1
|
Seifi M, Motamed S, Rouientan A, Bohlouli M. The Promise of Regenerative Medicine in the Reconstruction of Auricular Cartilage Deformities. ASAIO J 2023; 69:967-976. [PMID: 37578994 DOI: 10.1097/mat.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
There are many physiologic and psychologic challenges associated with ear cartilage deformities which are incredibly distasteful to patients, particularly children. The development of regenerative medicine (RM) sciences has opened up a new window for the reconstruction of auricular cartilage because it allows the creation of a structure similar to the auricular in appearance and function. As part of this review, we discuss the role that each RM tool, including tissue engineering, cells, and biomolecules, plays in developing engineered auricular tissue. In previous studies, it was shown that the simultaneous use of natural and synthetic biomaterials as well as three-dimensional printing techniques could improve the biological and mechanical properties of this tissue. Another critical issue is using stem cells and differentiated cartilage cells to produce tissue-specific cellular structures and extracellular matrix. Also, the importance of choosing a suitable animal model in terms of handling and care facilities, physiologic similarities to humans, and breed uniformity in the preclinical assessments have been highlighted. Then, the clinical trials registered on the clinicaltrials.gov website, and the commercialized product, called AuriNovo, have been comprehensively explained. Overall, it is important to provide engineered auricular cartilage structures with acceptable safety and efficacy compared with standard methods, autologous cartilage transplantation, and prosthetic reconstruction in RM.
Collapse
Affiliation(s)
- Mehrdad Seifi
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of General Surgery, School of Medicine, Kermanshah University of Medical Sciences, Tehran, Iran
| | - Sadrollah Motamed
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Rouientan
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Plath AMS, Huber S, Alfarano SR, Abbott DF, Hu M, Mougel V, Isa L, Ferguson SJ. Co-Electrospun Poly(ε-Caprolactone)/Zein Articular Cartilage Scaffolds. Bioengineering (Basel) 2023; 10:771. [PMID: 37508797 PMCID: PMC10376865 DOI: 10.3390/bioengineering10070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis scaffold-based grafts fail because of poor integration with the surrounding soft tissue and inadequate tribological properties. To circumvent this, we propose electrospun poly(ε-caprolactone)/zein-based scaffolds owing to their biomimetic capabilities. The scaffold surfaces were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, static water contact angles, and profilometry. Scaffold biocompatibility properties were assessed by measuring protein adsorption (Bicinchoninic Acid Assay), cell spreading (stained F-actin), and metabolic activity (PrestoBlue™ Cell Viability Reagent) of primary bovine chondrocytes. The data show that zein surface segregation in the membranes not only completely changed the hydrophobic behavior of the materials, but also increased the cell yield and metabolic activity on the scaffolds. The surface segregation is verified by the infrared peak at 1658 cm-1, along with the presence and increase in N1 content in the survey XPS. This observation could explain the decrease in the water contact angles from 125° to approximately 60° in zein-comprised materials and the decrease in the protein adsorption of both bovine serum albumin and synovial fluid by half. Surface nano roughness in the PCL/zein samples additionally benefited the radial spreading of bovine chondrocytes. This study showed that co-electrospun PCL/zein scaffolds have promising surface and biocompatibility properties for use in articular-tissue-engineering applications.
Collapse
Affiliation(s)
| | - Stephanie Huber
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Serena R Alfarano
- Laboratory of Food and Soft Materials, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel F Abbott
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Minghan Hu
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Victor Mougel
- Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, ETH Zurich, 8093 Zurich, Switzerland
| | - Stephen J Ferguson
- Laboratory for Orthopaedic Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
4
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Tang P, Song P, Peng Z, Zhang B, Gui X, Wang Y, Liao X, Chen Z, Zhang Z, Fan Y, Li Z, Cen Y, Zhou C. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112423. [PMID: 34702546 DOI: 10.1016/j.msec.2021.112423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023]
Abstract
The current gold standard for auricular reconstruction after microtia or ear trauma is the autologous cartilage graft with an autologous skin flap overlay. Harvesting autologous cartilage requires an additional surgery that may result in donor area complications. In addition, autologous cartilage is limited and the auricular reconstruction requires complex sculpting, which requires excellent clinical skill and is very time consuming. This work explores the use of 3D printing technology to fabricate bioactive artificial auricular cartilage using chondrocyte-laden gelatin methacrylate (GelMA) and polylactic acid (PLA) for auricle reconstruction. In this study, chondrocytes were loaded within GelMA hydrogel and combined with the 3D-printed PLA scaffolds to biomimetic the biological mechanical properties and personalized shape. The printing accuracy personalized scaffolds, biomechanics and chondrocyte viability and biofunction of artificial auricle have been studied. It was found that chondrocytes were fixed in the PLA auricle scaffolds via GelMA hydrogels and exhibited good proliferative properties and cellular activity. In addition, new chondrocytes and chondrogenic matrix, as well as type II collagen were observed after 8 weeks of implantation. At the same time, the transplanted auricle complex kept full and delicate auricle shape. This study demonstrates the potential of using 3D printing technology to construct in vitro living auricle tissue. It shows a great prospect in the clinical application of auricle regeneration.
Collapse
Affiliation(s)
- Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
7
|
Girão AF, Semitela Â, Pereira AL, Completo A, Marques PAAP. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:69. [PMID: 32705408 DOI: 10.1007/s10856-020-06407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the engineering of biomimetic cellular microenvironments has emerged as a top priority for regenerative medicine, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical challenges due to the notorious absence of cost- and time-efficient microfabrication techniques capable of building 3D fibrous scaffolds with precise anisotropic properties. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a hierarchical system comprising both polycaprolactone (PCL) fibres and polyethylene glycol sacrificial microparticles. After porogen leaching, the bi-layered PCL scaffold was capable of presenting not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity proficient to encourage an enhanced cell response. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network during 21 days of culture. Additionally, likewise the hierarchical relationship between chondrocytes and their extracellular matrix, the reported PCL scaffold was able to induce depth-dependent cell-material interactions responsible for promoting a spatial modulation of the morphology, alignment and density of the cells in vitro.
Collapse
Affiliation(s)
- André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ângela Semitela
- TEMA, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andreia Leal Pereira
- TEMA, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - António Completo
- TEMA, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- TEMA, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Liu Q, Wu Q, Xie S, Zhao L, Chen Z, Ding Z, Li X. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors. NANOTECHNOLOGY 2019; 30:375301. [PMID: 31195376 DOI: 10.1088/1361-6528/ab29ac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning is becoming an efficient method to produce fibers in the submicron range, but the bending instability of conventional electrospinning system (CES) brings limitations in the distinctive deposition of electrospun fibers. Herein, we proposed a strategy to update the electrospinning system through establishment of a uniform electric field, realizing 3D printing of electrospun fibers with well-controlled, low-cost, and template-free manners. The uniform field electrospinning (UFES) apparatus is configured by inserting the electrospinning nozzle into the center of an aided metal plate. The electric field simulation of UFES indicates a uniform distribution between the aided metal plate and the collector, while a diverging and weaker electric field is produced by CES. The collector of UFES is mounted on a translation stage, which moves along x and y axes under computer control. The distinctive deposition of electrospun fibers produces fibrous mats with rectangular patterns of different grid sizes, and butterfly and TaiJi figures with high resolutions are directly written by UFES. The layer-by-layer deposition of electrospun fibers under UFES produces microscale Mongolian yurts with distinct hollow structure. Fibrous blocks with an average width of 120 μm and height of 630 μm were printed by UFES from conductive polymer composites and constructed into strain sensors. The electric current strength of fibrous microblocks changes sharply in response to the finger bending and release, indicating the capability to monitor human motions. Thus, this study demonstrates that the UFES becomes an easy-handling strategy for 3D printing of electrospun fibers to create complex geometries.
Collapse
|
9
|
Trevisol TC, Langbehn RK, Battiston S, Immich APS. Nonwoven membranes for tissue engineering: an overview of cartilage, epithelium, and bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1026-1049. [PMID: 31106705 DOI: 10.1080/09205063.2019.1620592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scaffold-type biomaterials are crucial for application in tissue engineering. Among them, the use of a nonwoven scaffold has grown in recent years and has been widely investigated for the regeneration of different types of tissues. Several polymers, whether they are synthetic, biopolymers or both, have been used to produce a scaffold that can mimic the natural tissue to which it will be applied to. The scaffolds used in tissue engineering must be biocompatible and allow cell adhesion and proliferation to be applied in tissue engineering. In addition, the scaffolds should maintain the mechanical properties and architecture of the desired tissue. Nonwoven fabrics have produced good results and are more extensively applied for the regeneration of cartilage, epithelial and bone tissues. Recent advances in tissue engineering have shown promising results, however, no ideal material or standardization parameters and characteristics of the materials were obtained. The present review provides an overview of the application of nonwoven scaffolds, including the main results obtained regarding the properties of the biomaterials and their applications in vitro and in vivo, focusing on the cartilaginous, the epithelium, and bone tissue regeneration.
Collapse
Affiliation(s)
- Thalles Canton Trevisol
- a Department of Chemical and Food Engineering, Technological Center , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Rayane Kunert Langbehn
- a Department of Chemical and Food Engineering, Technological Center , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Suellen Battiston
- a Department of Chemical and Food Engineering, Technological Center , Federal University of Santa Catarina , Florianópolis , Brazil
| | - Ana Paula Serafini Immich
- b Department of Textile Engineering, Blumenau campus , Federal University of Santa Catarina , Blumenau , Brazil
| |
Collapse
|
10
|
Jiménez G, Venkateswaran S, López-Ruiz E, Perán M, Pernagallo S, Díaz-Monchón JJ, Canadas RF, Antich C, Oliveira JM, Callanan A, Walllace R, Reis RL, Montañez E, Carrillo E, Bradley M, Marchal JA. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomater 2019; 90:146-156. [PMID: 30910621 DOI: 10.1016/j.actbio.2019.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022]
Abstract
Cartilage degeneration or damage treatment is still a challenge, but, tissue engineering strategies, which combine cell therapy strategies, which combine cell therapy and scaffolds, and have emerged as a promising new approach. In this regard, polyurethanes and polyacrylates polymers have been shown to have clinical potential to treat osteochondral injuries. Here, we have used polymer microarrays technology to screen 380 different polyurethanes and polyacrylates polymers. The top polymers with potential to maintain chondrocyte viability were selected, with scale-up studies performed to evaluate their ability to support chondrocyte proliferation during long-term culture, while maintaining their characteristic phenotype. Among the selected polymers, poly (methylmethacrylate-co-methacrylic acid), showed the highest level of chondrogenic potential and was used to create a 3D hydrogel. Ultrastructural morphology, microstructure and mechanical testing of this novel hydrogel revealed robust characteristics to support chondrocyte growth. Furthermore, in vitro and in vivo biological assays demonstrated that chondrocytes cultured on the hydrogel had the capacity to produce extracellular matrix similar to hyaline cartilage, as shown by increased expression of collagen type II, aggrecan and Sox9, and the reduced expression of the fibrotic marker's collagen type I. In conclusion, hydrogels generated from poly (methylmethacrylate-co-methacrylic acid) created the appropriate niche for chondrocyte growth and phenotype maintenance and might be an optimal candidate for cartilage tissue-engineering applications. SIGNIFICANCE STATEMENT: Articular cartilage has limited self-repair ability due to its avascular nature, therefore tissue engineering strategies have emerged as a promising new approach. Synthetic polymers displaygreat potential and are widely used in the clinical setting. In our study, using the polymer microarray technique a novel type of synthetic polyacrylate was identified, that was converted into hydrogels for articular cartilage regeneration studies. The hydrogel based on poly (methylmethacrylate-co-methacrylic acid-co-PEG-diacrylate) had a controlable ultrastructural morphology, microstructure (porosity) and mechanical properties (stiffness) appropriate for cartilage engineering. Our hydrogel created the optimal niche for chondrocyte growth and phenotype maintenance for long-term culture, producing a hyaline-like cartilage extracellular matrix. We propose that this novel polyacrylate hydrogel could be an appropriate support to help in the treatment efficient cartilage regeneration.
Collapse
Affiliation(s)
- Gema Jiménez
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Seshasailam Venkateswaran
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Macarena Perán
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Salvatore Pernagallo
- DestiNAGenomica S.L. Parque Tecnológico Ciencias de la Salud, Avenida de la Innovación 1, Edificio Business Innovation Centre, 18016 Granada, Spain
| | - Juan J Díaz-Monchón
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Raphael F Canadas
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Joaquím M Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, EH93JL Edinburgh, UK
| | - Robert Walllace
- Department of Orthopaedics, The University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Rui L Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Elvira Montañez
- Department of Orthopedic Surgery and Traumatology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Esmeralda Carrillo
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK.
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| |
Collapse
|
11
|
|
12
|
Chiu LLY, Weber JF, Waldman SD. Engineering of scaffold-free tri-layered auricular tissues for external ear reconstruction. Laryngoscope 2019; 129:E272-E283. [DOI: 10.1002/lary.27823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Loraine L. Y. Chiu
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Joanna F. Weber
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| |
Collapse
|
13
|
Baena JM, Jiménez G, López-Ruiz E, Antich C, Griñán-Lisón C, Perán M, Gálvez-Martín P, Marchal JA. Volume-by-volume bioprinting of chondrocytes-alginate bioinks in high temperature thermoplastic scaffolds for cartilage regeneration. Exp Biol Med (Maywood) 2019; 244:13-21. [PMID: 30630373 DOI: 10.1177/1535370218821128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPACT STATEMENT 3D bioprinting represents a novel advance in the area of regenerative biomedicine and tissue engineering for the treatment of different pathologies, among which are those related to cartilage. Currently, the use of different thermoplastic polymers, such as PLA or PCL, for bioprinting processes presents an important limitation: the high temperatures that are required for extrusion affect the cell viability and the final characteristics of the construct. In this work, we present a novel bioprinting process called volume-by-volume (VbV) that allows us to preserve cell viability after bioprinting. This procedure allows cell injection at a safe thermoplastic temperature, and also allows the cells to be deposited in the desired areas of the construct, without the limitations caused by high temperatures. The VbV process could make it easier to bring 3D bioprinting into the clinic, allowing the generation of tissue constructs with polymers that are currently approved for clinical use.
Collapse
Affiliation(s)
- J M Baena
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,*These authors contributed equally to this work
| | - G Jiménez
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain.,3 Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain.,*These authors contributed equally to this work
| | - E López-Ruiz
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,4 Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - C Antich
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain.,3 Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - C Griñán-Lisón
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain
| | - M Perán
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,4 Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - P Gálvez-Martín
- 5 Advanced Therapies Area, Pharmascience Division, Bioibérica S.A.U. E-08029, Barcelona, Spain
| | - J A Marchal
- 1 Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.,2 Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain.,3 Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| |
Collapse
|
14
|
Yen CM, Shen CC, Yang YC, Liu BS, Lee HT, Sheu ML, Tsai MH, Cheng WY. Novel electrospun poly(ε-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury. Neural Regen Res 2019; 14:1617-1625. [PMID: 31089062 PMCID: PMC6557087 DOI: 10.4103/1673-5374.255997] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies have shown the potential of artificially synthesized conduits in the repair of peripheral nerve injury. Natural biopolymers have received much attention because of their biocompatibility. To investigate the effects of novel electrospun absorbable poly(ε-caprolactone)/type I collagen nanofiber conduits (biopolymer nanofiber conduits) on the repair of peripheral nerve injury, we bridged 10-mm-long sciatic nerve defects with electrospun absorbable biopolymer nanofiber conduits, poly(ε-caprolactone) or silicone conduits in Sprague-Dawley rats. Rat neurologica1 function was weekly evaluated using sciatic function index within 8 weeks after repair. Eight weeks after repair, sciatic nerve myelin sheaths and axon morphology were observed by osmium tetroxide staining, hematoxylin-eosin staining, and transmission electron microscopy. S-100 (Schwann cell marker) and CD4 (inflammatory marker) immunoreactivities in sciatic nerve were detected by immunohistochemistry. In rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits, no serious inflammatory reactions were observed in rat hind limbs, the morphology of myelin sheaths in the injured sciatic nerve was close to normal. CD4 immunoreactivity was obviously weaker in rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits than in those subjected to repair with poly(ε-caprolactone) or silicone. Rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits tended to have greater sciatic nerve function recovery than those receiving poly(ε-caprolactone) or silicone repair. These results suggest that electrospun absorbable poly(ε-caprolactone)/type I collagen nanofiber conduits have the potential of repairing sciatic nerve defects and exhibit good biocompatibility. All experimental procedures were approved by Institutional Animal Care and Use Committee of Taichung Veteran General Hospital, Taiwan, China (La-1031218) on October 2, 2014.
Collapse
Affiliation(s)
- Chun-Ming Yen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, China
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital; Department of Physical Therapy, Hungkuang University; Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, China
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, China
| | - Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, China
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, China
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University; Department of Medical Research, Taichung Veterans General Hospital; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, China
| | - Meng-Hsiun Tsai
- Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, China
| | - Wen-Yu Cheng
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital; Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, China
| |
Collapse
|
15
|
Kishan AP, Cosgriff-Hernandez EM. Recent advancements in electrospinning design for tissue engineering applications: A review. J Biomed Mater Res A 2017; 105:2892-2905. [DOI: 10.1002/jbm.a.36124] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Alysha P. Kishan
- Department of Biomedical Engineering; Texas A&M University, 5045 Emerging Technologies Building; 3120 TAMU College Station Texas 77843-3120
| | - Elizabeth M. Cosgriff-Hernandez
- Department of Biomedical Engineering; Texas A&M University, 5045 Emerging Technologies Building; 3120 TAMU College Station Texas 77843-3120
| |
Collapse
|
16
|
He J, Xu F, Dong R, Guo B, Li D. Electrohydrodynamic 3D printing of microscale poly (
ε
-caprolactone) scaffolds with multi-walled carbon nanotubes. Biofabrication 2017; 9:015007. [DOI: 10.1088/1758-5090/aa53bc] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|