1
|
Sauvain JJ, Wild P, Charreau T, Jouannique V, Sakthithasan K, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Are metals in exhaled breath condensate and urine associated with oxidative/nitrosative stress and metabolism-related biomarkers? Results from 303 randomly selected Parisian subway workers. ENVIRONMENT INTERNATIONAL 2025; 196:109325. [PMID: 39952202 DOI: 10.1016/j.envint.2025.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Subway particles can cause oxidative stress, with metals being a key factor. Only few epidemiological studies have examined the role of metal mixtures in this effect for subway workers. OBJECTIVES This cross-sectional study examined the relationship between metal concentrations in exhaled breath condensate (EBC) and urine, and biomarkers of oxidative/nitrosative stress and metabolism in subway workers. METHODS The study involved 303 randomly selected Parisian metro workers exposed to various levels of subway particles. Metals in EBC and urine were measured using ICP-MS, and biomarkers were analyzed through liquid chromatography-mass spectrometry. Factor analysis as dimension reduction strategy and cluster analysis to account for metal mixtures and multiple multi-media effect biomarkers was used along with multivariable linear regression analysis on factor variables adjusted for potential confounders. RESULTS Significant positive associations were observed between urinary metals and oxidative stress biomarkers, despite similar metal levels in workers and the general population. Metals in EBC were linked to nitrosative stress and other metabolites in EBC. Worker occupation correlated with small chain fatty acids in EBC and urinary levels of barium and titanium. Smoking was associated with effect biomarkers but not with exposure biomarkers. CONCLUSIONS Elevated metal levels in EBC and urine are associated with altered bronchopulmonary metabolites and increased systemic oxidative stress. While Ba and Ti may originate from brake wear, other metals identified in EBC and urine are not clearly related with subway particles and may be from non-occupational sources. Smoking showed a stronger relationship with the workers' oxidative stress status than occupation.
Collapse
Affiliation(s)
- J J Sauvain
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - P Wild
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - T Charreau
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - V Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - K Sakthithasan
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - A Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - G Suárez
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - N B Hopf
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - I Guseva Canu
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| |
Collapse
|
2
|
Heng W, Yin S, Chen Y, Gao W. Exhaled Breath Analysis: From Laboratory Test to Wearable Sensing. IEEE Rev Biomed Eng 2025; 18:50-73. [PMID: 39412981 PMCID: PMC11875904 DOI: 10.1109/rbme.2024.3481360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
Collapse
|
3
|
Sauvain JJ, Hemmendinger M, Charreau T, Jouannique V, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Metal and oxidative potential exposure through particle inhalation and oxidative stress biomarkers: a 2-week pilot prospective study among Parisian subway workers. Int Arch Occup Environ Health 2024; 97:387-400. [PMID: 38504030 PMCID: PMC10999389 DOI: 10.1007/s00420-024-02054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE In this pilot study on subway workers, we explored the relationships between particle exposure and oxidative stress biomarkers in exhaled breath condensate (EBC) and urine to identify the most relevant biomarkers for a large-scale study in this field. METHODS We constructed a comprehensive occupational exposure assessment among subway workers in three distinct jobs over 10 working days, measuring daily concentrations of particulate matter (PM), their metal content and oxidative potential (OP). Individual pre- and post-shift EBC and urine samples were collected daily. Three oxidative stress biomarkers were measured in these matrices: malondialdehyde (MDA), 8-hydroxy-2'deoxyguanosine (8-OHdG) and 8-isoprostane. The association between each effect biomarker and exposure variables was estimated by multivariable multilevel mixed-effect models with and without lag times. RESULTS The OP was positively associated with Fe and Mn, but not associated with any effect biomarkers. Concentration changes of effect biomarkers in EBC and urine were associated with transition metals in PM (Cu and Zn) and furthermore with specific metals in EBC (Ba, Co, Cr and Mn) and in urine (Ba, Cu, Co, Mo, Ni, Ti and Zn). The direction of these associations was both metal- and time-dependent. Associations between Cu or Zn and MDAEBC generally reached statistical significance after a delayed time of 12 or 24 h after exposure. Changes in metal concentrations in EBC and urine were associated with MDA and 8-OHdG concentrations the same day. CONCLUSION Associations between MDA in both EBC and urine gave opposite response for subway particles containing Zn versus Cu. This diverting Zn and Cu pattern was also observed for 8-OHdG and urinary concentrations of these two metals. Overall, MDA and 8-OHdG responses were sensitive for same-day metal exposures in both matrices. We recommend MDA and 8-OHdG in large field studies to account for oxidative stress originating from metals in inhaled particulate matter.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland.
| | - Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Thomas Charreau
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Valérie Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Amélie Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| |
Collapse
|
4
|
Patsiris S, Vaitsis N, Nasoula I, Exarchos T, Vlamos P. Detection and Quantification of Exhaled Breath Condensate and Dyspnea Correlation in Stable COPD: A Proof-of-Concept Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:21-30. [PMID: 37525030 DOI: 10.1007/978-3-031-31978-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND The existing research data are still not able to provide an answer to the issue of the correlation between dyspnea and inflammation in stable chronic obstructive pulmonary disease (COPD). The purpose of this study was to assess the possible relationship between a noninvasive medium called the exhaled breath condensate (EBC) and dyspnea in stable COPD patients. METHODS A group of ten patients (five with and five without COPD) participated. The exhaled breath condensate was analyzed for the first time with a high-resolution device, the Accusizer 780SIS. The particle concentration of the EBC was measured and correlated with tools used for dyspnea assessment and clinical picture (modified Research Council dyspnea scale, mMRC scale; modified Borg dyspnea scale; and COPD Assessment Test, CAT scale). Because of the very small sample size (Ν = 10), bootstrapping method (applying 5000 bootstrap resamples with 95% confidence intervals) was used to derive robust estimates of standard errors and confidence intervals for estimates of means and correlation coefficients. Bootstrap works well in small sample sizes by ensuring the correctness of tests. RESULTS The bootstrap means of EBC, mMRC, Borg, and CAT scales were 223863.43 (95% CI, 151308.58-297603.04), 1.30 (95% CI, 0.70-1.90), 1.55 (95% CI, 0.55-2.80), and 6.70 (95% CI, 4.80-8.60), respectively. The bootstrap Pearson's correlation coefficient (r) of EBC, mMRC, Borg, and CAT scales were 0.889 (95% CI, 0.716-0.979), 0.641 (95% CI, -0.542-0.887), and 0.569 (95% CI, -0.184-0.912), respectively. CONCLUSIONS The effect size of the correlations is significantly high at the 0.01 level (two-tailed) between the EBC and the mMRC scale, less high at the 0.05 level (two-tailed) between the EBC and the Borg dyspnea scale and marginally with the CAT scale, respectively. Studies with larger samples will be needed to obtain more reliable results.
Collapse
Affiliation(s)
- S Patsiris
- General Hospital of Corfu, Corfu, Greece
- Department of Informatics, Ionian University, Corfu, Greece
| | - N Vaitsis
- General Hospital of Corfu, Corfu, Greece
| | - I Nasoula
- General Hospital of Corfu, Corfu, Greece
| | - T Exarchos
- Department of Informatics, Ionian University, Corfu, Greece
| | - P Vlamos
- Department of Informatics, Ionian University, Corfu, Greece
| |
Collapse
|
5
|
Ljungkvist G, Tinnerberg H, Löndahl J, Klang T, Viklund E, Kim JL, Schiöler L, Forsgard N, Olin AC. Exploring a new method for the assessment of metal exposure by analysis of exhaled breath of welders. Int Arch Occup Environ Health 2022; 95:1255-1265. [PMID: 35066624 PMCID: PMC9273541 DOI: 10.1007/s00420-022-01833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 12/04/2022]
Abstract
Purpose Air monitoring has been the accepted exposure assessment of toxic metals from, e.g., welding, but a method characterizing the actual dose delivered to the lungs would be preferable. Sampling of particles in exhaled breath can be used for the biomonitoring of both endogenous biomarkers and markers of exposure. We have explored a new method for the sampling of metals in exhaled breath from the small airways in a study on welders. Methods Our method for particle sampling, Particles in Exhaled Air (PExA®), is based on particle counting and inertial impaction. We applied it on 19 stainless steel welders before and after a workday. In parallel, air monitoring of chromium, manganese and nickel was performed as well as blood sampling after work. Results Despite substantial exposure to welding fumes, we were unable to show any significant change in the metal content of exhaled particles after, compared with before, exposure. However, the significance might be obscured by a substantial analytical background noise, due to metal background in the sampling media and possible contamination during sampling, as an increase in the median metal contents were indicated. Conclusions If efforts to reduce background and contamination are successful, the PExA® method could be an important tool in the investigations of metals in exhaled breath, as the method collects particles from the small airways in contrast to other methods. In this paper, we discuss the discrepancy between our findings and results from studies, using the exhaled breath condensate (EBC) methodology.
Collapse
Affiliation(s)
- Göran Ljungkvist
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden.
| | - Håkan Tinnerberg
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Lund, Sweden
| | - Therese Klang
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | - Emilia Viklund
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | - Jeong-Lim Kim
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| | | | - Anna-Carin Olin
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden
| |
Collapse
|
6
|
Fireman Klein E, Klein I, Ephrat O, Dekel Y, Kessel A, Adir Y. Trajectory of inhaled cadmium ultrafine particles in smokers. BMJ Open Respir Res 2021; 8:8/1/e001000. [PMID: 34845007 PMCID: PMC8633997 DOI: 10.1136/bmjresp-2021-001000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction Tobacco smoking is a significant source of cadmium exposure among smokers. Most of inhaled heavy metals, including cadmium, are attached to ultrafine particles (UFPs) surface. A low inhaled UFP content in exhaled breath condensate reflects a high inflammatory status of airways. Increased respiratory epithelial permeability and translocation to the circulation is the proposed mechanism. UFP recovered from smokers’ airways have high levels of cadmium compared with the airways of non-smokers. Methods Urine was collected from 22 smokers subjects and 43 non-smokers. Samples were analysed for UFP and cadmium content. UFP were measured in urine samples by means of the NanoSight LM20 system (NanoSight, UK). A Niton XL3 X-ray fluorescence spectrometer analyzer (Thermo Fischer Scientific, Germany) quantified heavy metal contents in the urine samples. Results Smokers had elevated UFP and cadmium content in urine compared with non-smokers (4.6 E8/mL and 20.6 ppm vs 3.4 E8/mL and 18.5 ppm, p=0.05 and p=0.05, respectively). Smokers had elevated levels of lead and rubidium compared with non-smokers (8.9 ppm and 27 ppm vs 7.8 ppm and 2 ppm, p=0.05 and p=0.04, respectively) Discussion We suggest that the trajectory of cadmium-related UFP in smokers begins by its inhalation into the airways. The UFPs induce inflammation and oxidative stress in the small airways, are subsequently translocated from the interstitium to the circulation and are finally detected and secreted in urine
Collapse
Affiliation(s)
- Einat Fireman Klein
- B. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel .,Pulmonary Division, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Ilan Klein
- B. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.,Department of Urology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Omer Ephrat
- B. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.,Department of Urology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Yoram Dekel
- B. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.,Department of Urology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Aharon Kessel
- B. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.,Division of Clinical Immunology and Allergy, Bnai Zion Medical center, Haifa, Israel
| | - Yochai Adir
- B. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.,Pulmonary Division, Lady Davis Carmel Medical Center, Haifa, Israel
| |
Collapse
|
7
|
Particle and metal exposure in Parisian subway: Relationship between exposure biomarkers in air, exhaled breath condensate, and urine. Int J Hyg Environ Health 2021; 237:113837. [PMID: 34482160 DOI: 10.1016/j.ijheh.2021.113837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Subway particulate toxicity results from in vitro and in vivo studies diverge and call for applied human research on outcomes from chronic exposures and potential exposure biomarkers. We aimed to (1) quantify airborne particulate matter (PM) concentrations (mass and number) and metal concentrations in exhaled breath condensate (EBC), urine, and PM; (2) investigate their associations (EBC vs. PM vs. urine); and (3) assess the relevance of EBC in biomonitoring. Nine subway workers in three jobs: station agents, locomotive operators and security guards were monitored during their 6-h shifts over two consecutive weeks. Six-hour weighed average mass concentrations expressed as PM10, PM2.5 and their metal concentrations were determined. Urine and EBC samples were collected pre- and post-shift. Ultrafine particle (UFP) number concentrations were quantified in PM and EBC samples. Metal concentrations in urine and EBC were standardized by creatinine and EBC volume, respectively, and log-transformed. Associations were investigated using Pearson correlation and linear mixed regression models, with participant's ID as random effect. PM concentrations were below occupational exposure limits (OEL) and varied significantly between jobs. Locomotive operators had the highest exposure (189 and 137 μg/m3 for PM10 and PM2.5, respectively), while station agents had the highest UFP exposure (1.97 × 104 particles/cm3). Five metals (Al, Fe, Zn, Cu, and Mn) in PM2.5 and three (Al, Fe, and Zn) in PM10 were above the limit of quantification (LOQ). Fe, Cu, Al and Zn were the most abundant by mass fraction in PM. In EBC, the metal concentrations in decreasing order were: Zn > Cu > Ni > Ba > Mn. Security guards had the highest EBC metal concentrations, and in particular Zn and Cu. Urinary metal concentrations in decreasing order were: Si > Zn > Mo > Ti > Cu > Ba ≈ Ni > Co. All urinary metal concentrations from the subway workers were similar to concentrations found in the general population. A statistically significant relationship was found for ultrafine particle number concentrations in PM and in EBC. Zn and Cu concentrations in post-shift EBC were associated with Zn and Cu concentrations in PM10 and with post-shift urinary Zn and Cu concentrations. Therefore, EBC appears a relevant matrix for assessing exposure to UFP in human biomonitoring when inhalation is a primary route of exposure. We found different temporal variation patterns between particle and metal exposures in three matrices (PM, urine, EBC) quantified daily over two full weeks in subway workers. These patterns might be related to metal oxidation, particulates' solubility and size as well as their lung absorption capabilities, which need to be further explored in toxicological research. Further research should also focus on understanding possible influences of low chronic exposures to subway particulates on health in larger cohorts.
Collapse
|
8
|
Połomska J, Bar K, Sozańska B. Exhaled Breath Condensate-A Non-Invasive Approach for Diagnostic Methods in Asthma. J Clin Med 2021; 10:jcm10122697. [PMID: 34207327 PMCID: PMC8235112 DOI: 10.3390/jcm10122697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of asthma has been intensively studied, but its underlying mechanisms such as airway inflammation, control of airway tone, and bronchial reactivity are still not completely explained. There is an urgent need to implement novel, non-invasive diagnostic tools that can help to investigate local airway inflammation and connect the molecular pathways with the broad spectrum of clinical manifestations of asthma. The new biomarkers of different asthma endotypes could be used to confirm diagnosis, predict asthma exacerbations, or evaluate treatment response. In this paper, we briefly describe the characteristics of exhaled breath condensate (EBC) that is considered to be an interesting source of biomarkers of lung disorders. We look at the composition of EBC, some aspects of the collection procedure, the proposed biomarkers for asthma, and its clinical implications. We also indicate the limitations of the method and potential strategies to standardize the procedure of EBC collection and analytical methods.
Collapse
|
9
|
Fireman Klein E, Adir Y, Fireman E, Kessel A. Cigarette-related cadmium and environmental pollution exposure are reflected in airway ultrafine particle content. ERJ Open Res 2020; 6:00361-2019. [PMID: 32963996 PMCID: PMC7487350 DOI: 10.1183/23120541.00361-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/15/2020] [Indexed: 11/05/2022] Open
Abstract
Introduction Particulate matter (PM) and cigarette-related cadmium exposure increases inflammation and smokers' susceptibility to developing lung diseases. The majority of inhaled metals are attached to the surface of ultrafine particles (UFPs). A low inhaled UFP content in exhaled breath condensate (EBC) reflects a high inflammatory status of airways. Methods EBC was collected from 58 COPD patients and 40 healthy smokers and nonsmokers. Participants underwent spirometry, diffusion capacity, EBC and blood sampling. Environmental pollution data were collected from monitoring stations. UFPs were measured in EBC and serum, and cadmium content was quantified. Results Subjects with low UFP concentrations in EBC (<0.18×108·mL-1) had been exposed to higher long-term PM2.5 levels versus subjects with high UFP concentrations in EBC (>0.18×108·mL-1) (21.9 µg·m-3 versus 17.4 µg·m-3, p≤0.001). Long-term PM2.5 exposure levels correlated negatively with UFP concentrations in EBC and positively with UFP concentrations in serum (r=-0.54, p≤0.001 and r=0.23, p=0.04, respectively). Healthy smokers had higher cadmium levels in EBC versus healthy nonsmokers and COPD patients (25.2 ppm versus 23.7 ppm and 23.3 ppm, p=0.02 and p=0.002, respectively). Subjects with low UFP concentrations in EBC also had low cadmium levels in EBC versus subjects with high UFP levels (22.8 ppm versus 24.2 ppm, p=0.004). Conclusions Low UFP concentration in EBC is an indicator of high-level PM exposure. High cadmium levels in EBC among smokers and the association between cadmium and UFP content in EBC among COPD patients indicate cadmium lung toxicity.
Collapse
Affiliation(s)
- Einat Fireman Klein
- Pulmonary Division, Carmel Medical Center, Haifa, Israel.,Dept of Internal Medicine B, Bnai-Zion Medical Center, Haifa, Israel.,Affiliated with the Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Yochai Adir
- Pulmonary Division, Carmel Medical Center, Haifa, Israel.,Affiliated with the Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - Elizabeth Fireman
- The Institute of Pulmonary Diseases, National Laboratory Service for ILD, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Dept of Occupational and Environmental Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aharon Kessel
- Division of Allergy and Clinical Immunology, Bnai-Zion Medical Center, Haifa, Israel.,Affiliated with the Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The present work represents an update of the review published in this journal by Corradi et al., regarding the use of exhaled breath condensate (EBC) to investigate occupational lung diseases. RECENT FINDINGS The relevant literature was searched in the Medline database, assessed through PubMed using key terms such as 'breath AND condensate AND occupational'. Eleven pertinent publications were retrieved between January 2018 and October 2019. One article only was related to occupational allergy, and the conclusion is that EBC hydrogen peroxide is not an useful marker in laboratory animal allergy. The biomarkers of exposure most often assessed with EBC are metals. However, it is controversial whether this approach has any advantage over the conventional environmental monitoring. The biomarkers of effect studied by the majority of investigations were those related to oxidative stress. They appear consistently elevated upon occupational exposures to various agents, including welding fumes, crystalline silica, nanomaterials and chemicals. SUMMARY Although EBC represent a suitable tool to sample airway lining fluid in a noninvasive manner, it remains a niche approach to the investigation of occupational diseases. The confounding influence of EBC dilution should be better addressed in the expression of the results.
Collapse
|
11
|
Pleil JD, Wallace MAG, McCord J. Beyond monoisotopic accurate mass spectrometry: ancillary techniques for identifying unknown features in non-targeted discovery analysis. J Breath Res 2018; 13:012001. [PMID: 30433878 PMCID: PMC6394216 DOI: 10.1088/1752-7163/aae8c3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High-resolution mass spectrometry (HR-MS) is an important tool for performing non-targeted analysis for investigating complex organic mixtures in human or environmental media. This perspective demonstrates HR-MS compound identification strategies using atom counting, isotope ratios, and fragmentation pattern analysis based on ‘exact’ or ‘accurate’ mass, which allows analytical distinction among mass fragments with the same integer mass, but with different atomic constituents of the original molecules. Herein, HR-MS technology is shown to narrow down the identity of unknown compounds for specific examples, and ultimately inform future analyses when these compounds reoccur. Although HR-MS is important for all biological media, this is particularly critical for new methods and instrumentation invoking exhaled breath condensate, particles, and aerosols. In contrast to standard breath gas-phase analyses where 1 mass unit (Da) resolution is generally sufficient, the condensed phase breath media are particularly vulnerable to errors in compound identification because the larger organic non-volatile molecules can form identical integer mass fragments from different atomic constituents which then require high-resolution mass analyses to tell them apart.
Collapse
|