1
|
Wagner M, Saad S, Killard AJ. Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry. J Breath Res 2024; 19:016006. [PMID: 39496198 DOI: 10.1088/1752-7163/ad8e7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
The measurement of trace breath gases is of growing interest for its potential to provide non-invasive physiological information in health and disease. While instrumental techniques such as selected-ion flow-tube mass spectrometry (SIFT-MS) can achieve this, these are less suitable for clinical application. Sensitive sensor-based systems for breath ammonia could be more widely deployed, but have proven challenging to develop. This work demonstrates the sequential analytical validation of an electrochemical impedance-based sensor system for the measurement of ammonia in breath using SIFT-MS. Qualitative and relative responses between the two methods were comparable, although there were consistent differences in absolute concentration. When tested in artificial breath ammonia, sensors had a relative impedance sensitivity of 3.43 × 10-5ppbv-1for each breath in the range of 249-1653 ppbv (r2= 0.87,p< 0.05). When correlated with SIFT-MS using human breath (n= 14), ammonia was detected in the range of 100-700 ppbv (r= 0.78,p< 0.001), demonstrating acceptable sensitivity, reproducibility and dynamic range for clinical application.
Collapse
Affiliation(s)
- Michal Wagner
- BreathDX (UK) Ltd, Bristol, United Kingdom
- Centre for Biomedical Research, School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Saliha Saad
- Centre for Biomedical Research, School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Anthony J Killard
- BreathDX (UK) Ltd, Bristol, United Kingdom
- Centre for Biomedical Research, School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
2
|
Zhang M, Li M, Bai F, Yao W, You L, Liu D. Effect of Fat to Lean Meat Ratios on the Formation of Volatile Compounds in Mutton Shashliks. Foods 2023; 12:foods12101929. [PMID: 37238747 DOI: 10.3390/foods12101929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the release of volatile compounds in mutton shashliks (named as FxLy, x-fat cubes: 0-4; y-lean cubes: 4-0) with different fat-lean ratios before and during consumption, respectively. In total, 67 volatile compounds were identified in shashliks using gas chromatography/mass spectrometry. Aldehyde, alcohol, and ketone were the major volatile substances, accounting for more than 75% of the total volatile compounds. There were significant differences in the volatile compounds of mutton shashliks with different fat-lean ratios. With the increase of the fat content, the types and content of volatile substances released also increase. However, when the percentage of fat exceeded 50%, the number of furans and pyrazine, which were characteristic of the volatile compounds of roasted meat, was decreased. The release of volatiles during the consumption of mutton shashliks was measured using the exhaled breath test and the results showed that adding an appropriate amount of fat (<50%) helps to enrich the volatile compound components in the mouth. However, shashliks with higher fat-lean ratios (>2:2) shorten the mastication duration and weaken the breakdown of bolus particles in the consumption process, which is not conducive to the release potential of volatile substances. Therefore, setting the fat to lean ratio to 2:2 is the best choice for making mutton shashliks, as it (F2L2) can provide rich flavor substances for mutton shashliks before and during consumption.
Collapse
Affiliation(s)
- Mingcheng Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Mingyang Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangfang Bai
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Wensheng Yao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Litang You
- Anshan Jiuguhe Food Co., Ltd., Anshan 114100, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, China
| |
Collapse
|
3
|
Mey JT, Rath MC, McLaughlin K, Galang M, Lynch K, DiMattio J, Nason H, Yang S, Melillo CA, Grove DE, Tonelli AR, Heresi GA, Kirwan JP, Dweik RA. The breath print represents a novel biomarker of malnutrition in pulmonary arterial hypertension: A proof of concept study. JPEN J Parenter Enteral Nutr 2021; 45:1645-1652. [PMID: 34633675 PMCID: PMC9244406 DOI: 10.1002/jpen.2277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The breath print is a quantitative measurement of molecules in exhaled breath and represents a new frontier for biomarker identification. It is unknown whether this state-of-the-art, noninvasive method can detect malnutrition. We hypothesize that individuals with malnutrition will present with a distinguishable breath print. METHODS We conducted a retrospective chart review on patients with previously analyzed breath samples to identify malnutrition. Breath was analyzed by selected-ion flow-tube mass spectrometry. Registered dietitians conducted a retrospective chart review to collect malnutrition diagnoses and nutrition status indicators. Patients were categorized into one of four groups: pulmonary arterial hypertension (PAH), PAH with malnutrition (PAH-Mal), control, and control with malnutrition (Control-Mal), based on the malnutrition diagnosis present in the patient's chart. Principle component analysis was conducted to characterize the breath print. A logistic regression model with forward selection was used to detect the best breath predictor combination of malnutrition. RESULTS A total of 74 patients met inclusion criteria (PAH: 52; PAH-Mal: 10; control: 10; Control-Mal: 2). Levels of 1-octene (PAH-Mal, 5.1 ± 1.2; PAH, 12.5 ± 11.2; P = 0.005) and ammonia (PAH-Mal, 14.6 ± 15.8; PAH, 56.2 ± 64.2; P = 0.013) were reduced in PAH-Mal compared with PAH. The combination of 1-octene (P = 0.010) and 3-methylhexane (P = 0.045) distinguished malnutrition in PAH (receiver operating characteristic area under the curve: 0.8549). CONCLUSIONS This proof of concept study provides the first evidence that the breath print is altered in malnutrition. Larger prospective studies are needed to validate these results and establish whether breath analysis may be a useful tool to screen for malnutrition in the clinical setting.
Collapse
Affiliation(s)
- Jacob T. Mey
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Mary C. Rath
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Marianne Galang
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kathryn Lynch
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaime DiMattio
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hillary Nason
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA,Nutrition Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Celia A. Melillo
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David E. Grove
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - John P. Kirwan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Raed A. Dweik
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Zemánková K, Pavelicová K, Pompeiano A, Mravcová L, Černý M, Bendíčková K, Hortová Kohoutková M, Dryahina K, Vaculovičová M, Frič J, Vaníčková L. Targeted volatolomics of human monocytes: Comparison of 2D-GC/TOF-MS and 1D-GC/Orbitrap-MS methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122975. [PMID: 34655893 DOI: 10.1016/j.jchromb.2021.122975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
Blood is a complex biological matrix providing valuable information on nutritional, metabolic, and immune status. The detection of blood biomarkers requires sensitive analytical methods because analytes are at very low concentrations. Peripheral blood monocytes play a crucial role in inflammatory processes, and the metabolites released by monocytes during these processes might serve as important signalling molecules and biomarkers of particular physiological states. Headspace solid-phase microextraction (HS-SPME) combined with two different mass spectrometric platforms, two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (2D-GC/TOF-MS) and one-dimensional gas chromatography coupled to Orbitrap mass spectrometry (GC/Orbitrap-MS), were applied for the investigation of volatile organic compounds (VOCs) produced by human peripheral blood monocytes. An optimized method was subsequently applied for the characterization of changes in VOCs induced by lipopolysaccharides (LPS) and zymosan (ZYM) stimulation. Overall, the 2D-GC/TOF-MS and the 1D-GC/Orbitrap-MS analyses each yielded about 4000 and 400 peaks per sample, respectively. In total, 91 VOCs belonging to eight different chemical classes were identified. The samples were collected in two fractions, conditioned media for monitoring extracellularly secreted molecules and cell pellet samples to determine the intracellular composition of VOCs. Alcohols, ketones, and hydrocarbons were the main chemical classes of the metabolic profile identified in cell fractions. Aldehydes, acids and cyclic compounds were characteristic of the conditioned media fraction. Here we demonstrate that HS-SPME-2D-GC/TOF-MS is more suitable for the identification of specific VOC profiles produced by human monocytes than 1D-GC/Orbitrap-MS. We define the signature of VOCs occurring early after monocyte activation and characterise the signalling compounds released by immune cells into media.
Collapse
Affiliation(s)
- Kristýna Zemánková
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, CZ-61200 Brno, Czech
| | - Kristýna Pavelicová
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, CZ-61200 Brno, Czech
| | - Antonio Pompeiano
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, CZ-61200 Brno, Czech; Departmentof Forest Botany, Dendrology and Geobiocenology, Faculty of Forest and Wood Technology, Mendel University in Brno, Zemědělská 1 CZ-61300, Czech Republic
| | - Ludmila Mravcová
- Brno University of Technology, Purkyňova 464/118, CZ-61200, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Centre of St. Anne's University Hospital Brno, Pekařská 53, CZ-656 91 Brno, Czech Republic
| | - Marcela Hortová Kohoutková
- International Clinical Research Centre of St. Anne's University Hospital Brno, Pekařská 53, CZ-656 91 Brno, Czech Republic
| | - Kseniya Dryahina
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, CZ-18223 Prague, Czech Republic
| | - Markéta Vaculovičová
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, CZ-61200 Brno, Czech
| | - Jan Frič
- International Clinical Research Centre of St. Anne's University Hospital Brno, Pekařská 53, CZ-656 91 Brno, Czech Republic; Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, CZ-128 00 Prague, Czech Republic.
| | - Lucie Vaníčková
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, CZ-61200 Brno, Czech; Departmentof Forest Botany, Dendrology and Geobiocenology, Faculty of Forest and Wood Technology, Mendel University in Brno, Zemědělská 1 CZ-61300, Czech Republic.
| |
Collapse
|
5
|
Nowak N, Gaisl T, Miladinovic D, Marcinkevics R, Osswald M, Bauer S, Buhmann J, Zenobi R, Sinues P, Brown SA, Kohler M. Rapid and reversible control of human metabolism by individual sleep states. Cell Rep 2021; 37:109903. [PMID: 34706242 DOI: 10.1016/j.celrep.2021.109903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Sleep is crucial to restore body functions and metabolism across nearly all tissues and cells, and sleep restriction is linked to various metabolic dysfunctions in humans. Using exhaled breath analysis by secondary electrospray ionization high-resolution mass spectrometry, we measured the human exhaled metabolome at 10-s resolution across a night of sleep in combination with conventional polysomnography. Our subsequent analysis of almost 2,000 metabolite features demonstrates rapid, reversible control of major metabolic pathways by the individual vigilance states. Within this framework, whereas a switch to wake reduces fatty acid oxidation, a switch to slow-wave sleep increases it, and the transition to rapid eye movement sleep results in elevation of tricarboxylic acid (TCA) cycle intermediates. Thus, in addition to daily regulation of metabolism, there exists a surprising and complex underlying orchestration across sleep and wake. Both likely play an important role in optimizing metabolic circuits for human performance and health.
Collapse
Affiliation(s)
- Nora Nowak
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland; Department of Pulmonology, University Hospital Zurich, Zurich 8091, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
| | - Thomas Gaisl
- Department of Pulmonology, University Hospital Zurich, Zurich 8091, Switzerland
| | | | | | - Martin Osswald
- Department of Pulmonology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Stefan Bauer
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
| | - Joachim Buhmann
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Pablo Sinues
- University Children's Hospital Basel, Basel 4056, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland.
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
6
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
7
|
Pauwels CGGM, Hintzen KFH, Talhout R, Cremers HWJM, Pennings JLA, Smolinska A, Opperhuizen A, Van Schooten FJ, Boots AW. Smoking regular and low-nicotine cigarettes results in comparable levels of volatile organic compounds in blood and exhaled breath. J Breath Res 2020; 15:016010. [PMID: 33027777 DOI: 10.1088/1752-7163/abbf38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smokers are exposed to more than 6000 (toxic) smoke components including volatile organic compounds (VOCs). In this study VOCs levels in headspace of blood and exhaled breath, in the mainstream smoke of three types of cigarettes of one brand varying in declared tar, nicotine and carbon monoxide (TNCO) yields are investigated. The objective was to identify whether VOC levels correlate with TNCO yields of cigarettes smoked according to ISO 3308. Our data show that smoking regular and low-TNCO cigarettes result in comparable levels of VOCs in blood and exhaled breath. Hence, declared TNCO-yields as determined with the ISO 3308 machine smoking protocol are irrelevant for predicting VOC exposure upon human smoking. Venous blood and exhaled breath were sampled from 12 male volunteers directly before and 10 min after smoking cigarettes on 3 d (day 1 Marlboro Red (regular), day 2 Marlboro Prime (highly ventilated, low-TNCO), day 3 Marlboro Prime with blocked filter ventilation (taped)). Upon smoking, the levels of toluene, ethylbenzene, m/p-xylene, o-xylene, and 2,5-dimethylfuran in both headspace of venous blood and exhaled breath increase within the same range for all three cigarette types smoked. However, no strong correlation was found between VOC levels in exhaled breath and VOC levels in headspace of blood because of variations between the individual smoking volunteers. More research is required in order to use exhaled breath sampling as a non-invasive quantitative marker for volatile toxicants from cigarette smoke exposure of different brands.
Collapse
Affiliation(s)
- Charlotte G G M Pauwels
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Maastricht, The Netherlands
| | - Kim F H Hintzen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Reinskje Talhout
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Maastricht, The Netherlands
| | - Hans W J M Cremers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Maastricht, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), Maastricht, The Netherlands
| | - Frederik J Van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Grove D, Miller-Atkins G, Melillo C, Rieder F, Kurada S, Rotroff DM, Tonelli AR, Dweik RA. Comparison of volatile organic compound profiles in exhaled breath versus plasma headspace in different diseases. J Breath Res 2020; 14:036003. [PMID: 32272466 DOI: 10.1088/1752-7163/ab8866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breath analysis is the study of volatile organic compounds (VOC's) in exhaled breath. This analysis provides information on the body's condition. In this study we investigated the relationship between 22 VOC's detected in exhaled breath and plasma headspace using a selected ion flow tube mass spectrometer (SYFT-MS). We compared pairs of exhaled breath and plasma samples from patients with pulmonary hypertension inflammatory bowel disease (IBD), and IBD patients after J-pouch surgery (pouch group). Half of the measured VOC's from exhaled breath were significantly associated with the VOC's from plasma headspace. Interestingly, six breath VOC's (trimethyl amine (FDR p = 0.02), hydrogen sulfide (FDR p = 7.64 × 10-30), ethanol (FDR p = 1.56 × 10-4), dimethyl sulfide (FDR p = 5.70 × 10-19), benzene (FDR p = 8.40 × 10-27), and acetaldehyde (FDR p = 4.27 × 10-17)) and two plasma headspace VOC's (1-Octene (FDR p = 0.02) and 2-propanol (FDR p = 2.47 × 10-9)) were able to differentiate between the three groups. Breath and plasma headspace share a similar signature with significant association in half of the measured VOCs. The disease discriminatory capacity of breath and plasma headspace appear to be different. Therefore, using the VOC's print from both breath and plasma headspace may better help diagnose patients.
Collapse
Affiliation(s)
- David Grove
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. CLINICAL MASS SPECTROMETRY 2020; 16:18-24. [DOI: 10.1016/j.clinms.2020.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
|
10
|
Ren X, Li X. Advances in Research on Diabetes by Human Nutriomics. Int J Mol Sci 2019; 20:ijms20215375. [PMID: 31671732 PMCID: PMC6861882 DOI: 10.3390/ijms20215375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence and prevalence of diabetes mellitus (DM) have increased rapidly worldwide over the last two decades. Because the pathogenic factors of DM are heterogeneous, determining clinically effective treatments for DM patients is difficult. Applying various nutrient analyses has yielded new insight and potential treatments for DM patients. In this review, we summarized the omics analysis methods, including nutrigenomics, nutritional-metabolomics, and foodomics. The list of the new targets of SNPs, genes, proteins, and gut microbiota associated with DM has been obtained by the analysis of nutrigenomics and microbiomics within last few years, which provides a reference for the diagnosis of DM. The use of nutrient metabolomics analysis can obtain new targets of amino acids, lipids, and metal elements, which provides a reference for the treatment of DM. Foodomics analysis can provide targeted dietary strategies for DM patients. This review summarizes the DM-associated molecular biomarkers in current applied omics analyses and may provide guidance for diagnosing and treating DM.
Collapse
Affiliation(s)
- Xinmin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Spesyvyi A, Sovová K, Smith D, Španěl P. Increase of the Charge Transfer Rate Coefficients for NO+ and O2+• Reactions with Isoprene Molecules at Elevated Interaction Energies. J Phys Chem A 2018; 122:9733-9737. [DOI: 10.1021/acs.jpca.8b08580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Kristýna Sovová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
12
|
Romano A, Doran S, Belluomo I, Hanna GB. High-Throughput Breath Volatile Organic Compound Analysis Using Thermal Desorption Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Anal Chem 2018; 90:10204-10210. [DOI: 10.1021/acs.analchem.8b01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andrea Romano
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| | - Sophie Doran
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| | - George Bushra Hanna
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St. Mary’s Hospital, South Wharf Road, London W2 1NY, United Kingdom
| |
Collapse
|
13
|
Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories. Anal Bioanal Chem 2018; 410:2619-2628. [PMID: 29468292 DOI: 10.1007/s00216-018-0935-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Volatile organic compounds (VOCs) in gas mixtures at trace level (nmol/mol) are routinely measured by chemical and biochemical laboratories as climate indicators, indoor air quality pollutants from building materials emissions, contaminants in food and beverages, and biomarkers in body fluids (blood, urine, breath) of occupational exposure or human diseases. Current analytical instruments used for measurements are gas chromatographs equipped with various injector and detector configurations. The assurance of measurement quality is done by using a huge amount of certified liquid VOC standard solutions (or gaseous VOC standard cylinders) with multiple dilutions to reach the required trace level. This causes high standard uncertainty in instrument calibrations, high cost, and high consumption of analysis and laboratory personal time. In this paper, we present the implementation of portable generators producing VOC gas standards at trace level for automatic and direct calibration of VOC detectors employed in various contexts, removing the need for preparation of matrix calibration standards in cylinders. Two compact devices in-house developed by two national metrology institutes-the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Federal Institute of Metrology (METAS)-are here used to dynamically generate reference gas mixtures in an SI traceable way. The two devices are based on different technologies: diffusion and permeation, for INRIM and METAS, respectively. A metrological characterization is given and the practical implementation at chemical and biochemical laboratories is discussed. Graphical abstract Onsite calibration with transportable generation system with similar performances to primary laboratory devices.
Collapse
|
14
|
Taunk K, Taware R, More TH, Porto-Figueira P, Pereira JAM, Mohapatra R, Soneji D, Câmara JS, Nagarajaram HA, Rapole S. A non-invasive approach to explore the discriminatory potential of the urinary volatilome of invasive ductal carcinoma of the breast. RSC Adv 2018; 8:25040-25050. [PMID: 35542123 PMCID: PMC9082450 DOI: 10.1039/c8ra02083c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/24/2018] [Indexed: 01/13/2023] Open
Abstract
A non-invasive urinary volatilomics approach for exploring the IDC type breast cancer.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Ravindra Taware
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Tushar H. More
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Priscilla Porto-Figueira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- Campus Universitário da Penteada
- Funchal 9000-390
- Portugal
| | - Jorge A. M. Pereira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- Campus Universitário da Penteada
- Funchal 9000-390
- Portugal
| | - Rajkishore Mohapatra
- Laboratory of Computational Biology
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
| | - Dharmesh Soneji
- Malignant Disease Treatment Centre
- Military Hospital (Cardio Thoracic Centre)
- Armed Forces Medical College
- Pune 411040
- India
| | - José S. Câmara
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- Campus Universitário da Penteada
- Funchal 9000-390
- Portugal
| | - H. A. Nagarajaram
- Laboratory of Computational Biology
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Department of Biotechnology & Bioinformatics
| | - Srikanth Rapole
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| |
Collapse
|