceutics14112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Wounds result from different causes (e.g., trauma, surgeries, and diabetic ulcers), requiring even extended periods of intensive care for healing, according to the patient's organism and treatment. Currently, wound dressings generated by polymeric fibers at micro and nanometric scales are promising for healing the injured area. They offer great surface area and porosity, mimicking the fibrous extracellular matrix structure, facilitating cell adhesion, migration, and proliferation, and accelerating the wound healing process. Such properties resulted in countless applications of these materials in biomedical and tissue engineering, also as drug delivery systems for bioactive molecules to help tissue regeneration. The techniques used to engineer these fibers include spinning methods (electro-, rotary jet-), airbrushing, and 3D printing. These techniques have important advantages, such as easy-handle procedure and process parameters variability (type of polymer), but encounter some scalability problems. RJS is described as a simple and low-cost technique resulting in high efficiency and yield for fiber production, also capable of bioactive agents' incorporation to improve the healing potential of RJS wound dressings. This review addresses the use of RJS to produce polymeric fibers, describing the concept, type of configuration, comparison to other spinning techniques, most commonly used polymers, and the relevant parameters that influence the manufacture of the fibers, for the ultimate use in the development of wound dressings.
Collapse
Affiliation(s)
- Juliana O. Bahú
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
- Correspondence: (J.O.B.); (E.B.S.)
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Sara Crivellin
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Nadia G. Khouri
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Sara O. Sousa
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| | - Luiza M. I. Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| | - Samuel D. A. Souza
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Luz S. Cárdenas Concha
- Graduate School, Sciences and Engineering, National University of Trujillo, Av. Juan Pablo II S/N Urb. San Andrés, Trujillo 13011, La Libertad, Peru
| | - Maria I. R. B. Schiavon
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Cibelem I. Benites
- Federal Laboratory of Agricultural and Livestock Defense (LFDA-SP), Ministry of Agriculture, Livestock and Food Supply (MAPA), Campinas 70043-900, São Paulo, Brazil
| | - Patrícia Severino
- Technology and Research Institute (ITP), Tiradentes University (UNIT), Murilo Dantas Ave., Farolândia, nº 300, Aracaju 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto (FFUP), Rua Jorge de Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
- Correspondence: (J.O.B.); (E.B.S.)
| | - Viktor O. Cárdenas Concha
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| |
Collapse
|
8
|
In Silico, In Vitro, and In Vivo Wound Healing Activity of Astragalus microcephalus Willd. Adv Pharmacol Pharm Sci 2022; 2022:2156629. [PMID: 36238201 PMCID: PMC9553362 DOI: 10.1155/2022/2156629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Methods The methanolic root extract was prepared by maceration, and flavonoids were evaluated by LC/MS. In silico examination was performed based on the LC/MS results, and the binding affinity of these compounds to estrogen receptors (ERs) α and β was evaluated. Wound healing evaluation in both in vitro (NHDF cell line, by 500 μg/ml concentration of the extract, 24 h) and in vivo (Wistar rat, topical daily treated with 1.5% of the extract ointment, 21 days) conditions in comparison to control groups was conducted. Rats' control groups included silver sulfadiazine, Vaseline, and the nontreated groups. Results Eleven flavonoids were detected using LC/MS. The in silico study showed that formononetin, kaempferol-based structures, quercetin-3-O-neohesperidoside, and calycosin-7-O-beta-D-glucoside had a high affinity (<-6.3) to ERs α and β. Wound closing measurement showed significant improvement in the group treated with the extract in both in vitro and in vivo assays compared to the control groups. Histopathological results confirmed these findings; inflammation factors decreased, and fibroblast proliferation, fibrosis, and epithelization increased, especially in the extract group. Conclusion This study shows that Astragalus microcephalus has wound healing activity in vitro and in vivo with low toxicity due to the presence of flavonoids, especially isoflavonoids, which show a high affinity to bind to ERs α and β in the skin tissue.
Collapse
|
9
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
10
|
Ning C, Gao C, Li P, Fu L, Chen W, Liao Z, Xu Z, Yuan Z, Guo W, Sui X, Liu S, Guo Q. Dual‐Phase Aligned Composite Scaffolds Loaded with Tendon‐Derived Stem Cells for Achilles Tendon Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Cangjian Gao
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Pinxue Li
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Liwei Fu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Wei Chen
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiyao Liao
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zizheng Xu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200030 P. R. China
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology First Affiliated Hospital Sun Yat‐sen University No. 58 Zhongshan Second Road, Yuexiu District Guangzhou Guangdong 510080 P. R. China
| | - Xiang Sui
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Quanyi Guo
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| |
Collapse
|
11
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
12
|
In Vitro and In Vivo Wound Healing Activity of Astragalus floccosus Boiss. (Fabaceae). Adv Pharmacol Pharm Sci 2022; 2022:7865015. [PMID: 35392504 PMCID: PMC8983193 DOI: 10.1155/2022/7865015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogens are a group of sex hormones which have receptors on the skin and lead to increased cells and wound healing. Normally isoflavonoids are present in Astragalus floccosus Boiss. (Leguminosae). Therefore, the present study was conducted to evaluate the presence of isoflavonoids in A. floccosus' rich fraction of flavonoid and evaluate its wound healing effect accordingly. Flavonoids were evaluated by LCMS. Scratch was conducted and the medium culture was treated with the Astragalus' rich fraction of flavonoid (RFF) and was compared with nontreated culture during 48 hours. In addition, in vivo full-thickness wound healing evaluation was performed on rats. The rats were put into four groups and treated on a daily basis for 21 days with a cream containing 1.5% of the RFF (group 1), silver sulfadiazine (group 2), and Vaseline (group 3) separately. The nontreated group (group 4) was created for a better comparison. During the examination, wound size was evaluated and histopathological examination was performed. Herbal analysis detected 11 flavonoids, including 2 isoflavonoids, Calycosin-7-O-beta-D-glucoside and Formononetin, in the RFF. In vitro scratch wound healing showed significant improvement with RFF treatment in comparison to nontreated medium. Furthermore, in vitro drug release of Astragalus ointment showed a stationary line during 24 h and 0.14 mg/ml of flavonoid penetrated the skin. In vivo wound size evaluation showed significant improvement in the group treated with the RFF in comparison to other groups. Histopathological results indicated that congestion, edema, inflammation, necrosis, and angiogenesis decreased during the examination and fibroblast proliferation fibrosis epithelization was increased especially in the RFF group in comparison to the silver sulfadiazine and free groups. In conclusion, A. floccosus showed that wound healing activity in both in vitro and in vivo analyses can be attributed to the presence of isoflavonoids with estrogen-like activity in this plant.
Collapse
|
13
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
14
|
Wu S, Liu J, Qi Y, Cai J, Zhao J, Duan B, Chen S. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112181. [PMID: 34082981 DOI: 10.1016/j.msec.2021.112181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The development of tendon-biomimetic nanofibrous scaffolds with mesenchymal stem cells may represent a promising strategy to improve the unsatisfactory outcomes of traditional treatments in tendon repair. In the present study, the nanofibrous scaffolds comprised of poly(p-dioxanone) (PPDO) and silk fibroin (SF) composites were fabricated by using electrospinning technique and subsequent thermal ethanol treatment. The PPDO/SF composite scaffolds presented parallel fiber arrangement with crimped features and nonlinear mechanical properties, which mimic the structure-function relationship of native tendon tissue mechanics. We demonstrated that the fiber crimp degree and mechanical properties of as-prepared PPDO/SF wavy nanofibrous scaffolds (WNSs) could be tunable by adjusting the mass ratio of PPDO/SF. The biological tests revealed that the addition of SF obviously promoted the cell adhesion, proliferation, and phenotypic maintenance of human tenocytes on the WNSs. A preliminary study on the subcutaneous implantation showed that the PPDO/SF WNSs notably decreased the inflammatory response compared with pure PPDO WNSs. More importantly, a combination of growth factor induction and mechanical stimulation was found to notably enhance the tenogenic differentiation of human adipose derived mesenchymal stem cells on the PPDO/SF WNSs by upregulating the expressions of tendon-associated protein and gene markers. Overall, this study demonstrated that our PPDO/SF WNSs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate for tendon tissue engineering research.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China.
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater 2021; 124:15-32. [PMID: 33508510 DOI: 10.1016/j.actbio.2021.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.
Collapse
|
16
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|