1
|
Mukundan LM, Rajasekaran R, Das S, Seesala VS, Ganguly D, Kumar N, Dhara S, Chattopadhyay S. Tailoring of agarose hydrogel to modulate its 3D bioprintability and mechanical properties for stem cell mediated bone tissue engineering. Int J Biol Macromol 2025; 309:142795. [PMID: 40185455 DOI: 10.1016/j.ijbiomac.2025.142795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The intense gelling characteristics and viscosity constraints of agarose limit its utility as a sole ink material in 3D printing. This study presents the development of agarose bioink designed for cell-laden printing, featuring controlled printability, exceptional stiffness, and cell-responsiveness achieved via the insertion of photochemically reactive methacrylate groups. This chemical modification transforms the dense agarose network into a thinner structure, effecting a gentle thermogelling property that enhances the printability and facile cell encapsulation. Herein we examine the interplay between the degree of substitution and concentration variations to determine the optimal hydrogel composition. The best bioink composition possessed a lower shear modulus (storage modulus G' = 11.6 Pa) at 37 °C, assuring better bioprintability, while it possessed a Young's modulus of 1.4 ± 0.10 MPa in the crosslinked state, which is the highest reported in the natural single-matrix hydrogel systems. Studies with mesenchymal stem cells (MSC) confirmed that it is a good cell encapsulation matrix, achieving 111 % cell viability at 72 h. The bioprinted constructs promoted the osteogenic differentiation of MSC, as evidenced by mineralization and secretion of bone-related matrix. The gene expression analysis indicated that osteogenic marker expressions exhibited at least a two-fold increase on day 14 relative to the control group.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Samir Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - V S Seesala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Debabrata Ganguly
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Nikhil Kumar
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Santanu Chattopadhyay
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
2
|
Aghajani M, Garshasbi HR, Naghib SM, Mozafari MR. 3D Printing of Hydrogel Polysaccharides for Biomedical Applications: A Review. Biomedicines 2025; 13:731. [PMID: 40149707 PMCID: PMC11940176 DOI: 10.3390/biomedicines13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Additive manufacturing, also known as 3D printing, is becoming more and more popular because of its wide range of materials and flexibility in design. Layer by layer, 3D complex structures can be generated by the revolutionary computer-aided process known as 3D bioprinting. It is particularly crucial for youngsters and elderly patients and is a useful tool for tailored pharmaceutical therapy. A lot of research has been carried out recently on the use of polysaccharides as matrices for tissue engineering and medication delivery. Still, there is a great need to create affordable, sustainable bioink materials with high-quality mechanical, viscoelastic, and thermal properties as well as biocompatibility and biodegradability. The primary biological substances (biopolymers) chosen for the bioink formulation are proteins and polysaccharides, among the several resources utilized for the creation of such structures. These naturally occurring biomaterials give macromolecular structure and mechanical qualities (biomimicry), are generally compatible with tissues and cells (biocompatibility), and are harmonious with biological digesting processes (biodegradability). However, the primary difficulty with the cell-laden printing technique (bioprinting) is the rheological characteristics of these natural-based bioinks. Polysaccharides are widely used because they are abundant and reasonably priced natural polymers. Additionally, they serve as excipients in formulations for pharmaceuticals, nutraceuticals, and cosmetics. The remarkable benefits of biological polysaccharides-biocompatibility, biodegradability, safety, non-immunogenicity, and absence of secondary pollution-make them ideal 3D printing substrates. The purpose of this publication is to examine recent developments and challenges related to the 3D printing of stimuli-responsive polysaccharides for site-specific medication administration and tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aghajani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
3
|
Li J, Chen Y, Wei M, Tang Y, Zhou L, Quan X, Ma R, Hou N. 3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate. J Biomater Appl 2025; 39:891-907. [PMID: 39529401 DOI: 10.1177/08853282241300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Due to the absence of blood vessels, cartilage exhibits extremely limited self-repair capacity. Currently, repairing laryngeal cartilage defects, resulting from conditions such as laryngeal tumors, injury, and congenital structural abnormalities, remains a significant challenge in the Department of Otolaryngology, Head and Neck Surgery. Previous research has often focused on enhancing the mechanical properties of synthetic materials. However, their low biological activity and weak cell adhesion necessitate compensatory measures. This study aims to capitalize on the advantages of natural materials in cartilage tissue engineering. Sodium alginate, gelatin, tannic acid, and calcium chloride were utilized to prepare bioinks through cross-linking for application in 3D printing cartilage scaffolds. Bone marrow mesenchymal stem cells with multidirectional differentiation potential were chosen as seed cells, with appropriate growth factors incorporated to promote their differentiation into cartilage during in vitro culture. The scaffold laden cells was subsequently implanted into rabbit thyroid cartilage plate defects at the appropriate time. HE staining, toluidine blue staining, Masson staining, and collagen type II staining were employed to assess cartilage defect repair at 4, 8, and 12 weeks, respectively. Results demonstrated that scaffolds made from natural materials could emulate the mechanical properties of fresh cartilage with commendable biocompatibility. Stained sections further confirmed the efficacy of the composite hydrogel scaffolds identified in this study in promoting rabbit thyroid cartilage plate restoration. In summary, this study successfully fabricated a natural material scaffold for rabbit laryngeal cartilage tissue engineering, thereby furnishing a new idea and experience for the clinical application of laryngeal cartilage defect reconstruction.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Taikang Hospital, Chengdu, China
| | - Yuelin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Mengru Wei
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Ying Tang
- Department of Pathology, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Li Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Xiaoxuan Quan
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Taikang Hospital, Chengdu, China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, China
| | - Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Taikang Hospital, Chengdu, China
| |
Collapse
|
4
|
Heydarigoojani M, Farokhi M, Simorgh S. Bioinks for engineering gradient-based osteochondral and meniscal tissue substitutes: a review. Biofabrication 2025; 17:022005. [PMID: 39889350 DOI: 10.1088/1758-5090/adb0f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
Gradient tissues are anisotropic structure with gradual transition in structural and biological properties. The gradient in structural, mechanical and biochemical properties of osteochondral and meniscal tissues play a major role in defining tissue functions. Designing tissue substitutes that replicate these gradient properties is crucial to facilitate regeneration of tissue functions following injuries. Advanced manufacturing technologies such as 3D bioprinting hold great potentials for recreating gradient nature of tissues through using zone-specific bioinks and layer-by-layer deposition of spatially defined biomaterials, cell types and bioactive cues. This review highlighted the gradients in osteochondral and meniscal tissues in detail, elaborated on individual components of the bioink, and reviewed recent advancements in 3D gradient-based osteochondral and meniscal tissue substitutes. Finally, key challenges of the field and future perspectives for developing gradient-based tissue substitutes were discussed. The insights from these advances can broaden the possibilities for engineering gradient tissues.
Collapse
Affiliation(s)
| | - Maryam Farokhi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Vijayan A, Vishnu J, A R, Shankar B, Sambhudevan S. A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds. Biomater Sci 2025; 13:913-945. [PMID: 39808066 DOI: 10.1039/d4bm00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications. The incorporation of dopants and additives during synthesis is explored for optimizing the mechanical, biological, and osteogenic characteristics of HA-based materials. Moreover, the evolution of AM technologies from conventional 3D printing to advanced 4D and 5D printing is detailed, covering material selection, process parameters, and post-processing strategies vital for fabricating intricate, patient-specific scaffolds, implants, and drug delivery systems utilizing HA. The review underscores the importance of achieving precise control over microstructure and porosity to mimic native tissue architectures accurately. Furthermore, emerging applications of HA-based constructs in tissue engineering, regenerative medicine, drug delivery, and orthopedic implants are discussed, highlighting their potential to address critical clinical needs. Despite the glimmer of hope provided by the advent and progress of such AM capabilities, several aspects need to be addressed to develop efficient HA-based bone substitutes, which are explored in detail in this review.
Collapse
Affiliation(s)
- Ananthika Vijayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Jithin Vishnu
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Revathi A
- NextGen Precision Health, University of Missouri, Columbia, USA
| | - Balakrishnan Shankar
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Center for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
6
|
Chand R, Janarthanan G, Elkhoury K, Vijayavenkataraman S. Digital light processing 3D bioprinting of biomimetic corneal stroma equivalent using gelatin methacryloyl and oxidized carboxymethylcellulose interpenetrating network hydrogel. Biofabrication 2025; 17:025011. [PMID: 39819884 DOI: 10.1088/1758-5090/adab27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties. Using digital light processing (DLP) bioprinting, with tartrazine as a photoabsorber, we successfully biofabricated three-dimensional constructs with improved shape fidelity, high resolution, and excellent reproducibility. The bioprinted constructs mimic the native corneal stroma's curvature, with central and peripheral thicknesses of 478.9 ± 56.5µm and 864.0 ± 79.3µm, respectively. The dual crosslinking strategy, which combines Schiff base reaction and photocrosslinking, showed an improved compressive modulus (106.3 ± 7.7 kPa) that closely matched that of native tissues (115.3 ± 13.6 kPa), without relying on synthetic polymers, toxic crosslinkers, or nanoparticles. Importantly, the optical transparency of tartrazine-containing corneal constructs was comparable to the native cornea following phosphate-buffered saline washing. Morphological analyses using scanning electron microscopy confirmed the improved porosity, interconnected network, and structural integrity of the GelMA-OxiCMC hydrogel, facilitating better nutrient diffusion and cell viability.In vitrobiological assays demonstrated high cell viability (>93%) and desirable proliferation of human corneal keratocytes within the biofabricated constructs. Our findings indicate that the GelMA-OxiCMC hydrogel system for DLP bioprinting presents a promising alternative for corneal tissue engineering, offering a potential solution to the donor cornea shortage and advancing regenerative medicine for corneal repair.
Collapse
Affiliation(s)
- Rashik Chand
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| |
Collapse
|
7
|
Budharaju H, Sundaramurthi D, Sethuraman S. Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:8. [PMID: 39804392 PMCID: PMC11729100 DOI: 10.1007/s10856-024-06855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs. Although this method has shown potential in the fabrication of cryopreservable tissue-engineered products, the impact of the CPAs on the viscoelastic behavior and printability of the bioinks at cryo conditions remains unexplored. In this study, we have evaluated the influence of CPAs such as glycerol and dimethyl sulfoxide (DMSO) on the rheological properties of pre-crosslinked alginate bioinks for cryoprinting applications. DMSO-incorporated bioinks showed a reduction in viscosity and yield stress, while the addition of glycerol improved both the properties due to interactions with the calcium chloride used for pre-crosslinking. Further, tube inversion and printability experiments were performed to identify suitable concentrations and cryobioprinting conditions for bioinks containing CPAs & pre-crosslinked with CaCl2. Finally, based on the printability analysis & cell recovery results, 10% glycerol was used for cryobioprinting and preservation of cell-laden constructs at -80 °C and the viability of cells within the printed structures were evaluated after recovery. Cell viability results indicate that the addition of 10% glycerol to the pre-crosslinked bioink significantly improved cell viability compared to bioinks without CPAs, confirming the suitability of the developed bioink combination to fabricate tissue constructs for on-demand applications.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.
| |
Collapse
|
8
|
Egorova VV, Lavrenteva MP, Makhaeva LN, Petrova EA, Ushakova AA, Bozhokin MS, Krivoshapkina EF. Fibrillar Hydrogel Inducing Cell Mechanotransduction for Tissue Engineering. Biomacromolecules 2024; 25:7674-7684. [PMID: 39526968 DOI: 10.1021/acs.biomac.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
One of the key strategies for tissue engineering is to design multifunctional bioinks that balance printability with cytocompatibility. Here, we describe fibrillar hydrogels produced by Schiff base formation between B-type gelatin and oxidized sodium alginate, followed by the incorporation of type I collagen, yielding a new gel (MyoColl). The resulting hydrogel exhibits a temperature- and mass-ratio-dependent sol-gel transition, showing variability of hydrogel properties depending on the component ratio. MyoColl composition provides a convenient platform for biofabrication in terms of shear thinning, yielding, Young's modulus, and shape accuracy. Metabolic activity tests and fluorescent microscopy of 2D hydrogel-based mouse C2C12 myoblast cell culture show significant cytocompatibility of the developed carriers. In addition, primary signs of cell mechanotransduction and myofilament formation of 3D printed MyoColl-based cell cultures were detected and described. Due to these promising results, the described hydrogel composition has shown itself as a convenient platform for muscle tissue engineering.
Collapse
Affiliation(s)
- Viktoriia V Egorova
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mariia P Lavrenteva
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Liubov N Makhaeva
- St. Petersburg Governor's Physics and Mathematics Lyceum N 30, Saint Petersburg 199004, Russian Federation
| | - Ekaterina A Petrova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Alina A Ushakova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mikhail S Bozhokin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After R.R. Vredena, Saint Petersburg 195427, Russian Federation
- Cytology Institute of Russian Academy of Sciences, Saint Petersburg 194064, Russian Federation
| | | |
Collapse
|
9
|
Kafili G, Tamjid E, Simchi A. The impact of mechanical tuning on the printability of decellularized amniotic membrane bioinks for cell-laden bioprinting of soft tissue constructs. Sci Rep 2024; 14:29697. [PMID: 39613811 DOI: 10.1038/s41598-024-80973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Decellularized extracellular matrix (dECM) bioinks hold significant potential in the 3D bioprinting of tissue-engineered constructs (TECs). While 3D bioprinting allows for the creation of custom-designed TECs, the development of bioinks based solely on dAM, without the inclusion of supporting agents or chemical modifications, remains underexplored. In this study, we present the concentration-dependent printability and rheological properties of dAM bioinks, along with an analysis of their in vitro cellular responses. Our findings demonstrate that increasing dAM concentrations, within the range of 1 to 3% w/v, enhances the mechanical moduli of the bioinks, enabling the 3D printing of flat structures with superior shape fidelity. In vitro assays reveal high cell viability across all dAM bioink formulations; however, at 3% w/v, the bioink tends to impede fibroblast proliferation, resulting in round cell morphology. We propose that bioinks containing 2% w/v dAM strike an optimal balance, providing fine-resolved features and a supportive microenvironment for fibroblasts, promoting elongated spindle-like morphology and enhanced proliferation. These results underscore the importance of dAM concentration in regulating the properties and performance of bioinks, particularly regarding cell viability and morphology, for the successful 3D bioprinting of soft tissues.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Advanced Ceramics, University of Bremen, 28359, Bremen, Germany
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-11155, Tehran, Iran.
- Center for BioScience and Technology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), 28359, Bremen, Germany.
| |
Collapse
|
10
|
Pragnere S, Essayan L, El-Kholti N, Petiot E, Pailler-Mattei C. In vitrobioprinted 3D model enhancing osteoblast-to-osteocyte differentiation. Biofabrication 2024; 17:015021. [PMID: 39533747 DOI: 10.1088/1758-5090/ad8ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In vitrobone models are pivotal for understanding tissue behavior and cellular responses, particularly in unravelling certain pathologies' mechanisms and assessing the impact of new therapeutic interventions. A desirablein vitrobone model should incorporate primary human cells within a 3D environment that mimics the mechanical properties characteristics of osteoid and faithfully replicate all stages of osteogenic differentiation from osteoblasts to osteocytes. However, to date, no bio-printed model using primary osteoblasts has demonstrated the expression of osteocytic protein markers. This study aimed to develop bio-printedin vitromodel that accurately captures the differentiation process of human primary osteoblasts into osteocytes. Given the considerable impact of hydrogel stiffness and relaxation behavior on osteoblast activity, we employed three distinct cross-linking solutions to fabricate hydrogels. These hydrogels were designed to exhibit either similar elastic behavior with different elastic moduli, or similar elastic moduli with varying relaxation behavior. These hydrogels, composed of gelatin (5% w/v), alginate (1%w/v) and fibrinogen (2%w/v), were designed to be compatible with micro-extrusion bioprinting and proliferative. The modulation of their biomechanical properties, including stiffness and viscoelastic behavior, was achieved by applying various concentrations of cross-linkers targeting both gelatin covalent bonding (transglutaminase) and alginate chains' ionic cross-linking (calcium). Among the conditions tested, the hydrogel with a low elastic modulus of 8 kPa and a viscoelastic behavior over time exhibited promising outcomes regarding osteoblast-to-osteocyte differentiation. The cessation of cell proliferation coincided with a significant increase in alkaline phosphatase activity, the development of dendrites, and the expression of the osteocyte marker PHEX. Within this hydrogel, cells actively influenced their environment, as evidenced by hydrogel contraction and the secretion of collagen I. This bio-printed model, demonstrating primary human osteoblasts expressing an osteocyte-specific protein, marks a significant achievement. We envision its substantial utility in advancing research on bone pathologies, including osteoporosis and bone tumors.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
| | - Lucie Essayan
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Naima El-Kholti
- Tissue Biology and Therapeutic Engineering 7 Passage du Vercors UMR 5305 University of Lyon, CNRS, 69367 Lyon, France, Lyon, Auvergne-Rhône-Alpes FR 69367, France
| | - Emma Petiot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
- ISPB-Faculté de Pharmacie de Lyon, Université Claude Bernard Lyon 1-University of Lyon, Lyon 69008, France
| |
Collapse
|
11
|
Yang J, Jia D, Qiao J, Peng X, Zhou C, Yang Y. Controlled Nitric Oxide-Releasing Nanovehicles for Enhanced Infected Wound Healing: A Study on PDA@BNN6 Encapsulated in GelMA Hydrogel. Int J Nanomedicine 2024; 19:11499-11516. [PMID: 39534378 PMCID: PMC11556330 DOI: 10.2147/ijn.s486640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected. Methods Gel/PDA@BNN6 was developed, and both in vitro and in vivo experiments were carried out to evaluate its structure, physicochemical properties, antibacterial effects, effectiveness in promoting infected wound healing, and biocompatibility. Results Gel/PDA@BNN6 was successfully synthesized, exhibiting a porous three-dimensional lattice structure and excellent mechanical properties. It demonstrated highly efficient photothermal conversion, controllable nitric oxide delivery, strong bactericidal effects, and minimal cytotoxicity in vitro. In vivo, Gel/PDA@BNN6, when used with NIR therapy, showed significant anti-inflammatory effects, promoted collagen deposition, and stimulated vascular neoangiogenesis, which accelerated wound closure. Additionally, it displayed superior biocompatibility. Discussion Gel/PDA@BNN6 has shown an explicit curative effect for infected wound healing, suggesting it has a good chance of being an antimicrobial dressing in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
- Department of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Donghui Jia
- Department of Traumatology, The Third Hospital of Jianghan University, The Huangpi People’s Hospital of Wuhan, Wuhan, Hubei, People’s Republic of China
| | - Jialu Qiao
- Department of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People’s Republic of China
| |
Collapse
|
12
|
Pragnere S, Courtial EJ, Dubreuil F, Errazuriz-Cerda E, Marquette C, Petiot E, Pailler-Mattei C. Tuning viscoelasticity and stiffness in bioprinted hydrogels for enhanced 3D cell culture: A multi-scale mechanical analysis. J Mech Behav Biomed Mater 2024; 159:106696. [PMID: 39205347 DOI: 10.1016/j.jmbbm.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Bioprinted hydrogels are extensively studied to provide an artificial matrix for 3D cell culture. The success of bioprinting hydrogels relies on fine-tuning their rheology and composition to achieve shear-thinning behavior. However, a challenge arises from the limited viscoelastic and stiffness range accessible from a single hydrogel formulation. Nevertheless, hydrogel mechanical properties are recognized as essential cues influencing cell phenotype, migration, and differentiation. Thus, it is crucial to develop a system to easily modulate bioprinted hydrogels' mechanical behaviors. In this work, we modulated the viscoelastic properties and stiffness of bioprinted hydrogels composed of fibrinogen, alginate, and gelatin by tuning the crosslinking bath solution. Various concentrations of calcium ionically crosslinked alginate, while transglutaminase crosslinked gelatin. Subsequently, we characterized the mechanical behavior of our bioprinted hydrogels from the nanoscale to the macroscale. This approach enabled the production of diverse bioprinted constructs, either with similar elastic behavior but different elastic moduli or with similar elastic moduli but different viscoelastic behavior from the same hydrogel formulation. Culturing fibroblasts in the hydrogels for 33 days revealed a preference for cell growth and matrix secretion in the viscoelastic hydrogels. This work demonstrates the suitability of the method to decouple the effects of material mechanical from biochemical composition cues on 3D cultured cells.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Edwin-Joffrey Courtial
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Frédéric Dubreuil
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France
| | | | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Emma Petiot
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; University of Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de, Lyon, France.
| |
Collapse
|
13
|
Mohamed Yunus R, Parisi D. Scaling Laws in Polysaccharide Rheology: Comparative Analysis of Water and Ionic Liquid Systems. Biomacromolecules 2024; 25:6883-6898. [PMID: 39283883 PMCID: PMC11480991 DOI: 10.1021/acs.biomac.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This study investigates the rheological behavior of two plant-based polysaccharides, with different degrees of hydrophilicity, agar (highly hydrophilic) and guar gum (hydrophilic), in water and 1-ethyl-3-methylimidazolium acetate (EMImAc). The rheological response of these polymers is highly dependent on the solvent's ability to disrupt intermolecular associations. In water, agar forms hydrogels, while guar gum behaves as a viscoelastic liquid with slow modes. The plateau modulus (GN0) scales with polymer concentration (c) as GN0 ∼ c3, consistent with other natural polymers. In EMImAc, both polysaccharides form viscoelastic liquids, exhibiting GN0 ∼ c2.3, as expected for semiflexible polymer solutions. However, the terminal relaxation time, τD, and the specific viscosity, ηsp, scale as τD ∼ c5.3 and ηsp ∼ c7.6, indicative of intermolecular chain-chain associations. Despite the solvent or polysaccharide, the fractional viscosity overshoot and the shear strain at the maximum stress show a terminal Weissenberg number dependence similar to other synthetic polymers.
Collapse
Affiliation(s)
- Roshan
Akdar Mohamed Yunus
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Daniele Parisi
- Department of Chemical Engineering,
Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
15
|
Mitra S, Kim AR, Zhao B, Mitra SK. Rapid Spreading of Yield-Stress Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18968-18976. [PMID: 39252575 DOI: 10.1021/acs.langmuir.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
When a liquid drop makes initial contact with any surface, an unbalanced surface tension force drives the contact line, causing spreading. For Newtonian liquids, either liquid inertia or viscosity dictates these early regimes of spreading, albeit with different power-law behaviors of the evolution of the dynamic spreading radius. In this work, we investigate the early regimes of spreading for yield-stress liquids. We conducted spreading experiments with hydrogels and blood with varying degrees of yield stress. We observe that for yield-stress liquids, the early regime of spreading is primarily dictated by their high shear rate viscosity. For yield-stress liquids with low values of high shear rate viscosity, the spreading dynamics mimics that of Newtonian liquids like water, i.e., an inertia-capillary regime exhibited by a power-law evolution of spreading radius with exponent 1/2. With increasing high shear rate viscosity, we observe that a deceptively similar, although slower, power-law spreading regime is obeyed. The observed regime is in fact a viscous-capillary where viscous dissipation dominates over inertia. The present findings can provide valuable insights into how to efficiently control moving contact lines of biomaterial inks, which often exhibit yield-stress behavior and operate at high print speeds, to achieve desired print resolution.
Collapse
Affiliation(s)
- Surjyasish Mitra
- Micro & Nano-Scale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - A-Reum Kim
- Surface Science and Bio-Nanomaterials Laboratory, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Boxin Zhao
- Surface Science and Bio-Nanomaterials Laboratory, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Sushanta K Mitra
- Micro & Nano-Scale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Liu Y, Zhang Y, Cai L, Zeng Q, Wang P. Protein and protein-polysaccharide composites-based 3D printing: The properties, roles and opportunities in future functional foods. Int J Biol Macromol 2024; 272:132884. [PMID: 38844274 DOI: 10.1016/j.ijbiomac.2024.132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The food industry is undergoing a significant transformation with the advancement of 3D technology. Researchers in the field are increasingly interested in using protein and protein-polysaccharide composite materials for 3D printing applications. However, maintaining nutritional and sensory properties while guaranteeing printability of these materials is challenging. This review examines the commonly used protein and composite materials in food 3D printing and their roles in printing inks. This review also outlines the essential properties required for 3D printing, including extrudability, appropriate viscoelasticity, thixotropic properties, and gelation properties. Furthermore, it explores the wide range of potential applications for 3D printing technology in novel functional foods such as space food, dysphagia food, kid's food, meat analogue, and other specialized food products.
Collapse
Affiliation(s)
- Yi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qinglin Zeng
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, China
| | - Pengrui Wang
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, China.
| |
Collapse
|
17
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
18
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
19
|
Agten H, Van Hoven I, Van Hoorick J, Van Vlierberghe S, Luyten FP, Bloemen V. In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering. Front Bioeng Biotechnol 2024; 12:1386692. [PMID: 38665810 PMCID: PMC11043557 DOI: 10.3389/fbioe.2024.1386692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.
Collapse
Affiliation(s)
- Hannah Agten
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Inge Van Hoven
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Sandra Van Vlierberghe
- BIO INX BV, Zwijnaarde, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Aina M, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. Evaluation of the printability of agar and hydroxypropyl methylcellulose gels as gummy formulations: Insights from rheological properties. Int J Pharm 2024; 654:123937. [PMID: 38401873 DOI: 10.1016/j.ijpharm.2024.123937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The trial-and-error method currently used to create formulations with excellent printability demands considerable time and resources, primarily due to the increasing number of variables involved. Rheology serves as a relatively rapid and highly beneficial method for assessing materials and evaluating their effectiveness as 3D constructs. However, the data obtained can be overwhelming, especially for users lacking experience in this field. This study examined the rheological properties of formulations of agar, hydroxypropyl methylcellulose, and the model drug caffeine, alongside exploring their printability as gummy formulations. The gels' rheological properties were characterized using oscillatory and rotational experiments. The correlation between these gels' rheological properties and their printability was established, and three clusters were formed based on the rheological properties and printability of the samples using principal component analysis. Furthermore, the printability was predicted using the sample's rheological property that correlated most with printability, the phase angle δ, and the regression models resulted in an accuracy of over 80%. Although these relationships merit confirmation in later studies, this study suggests a quantitative definition of the relationship between printability and one rheological property and can be used for the development of formulations destined for extrusion 3D printing.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France.
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Noelia M Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| |
Collapse
|
21
|
Nashchekina Y, Militsina A, Elokhovskiy V, Ivan’kova E, Nashchekin A, Kamalov A, Yudin V. Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing. Polymers (Basel) 2024; 16:1027. [PMID: 38674947 PMCID: PMC11054624 DOI: 10.3390/polym16081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting opens up many possibilities for tissue engineering, thanks to its ability to create a three-dimensional environment for cells like an extracellular matrix. However, the use of natural polymers such as silk fibroin in 3D bioprinting faces obstacles such as having a limited printability due to the low viscosity of such solutions. This study addresses these gaps by developing highly viscous, stable, and biocompatible silk fibroin-based inks. The addition of 2% carboxymethyl cellulose sodium and 1% sodium alginate to an aqueous solution containing 2.5 to 5% silk fibroin significantly improves the printability, stability, and mechanical properties of the printed scaffolds. It has been demonstrated that the more silk fibroin there is in bioinks, the higher their printability. To stabilize silk fibroin scaffolds in an aqueous environment, the printed structures must be treated with methanol or ethanol, ensuring the transition from the silk fibroin's amorphous phase to beta sheets. The developed bioinks that are based on silk fibroin, alginate, and carboxymethyl cellulose demonstrate an ease of printing and a high printing quality, and have a sufficiently good biocompatibility with respect to mesenchymal stromal cells. The printed scaffolds have satisfactory mechanical characteristics. The resulting 3D-printing bioink composition can be used to create tissue-like structures.
Collapse
Affiliation(s)
- Yuliya Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Center of Cell Technologies, St. Petersburg 194064, Russia
| | - Anastasia Militsina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia;
| | - Vladimir Elokhovskiy
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| | - Elena Ivan’kova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
- S.M. Kirov Military Medical Academy, Scientific Research Center, St. Petersburg 194044, Russia
| | - Alexey Nashchekin
- Ioffe Institute, Laboratory «Characterization of Materials and Structures of Solid State Electronics», St. Petersburg 194021, Russia;
| | - Almaz Kamalov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| | - Vladimir Yudin
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| |
Collapse
|
22
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
23
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
24
|
Das S, Thimukonda Jegadeesan J, Basu B. Advancing Peripheral Nerve Regeneration: 3D Bioprinting of GelMA-Based Cell-Laden Electroactive Bioinks for Nerve Conduits. ACS Biomater Sci Eng 2024; 10:1620-1645. [PMID: 38345020 DOI: 10.1021/acsbiomaterials.3c01226] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Peripheral nerve injuries often result in substantial impairment of the neurostimulatory organs. While the autograft is still largely used as the "gold standard" clinical treatment option, nerve guidance conduits (NGCs) are currently considered a promising approach for promoting peripheral nerve regeneration. While several attempts have been made to construct NGCs using various biomaterial combinations, a comprehensive exploration of the process science associated with three-dimensional (3D) extrusion printing of NGCs with clinically relevant sizes (length: 20 mm; diameter: 2-8 mm), while focusing on tunable buildability using electroactive biomaterial inks, remains unexplored. In addressing this gap, we present here the results of the viscoelastic properties of a range of a multifunctional gelatin methacrylate (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)/carbon nanofiber (CNF)/gellan gum (GG) hydrogel bioink formulations and printability assessment using experiments and quantitative models. Our results clearly established the positive impact of the gellan gum on the enhancement of the rheological properties. Interestingly, the strategic incorporation of PEGDA as a secondary cross-linker led to a remarkable enhancement in the strength and modulus by 3 and 8-fold, respectively. Moreover, conductive CNF addition resulted in a 4-fold improvement in measured electrical conductivity. The use of four-component electroactive biomaterial ink allowed us to obtain high neural cell viability in 3D bioprinted constructs. While the conventionally cast scaffolds can support the differentiation of neuro-2a cells, the most important result has been the excellent cell viability of neural cells in 3D encapsulated structures. Taken together, our findings demonstrate the potential of 3D bioprinting and multimodal biophysical cues in developing functional yet critical-sized nerve conduits for peripheral nerve tissue regeneration.
Collapse
Affiliation(s)
- Soumitra Das
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Makode S, Maurya S, Niknam SA, Mollocana-Lara E, Jaberi K, Faramarzi N, Tamayol A, Mortazavi M. Three dimensional (bio)printing of blood vessels: from vascularized tissues to functional arteries. Biofabrication 2024; 16:022005. [PMID: 38277671 DOI: 10.1088/1758-5090/ad22ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Shubham Makode
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed A Niknam
- Department of Industrial Engineering, Western New England University, Springfield, MA, United States of America
| | - Evelyn Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Kiana Jaberi
- Department of Nutritional Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Faramarzi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Mehdi Mortazavi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| |
Collapse
|
26
|
Davern JW, Hipwood L, Bray LJ, Meinert C, Klein TJ. Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices. APL Bioeng 2024; 8:016101. [PMID: 38204454 PMCID: PMC10776181 DOI: 10.1063/5.0166206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extrusion-based bioprinting has gained widespread popularity in biofabrication due to its ability to assemble cells and biomaterials in precise patterns and form tissue-like constructs. To achieve this, bioinks must have rheological properties suitable for printing while maintaining cytocompatibility. However, many commonly used biomaterials do not meet the rheological requirements and therefore require modification for bioprinting applications. This study demonstrates the incorporation of Laponite-RD (LPN) into gelatin methacryloyl (GelMA) to produce highly customizable bioinks with desired rheological and mechanical properties for extrusion-based bioprinting. Bioink formulations were based on GelMA (5%-15% w/v) and LPN (0%-4% w/v), and a comprehensive rheological design was applied to evaluate key rheological properties necessary for extrusion-based bioprinting. The results showed that GelMA bioinks with LPN (1%-4% w/v) exhibited pronounced shear thinning and viscoelastic behavior, as well as improved thermal stability. Furthermore, a concentration window of 1%-2% (w/v) LPN to 5%-15% GelMA demonstrated enhanced rheological properties and printability required for extrusion-based bioprinting. Construct mechanical properties were highly tunable by varying polymer concentration and photocrosslinking parameters, with Young's moduli ranging from ∼0.2 to 75 kPa. Interestingly, at higher Laponite concentrations, GelMA cross-linking was inhibited, resulting in softer hydrogels. High viability of MCF-7 breast cancer cells was maintained in both free-swelling droplets and printed hydrogels, and metabolically active spheroids formed over 7 days of culture in all conditions. In summary, the addition of 1%-2% (w/v) LPN to gelatin-based bioinks significantly enhanced rheological properties and retained cell viability and proliferation, suggesting its suitability for extrusion-based bioprinting.
Collapse
|
27
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
28
|
Khoshmaram K, Yazdian F, Pazhouhnia Z, Lotfibakhshaiesh N. Preparation and characterization of 3D bioprinted gelatin methacrylate hydrogel incorporated with curcumin loaded chitosan nanoparticles for in vivo wound healing application. BIOMATERIALS ADVANCES 2024; 156:213677. [PMID: 38056111 DOI: 10.1016/j.bioadv.2023.213677] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
This study developed a biomimetic composite bioink consisting of gelatin methacrylate (GelMA) /chitosan nanoparticles (CSNPs) for extrusion-based 3D bioprinting. Additionally, curcumin(Cur)-loaded nanoparticles were incorporated which increased the proliferation and antibacterial activity of biomimetic skin constructs. The hydrogel, curcumin-loaded NPs, and the biocomposite was characterized chemically and physically. The results indicated proper modified gelatin with tunable physical characteristics, e.g., swelling ratio and biodegradability up to 1200 % and 25 days, respectively. In addition, the characterized CSNPs showed good distribution with a size of 370 nm and a zeta potential of 41.1 mV. We investigated the mechanical and cytocompatibility properties of chitosan nanoparticles encapsulated in hydrogel for emulating an extracellular matrix suitable for skin tissue engineering. CSNPs entrapped in GelMA (15 % w/v) exhibited controlled drug release during 5 days, which was fitted into various kinetic models to study the mass transfer mechanism behavior. Also, the composite hydrogels were effective as a barrier against both gram-positive and gram-negative bacteria at a concentration of 50 μg/ml nanoparticles in GelMA 15 %. Furthermore, the biocomposite was applied on Wistar rats for wound healing. As a result, this study provides a GelMA-NP50-Cur3 scaffold that promotes cell proliferation and decreases microbial infections in wounds.
Collapse
Affiliation(s)
- Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran (1417935840), Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran (1417935840), Tehran, Iran.
| | - Zahra Pazhouhnia
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (1416634793), Tehran, Iran; AstraBionics Research Network (ARN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (1416634793), Tehran, Iran.
| |
Collapse
|
29
|
Wu M, Zheng K, Li W, He W, Qian C, Lin Z, Xiao H, Yang H, Xu Y, Wei M, Bai J, Geng D. Nature‐Inspired Strategies for the Treatment of Osteoarthritis. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202305603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage is devoid of nerves and blood vessels, and its nutrients must be obtained from the joint fluid; therefore, its ability to repair itself is limited. Manufactured materials such as artificial cartilage or synthetic materials are typically used in traditional approaches for knee cartilage repair. However, durability, postimplant rejection, and tissue incompatibility are the problems associated with these materials. In recent decades, tissue engineering and regenerative medicine have focused on the development of functional substitutes, particularly those based on naturally inspired biopolymers. This review focuses on sustainably produced biopolymers based on materials derived from natural sources. Furthermore, these materials have many advantages, including low antigenicity, biocompatibility, and degradability. Of course, there are also many challenges associated with natural materials, such as the lack of clinical studies and long‐term follow‐up data, unstable mechanical properties of the materials, and high demands placed on preparation and molding techniques. In this review, an overview of natural and nature‐inspired polymers that are the subject of research to date, as well as their structural designs and product performances is provided. This review provides scientific guidance for enhancing the development of naturally inspired materials for treating cartilage injuries.
Collapse
Affiliation(s)
- Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 140 Renmin South Road Suzhou Jiangsu 215400 China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
- National Center for Translational Medicine (Shanghai) SHU Branch Shanghai University Shanghai 215031 China
| | - Weiming He
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu 210004 China
| | - Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Minggang Wei
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| |
Collapse
|
30
|
Olmos-Juste R, Larrañaga-Jaurrieta G, Larraza I, Ramos-Diez S, Camarero-Espinosa S, Gabilondo N, Eceiza A. Alginate-waterborne polyurethane 3D bioprinted scaffolds for articular cartilage tissue engineering. Int J Biol Macromol 2023; 253:127070. [PMID: 37748588 DOI: 10.1016/j.ijbiomac.2023.127070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Articular cartilage defects comprise a spectrum of diseases associated with degeneration or damage of the connective tissue present in particular joints, presenting progressive osteoarthritis if left untreated. In vitro tissue regeneration is an innovative treatment for articular cartilage injuries that is attracting not only clinical attention, but also great interest in the development of novel biomaterials, since this procedure involves the formation of a neotissue with the help of material support. In this work, functional alginate and waterborne polyurethane (WBPU) scaffolds have been developed for articular cartilage regeneration using 3D bioprinting technology. The particular properties of alginate-WBPU blends, like mechanical strength, elasticity and moistening, mimic the original cartilage tissue characteristics, being ideal for this application. To fabricate the scaffolds, mature chondrocytes were loaded into different alginate-WBPU inks with rheological properties suitable for 3D bioprinting. Bioinks with high alginate content showed better 3D printing performance, as well as structural integrity and cell viability, being most suitable for scaffolds fabrication. After 28 days of in vitro cartilage formation experiments, scaffolds containing 3.2 and 6.4 % alginate resulted in the maintenance of cell number in the range of 104 chondrocytes/scaffold in differentiated phenotypes, capable of synthesizing specialized extracellular matrix (ECM) up to 6 μg of glycosaminoglycans (GAG) and thus, showing a potential application of these scaffolds for in vitro regeneration of articular cartilage tissue.
Collapse
Affiliation(s)
- R Olmos-Juste
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain
| | - G Larrañaga-Jaurrieta
- POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain; Regenerative Medicine Lab, CICbiomaGUNE, Donostia / San Sebastián 20014, Gipuzkoa, Spain
| | - I Larraza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain
| | - S Ramos-Diez
- POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain
| | - S Camarero-Espinosa
- POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain; Ikerbasque, Basque Foundation for Science, Euskadi Pl., 5, 48009, Bilbao, Spain
| | - N Gabilondo
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain.
| | - A Eceiza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain.
| |
Collapse
|
31
|
Jergitsch M, Alluè-Mengual Z, Perez RA, Mateos-Timoneda MA. A systematic approach to improve printability and cell viability of methylcellulose-based bioinks. Int J Biol Macromol 2023; 253:127461. [PMID: 37852401 DOI: 10.1016/j.ijbiomac.2023.127461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Printability in 3D extrusion bioprinting encompasses extrudability, filament formation, and shape fidelity. Rheological properties can predict the shape fidelity of printed hydrogels. In particular, tan(δ), the ratio between loss (G'') and storage (G') modulus (G''/G'), is a powerful indicator of printability. This study explores the effect of different salt, sucrose, and MC concentrations on tan(δ), and therefore the printability of methylcellulose (MC) hydrogels. Salt and sucrose increased G', lowering tan(δ) and enabling printing of scaffolds with high shape fidelity. Conversely, MC concentration increased G'' and G', having a lesser effect on tan(δ). Shape fidelity of three formulations with similar G' but varying tan(δ) values were compared. Higher tan(δ) led to reduced height, while lower tan(δ) improved shape fidelity. Cell viability increased when reducing MC content, extrusion rate, and nozzle gauge. Higher MC concentration (G' > 1.5 kPa) increased the influence of needle size and extrusion rate on cell viability. Hydrogels with G' < 1 kPa could be extruded at high rates with small nozzles, minimally affecting cell viability. This work shows a direct relationship between tan(δ) and printability of MC-based hydrogels. Lowering the complex modulus of hydrogels, mitigates extrusion stress, thus improving cell survival.
Collapse
Affiliation(s)
- Maximilian Jergitsch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Zoe Alluè-Mengual
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
32
|
Enoch K, Somasundaram AA. Rheological insights on Carboxymethyl cellulose hydrogels. Int J Biol Macromol 2023; 253:127481. [PMID: 37865366 DOI: 10.1016/j.ijbiomac.2023.127481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Hydrogels are copiously studied for tissue engineering, drug delivery, and bone regeneration owing to their water content, mechanical strength, and elastic behaviour. The preparation of stable and mechanically strengthened hydrogels without using toxic crosslinkers and expensive approaches is immensely challenging. In this study, we prepared Carboxymethyl cellulose based hydrogels with different polymer concentration via a less expensive physical crosslinking approach without using any toxic crosslinkers and evaluated their mechanical strength. In this hydrogel system, the carbopol concentration was fixed at 1 wt/v% and the Carboxymethyl cellulose concentration was varied between 1 and 5 wt/v%. In this hydrogel system, Carbopol serves as the crosslinker to bridge Carboxymethyl cellulose polymer through hydrogen bonds. Rheological analysis was employed in assessing the mechanical properties of the prepared hydrogel, in particular, the viscoelastic behaviour of the hydrogels. The viscoelastic nature and mechanical strength of the hydrogels increased with an increase in the Carboxymethyl cellulose polymer concentration. Further, our results suggested that gels with Carboxymethyl cellulose concentration between 3 wt/v % and 4 wt/v % with yield stresses of 58.83 Pa and 81.47 Pa, respectively, are potential candidates for use in transdermal drug delivery. The prepared hydrogels possessed high thermal stability and retained their gel network structure even at 50 °C. These findings are beneficial for biomedical applications in transdermal drug delivery and tissue engineering owing to the biocompatibility, stability, and mechanical strength of the prepared hydrogels.
Collapse
Affiliation(s)
- Karolinekersin Enoch
- Soft Matter Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu, India
| | - Anbumozhi Angayarkanni Somasundaram
- Soft Matter Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu, India.
| |
Collapse
|
33
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
34
|
Thakur KK, Lekurwale R, Bansode S, Pansare R. 3D Bioprinting: A Systematic Review for Future Research Direction. Indian J Orthop 2023; 57:1949-1967. [PMID: 38009170 PMCID: PMC10673757 DOI: 10.1007/s43465-023-01000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/05/2023] [Indexed: 11/28/2023]
Abstract
Purpose 3D bioprinting is capable of rapidly producing small-scale human-based tissue models, or organoids, for pathology modeling, diagnostics, and drug development. With the use of 3D bioprinting technology, 3D functional complex tissue can be created by combining biocompatible materials, cells, and growth factor. In today's world, 3D bioprinting may be the best solution for meeting the demand for organ transplantation. It is essential to examine the existing literature with the objective to identify the future trend in terms of application of 3D bioprinting, different bioprinting techniques, and selected tissues by the researchers, it is very important to examine the existing literature. To find trends in 3D bioprinting research, this work conducted an systematic literature review of 3D bioprinting. Methodology This literature provides a thorough study and analysis of research articles on bioprinting from 2000 to 2022 that were extracted from the Scopus database. The articles selected for analysis were classified according to the year of publication, articles and publishers, nation, authors who are working in bioprinting area, universities, biomaterial used, and targeted applications. Findings The top nations, universities, journals, publishers, and writers in this field were picked out after analyzing research publications on bioprinting. During this study, the research themes and research trends were also identified. Furthermore, it has been observed that there is a need for additional research in this domain for the development of bioink and their properties that can guide practitioners and researchers while selecting appropriate combinations of biomaterials to obtain bioink suitable for mimicking human tissue. Significance of the Research This research includes research findings, recommendations, and observations for bioprinting researchers and practitioners. This article lists significant research gaps, future research directions, and potential application areas for bioprinting. Novelty The review conducted here is mainly focused on the process of collecting, organizing, capturing, evaluating, and analyzing data to give a deeper understanding of bioprinting and to identify potential future research trends.
Collapse
Affiliation(s)
- Kavita Kumari Thakur
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Ramesh Lekurwale
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Sangita Bansode
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Rajesh Pansare
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| |
Collapse
|
35
|
Wu J, Wu C, Zou S, Li X, Ho B, Sun R, Liu C, Chen M. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning. Bioengineering (Basel) 2023; 10:1358. [PMID: 38135949 PMCID: PMC10740413 DOI: 10.3390/bioengineering10121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Extruded bioprinting is widely used for the biomanufacturing of personalized, complex tissue structures, which requires biomaterial inks with a certain viscosity to enable printing. However, there is still a lack of discussion on the controllable preparation and printability of biomaterial inks with different viscosities. In this paper, biomaterial inks composed of gelatin, sodium alginate, and methylcellulose were utablesed to investigate the feasibility of adjustment of rheological properties, thereby analyzing the effects of different rheological properties on the printing process. Based on the response surface methodology, the relationship between the material components and the rheological properties of biomaterial inks was discussed, followed by the prediction of the rheological properties of biomaterial inks. The prediction accuracies of the power-law index and consistency coefficient could reach 96% and 79%, respectively. The material group can be used to prepare biomaterial inks with different viscosity properties in a wide range. Latin hypercube sampling and computational fluid dynamics were used to analyze the effects of different rheological properties and extrusion pressure on the flow rate at the nozzle. The relationship between the rheological properties of the biomaterial ink and the flow rate was established, and the simulation results showed that the changes in the rheological properties of the biomaterial ink in the high-viscosity region resulted in slight fluctuations in the flow rate, implying that the printing process for high-viscosity biomaterial inks may have better versatility. In addition, based on the characteristics of biomaterial inks, the printing process was optimized from the planning of the print pattern to improve the location accuracy of the starting point, and the length accuracy of filaments can reach 99%. The effect of the overlap between the fill pattern and outer frame on the print quality was investigated to improve the surface quality of complex structures. Furthermore, low- and high-viscosity biomaterial inks were tested, and various printing protocols were discussed for improving printing efficiency or maintaining cell activity. This study provides feasible printing concepts for a wider range of biomaterials to meet the biological requirements of cell culture and tissue engineering.
Collapse
Affiliation(s)
- Jiahao Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Chunya Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Siyang Zou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Xiguang Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Bo Ho
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Ruijiang Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Chang Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Mingjun Chen
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
36
|
Moparthi SS, L GK, Karyappa R, Upadhyay R. 3D printed meat and the fundamental aspects affecting printability. J Texture Stud 2023. [PMID: 37927084 DOI: 10.1111/jtxs.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
Three-dimensional (3D) printing, one of the forms of additive manufacturing, has become a popular trend worldwide with a wide range of applications including food. The technology is adaptable and meets foods nutritional and sensory needs allowing meat processing to reach a sustainable level, technology addressing the food requirement of the ever-increasing population and the fast-paced lifestyle by reducing food preparation time. By minimizing food waste and the strain on animal resources, technology can help to create a more sustainable economy and environment. This review article discusses the 3D printing process and various 3D printing techniques used for food printing, such as laser powder bed fusion, inkjet food printing, and binder jetting, a suitable 3D technique used for meat printing, such as extrusion-based bioprinting. Moreover, we discuss properties that affect the printability of meat and its products with their applications in the meat industry, 3D printing market potential challenges, and future trends.
Collapse
Affiliation(s)
- Sai Sathvika Moparthi
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Gokul Krishna L
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
- Flavingred Products and Services Pvt. Ltd., Palava City, Dombivli, Thane, India
| | - Rahul Karyappa
- Institute of Materials Research and Engineering, Agency for Science (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore
| | - Rituja Upadhyay
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
- Flavingred Products and Services Pvt. Ltd., Palava City, Dombivli, Thane, India
| |
Collapse
|
37
|
de Paiva Narciso N, Navarro RS, Gilchrist A, Trigo MLM, Rodriguez GA, Heilshorn SC. Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks. Adv Healthc Mater 2023; 12:e2301265. [PMID: 37389811 PMCID: PMC10638947 DOI: 10.1002/adhm.202301265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self-healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC-crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin-like protein (ELP) modified with hydrazine (ELP-HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP-HYD component constant. The resulting hydrogels have a range of stiffnesses, G' ≈ 10-1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self-healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC-crosslinked hydrogels and aims to guide future design of injectable hydrogels.
Collapse
Affiliation(s)
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aidan Gilchrist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Miriam L. M. Trigo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Backes EH, Zamproni LN, Delgado-Garcia LM, Pinto LA, Lemes RMR, Bartolomeo CS, Porcionatto MA. Protocol for designing and bioprinting multi-layered constructs to reconstruct an endothelial-epithelial 3D model. STAR Protoc 2023; 4:102467. [PMID: 37585294 PMCID: PMC10436237 DOI: 10.1016/j.xpro.2023.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023] Open
Abstract
3D bioprinting has opened new possibilities and elevated tissue engineering complexity. Here, we present a protocol to design a 3D model with two cell lineage layers (A549 and HUVEC) to recreate multi-cell constructs. We describe the steps for slicing the constructs, handling hydrogels, and detailing the bioprinting setup. These 3D-bioprinted constructs can be adapted to various cell models-from primary cell cultures to commercial cell lines and induced pluripotent stem cells (IPCs)-and applications, including drug screening and disease modeling. For complete details on the use and execution of this protocol, please refer to Cruz et al.1.
Collapse
Affiliation(s)
- Eduardo Henrique Backes
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, São Paulo 04044020, Brazil; Laboratory of Molecular Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039002, Brazil; Department of Materials Engineering (DEMa), Universidade Federal de São Carlos, São Carlos 13565905, Brazil; Graduate Program in Materials Science and Engineering, Universidade Federal de São Carlos, São Carlos 13565905, Brazil.
| | - Laura Nicoleti Zamproni
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, São Paulo 04044020, Brazil; Laboratory of Molecular Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039002, Brazil
| | - Lina Maria Delgado-Garcia
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, São Paulo 04044020, Brazil; Laboratory of Molecular Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039002, Brazil
| | - Leonardo Alves Pinto
- Graduate Program in Materials Science and Engineering, Universidade Federal de São Carlos, São Carlos 13565905, Brazil
| | | | - Cynthia Silva Bartolomeo
- Department of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Baixada Santista 11015020, Brazil
| | - Marimélia Aparecida Porcionatto
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, São Paulo 04044020, Brazil; Laboratory of Molecular Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039002, Brazil.
| |
Collapse
|
39
|
Ribezzi D, Gueye M, Florczak S, Dusi F, de Vos D, Manente F, Hierholzer A, Fussenegger M, Caiazzo M, Blunk T, Malda J, Levato R. Shaping Synthetic Multicellular and Complex Multimaterial Tissues via Embedded Extrusion-Volumetric Printing of Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301673. [PMID: 37269532 DOI: 10.1002/adma.202301673] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Indexed: 06/05/2023]
Abstract
In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Marième Gueye
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Franziska Dusi
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Dieuwke de Vos
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Francesca Manente
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Andreas Hierholzer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
40
|
Cernencu AI, Vlasceanu GM, Serafim A, Pircalabioru G, Ionita M. 3D double-reinforced graphene oxide - nanocellulose biomaterial inks for tissue engineered constructs. RSC Adv 2023; 13:24053-24063. [PMID: 37577089 PMCID: PMC10414018 DOI: 10.1039/d3ra02786d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
The advent of improved fabrication technologies, particularly 3D printing, has enabled the engineering of bone tissue for patient-specific healing and the fabrication of in vitro tissue models for ex vivo testing. However, inks made from natural polymers often fall short in terms of mechanical strength, stability, and the induction of osteogenesis. Our research focused on developing novel printable formulations using a gelatin/pectin polymeric matrix that integrate synergistic reinforcement components i.e. graphene oxide (GO) and oxidized nanocellulose fibers (CNF). Using 3D printing technology and the aforementioned biomaterial composite inks, bone-like scaffolds were created. To simulate critical-sized flaws and demonstrate scaffold fidelity, 3D scaffolds were successfully printed using formulations with varied GO concentrations (0.25, 0.5, and 1% wt with respect to polymer content). The addition of GO to hydrogel inks enhanced not only the compressive modulus but also the printability and scaffold fidelity compared to the pure colloid-gelatin/pectin system. Due to its strong potential for 3D bioprinting, the sample containing 0.5% GO is shown to have the greatest perspectives for bone tissue models and tissue engineering applications.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - George M Vlasceanu
- Advanced Polymer Materials Group, University Politehnica of Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, University Politehnica of Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Gratiela Pircalabioru
- eBio-hub Research-Center, University "Politehnica" of Bucharest 6 Iuliu Maniu Boulevard, Campus Building Bucharest 061344 Romania
- Research Institute of University of Bucharest, University of Bucharest Bucharest 050095 Romania
- Academy of Romanian Scientists 54 Splaiul Independentei Bucharest 050094 Romania
| | - Mariana Ionita
- Advanced Polymer Materials Group, University Politehnica of Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, University Politehnica of Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- eBio-hub Research-Center, University "Politehnica" of Bucharest 6 Iuliu Maniu Boulevard, Campus Building Bucharest 061344 Romania
| |
Collapse
|
41
|
Hopson C, Rigual V, Alonso MV, Oliet M, Rodriguez F. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Carbohydr Polym 2023; 313:120897. [PMID: 37182980 DOI: 10.1016/j.carbpol.2023.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
3D printing has been recently recognized as one of the most promising technologies due to the multiple options to fabricate cost-effective and customizable objects. However, the necessity to substitute fossil fuels as raw materials is increasing the research on bio-based inks with recyclable and eco-friendly properties. In this work, we formulated inks for the 3D printing of ionogels and hydrogels with bleached kraft pulp dissolved in [Emim][DMP] at different concentrations (1-4 wt%). We explored each ink's rheological properties and printability and compared the printability parameters with a commercial ink. The rheological results showed that the 3 % and 4 % cellulose-ionic liquid inks exhibited the best properties. Both had values of damping factor between 0.4 and 0.7 and values of yield stress between 1900 and 2500 Pa. Analyzing the printability, the 4 wt% ink was selected as the most promising because the printed ionogels and the hydrogels had the best print resolution and fidelity, similar to the reference ink. After printing, ionogels and hydrogels had values of the elastic modulus (G') between 103 and 104 Pa, and the ionogels are recyclables. Altogether, these 3D printed cellulose ionogels and hydrogels may have an opportunity in the electrochemical and medical fields, respectively.
Collapse
Affiliation(s)
- Cynthia Hopson
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain.
| | - Victoria Rigual
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - M Virginia Alonso
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Mercedes Oliet
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Francisco Rodriguez
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
42
|
Schwab A, Wesdorp MA, Xu J, Abinzano F, Loebel C, Falandt M, Levato R, Eglin D, Narcisi R, Stoddart MJ, Malda J, Burdick JA, D'Este M, van Osch GJ. Modulating design parameters to drive cell invasion into hydrogels for osteochondral tissue formation. J Orthop Translat 2023; 41:42-53. [PMID: 37691639 PMCID: PMC10485598 DOI: 10.1016/j.jot.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 09/12/2023] Open
Abstract
Background The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using in vitro, ex vivo and in vivo models. Methods Three hydrogel platforms were used in the study: Gelatine methacryloyl (GelMA) (5% wt), norbornene hyaluronic acid (norHA) (2% wt) and tyramine functionalised hyaluronic acid (THA) (2.5% wt). GelMA was modified to vary the degree of functionalisation (DoF 50% and 80%), norHA was used with varied degradability via a matrix metalloproteinase (MMP) degradable crosslinker and THA was used with the addition of collagen fibrils. The migration of human mesenchymal stromal cells (hMSC) in hydrogels was studied in vitro using a 3D spheroid migration assay over 48h. In addition, chondrocyte migration within and around hydrogels was investigated in an ex vivo bovine cartilage ring model (three weeks). Finally, tissue repair within osteochondral defects was studied in a semi-orthotopic in vivo mouse model (six weeks). Results A lower DoF of GelMA did not affect cell migration in vitro (p = 0.390) and led to a higher migration score ex vivo (p < 0.001). The introduction of a MMP degradable crosslinker in norHA hydrogels did not improve cell infiltration in vitro or in vivo. The addition of collagen to THA resulted in greater hMSC migration in vitro (p = 0.031) and ex vivo (p < 0.001). Hydrogels that exhibited more cell migration in vitro or ex vivo also showed more tissue formation in the osteochondral defects in vivo, except for the norHA group. Whereas norHA with a degradable crosslinker did not improve cell migration in vitro or ex vivo, it did significantly increase tissue formation in vivo compared to the non-degradable crosslinker (p < 0.001). Conclusion The modification of hydrogels by adapting DoF, use of a degradable crosslinker or including fibrillar collagen can control and improve cell migration and tissue formation for osteochondral defect repair. This study also emphasizes the importance of performing both in vitro and in vivo testing of biomaterials, as, depending on the material, the results might be affected by the model used.The translational potential of this article: This article highlights the potential of using acellular hydrogels to repair osteochondral defects, which are common injuries in orthopaedics. The study provides a deeper understanding of how to modify the properties of hydrogels to control cell migration and tissue formation for osteochondral defect repair. The results of this article also highlight that the choice of the used laboratory model can affect the outcome. Testing hydrogels in different models is thus advised for successful translation of laboratory results to the clinical application.
Collapse
Affiliation(s)
- Andrea Schwab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- AO Research Institute Davos, AO Foundation, Davos Platz, Switzerland
| | - Marinus A. Wesdorp
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Jietao Xu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Florencia Abinzano
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Falandt
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht, the Netherlands
| | - Riccardo Levato
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht, the Netherlands
| | - David Eglin
- Mines Saint-Etienne, University Jean Monnet, INSERM, UMR 1059, Saint-Etienne, France
- Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, TechMed Center, University of Twente, Enschede, the Netherlands
| | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | | | - Jos Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matteo D'Este
- AO Research Institute Davos, AO Foundation, Davos Platz, Switzerland
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
43
|
Díaz-Torres E, Suárez-González J, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Characterization and Validation of a New 3D Printing Ink for Reducing Therapeutic Gap in Pediatrics through Individualized Medicines. Pharmaceutics 2023; 15:1642. [PMID: 37376090 DOI: 10.3390/pharmaceutics15061642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
3D printing technology can be used to develop individualized medicines in hospitals and pharmacies, allowing a high degree of personalization and the possibility to adjust the dose of the API based on the quantity of material extruded. The main goal of incorporating this technology is to have a stock of API-load print cartridges that could be used at different storage times and for different patients. However, it is necessary to study the extrudability, stability, and buildability of these print cartridges during storage time. A paste-like formulation containing hydrochlorothiazide as a model drug was prepared and distributed in five print cartridges, each of which was studied for different storage times (0 h-72 h) and conditions, for repeated use on different days. For each print cartridge, an extrudability analysis was performed, and subsequently, 100 unit forms of 10 mg hydrochlorothiazide were printed. Finally, various dosage units containing different doses were printed, taking into account the optimized printing parameters based on the results of the extrudability analysis carried out previously. An appropriate methodology for the rapid development of appropriate SSE 3DP inks for pediatrics was established and evaluated. The extrudability analysis and several parameters allowed the detection of changes in the mechanical behavior of the printing inks, the pressure interval of the steady flow, and the selection of the volume of ink to be extruded to obtain each of the required doses. The print cartridges were stable for up to 72 h after processing, and orodispersible printlets containing 6 mg to 24 mg of hydrochlorothiazide can be produced using the same print cartridge and during the same printing process with guaranteed content and chemical stability. The proposed workflow for the development of new printing inks containing APIs will allow the optimization of feedstock material and human resources in pharmacy or hospital pharmacy services, thus speeding up their development and reducing costs.
Collapse
Affiliation(s)
- Eduardo Díaz-Torres
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Javier Suárez-González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - Cecilia N Monzón-Rodríguez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ana Santoveña-Estévez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - José B Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
44
|
Hafeez S, Aldana AA, Duimel H, Ruiter FAA, Decarli MC, Lapointe V, van Blitterswijk C, Moroni L, Baker MB. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207053. [PMID: 36858040 DOI: 10.1002/adma.202207053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/16/2023]
Abstract
Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene-1,3,5-tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress-relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear-thinning, self-healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self-assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM-mimicking hydrogelators for numerous cell-culture and tissue-engineering applications and give access toward highly biomimetic bioinks for bioprinting.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Vanessa Lapointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
45
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
46
|
Cernencu AI, Ioniță M. The current state of the art in gellan-based printing inks in tissue engineering. Carbohydr Polym 2023; 309:120676. [PMID: 36906360 DOI: 10.1016/j.carbpol.2023.120676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
With the advancement of enhanced fabrication technologies, specifically 3D printing, it is now possible to build artificial tissue for personalized healing. However, inks developed from polymers often fail to meet expectations in terms of mechanical strength, scaffold integrity, and the stimulation of tissue formation. Developing new printable formulations as well as adapting existing printing methods is an essential aspect of contemporary biofabrication research. In order to push the boundaries of the printability window, various strategies have been developed employing gellan gum. This has resulted in major breakthroughs in the development of 3D hydrogels scaffolds that exhibit significant resemblance to genuine tissues and enables the fabrication of more complex systems. In light of the many uses of gellan gum, the purpose of this paper is to provide a synopsis of the printable ink designs drawing attention to the various compositions and fabrication approaches that may be used for tuning the properties of 3D printed hydrogels for tissue engineering applications. The purpose of this article is to outline the development of gellan-based 3D printing inks and to encourage research by highlighting the possible applications of gellan gum.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, SplaiulIndependenței, 313, 060042, Bucharest, Romania
| | - Mariana Ioniță
- Advanced Polymer Materials Group, University Politehnica of Bucharest, SplaiulIndependenței, 313, 060042, Bucharest, Romania; Faculty of Medical Engineering, University Politehnica of Bucharest, Bucharest 011061, Romania.
| |
Collapse
|
47
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
48
|
Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules 2023; 28:2766. [PMID: 36985738 PMCID: PMC10058016 DOI: 10.3390/molecules28062766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Over the last decade, efforts have been oriented toward the development of suitable gels for 3D printing, with controlled morphology and shear-thinning behavior in well-defined conditions. As a multidisciplinary approach to the fabrication of complex biomaterials, 3D bioprinting combines cells and biocompatible materials, which are subsequently printed in specific shapes to generate 3D structures for regenerative medicine or tissue engineering. A major interest is devoted to the printing of biomimetic materials with structural fidelity after their fabrication. Among some requirements imposed for bioinks, such as biocompatibility, nontoxicity, and the possibility to be sterilized, the nondamaging processability represents a critical issue for the stability and functioning of the 3D constructs. The major challenges in the field of printable gels are to mimic at different length scales the structures existing in nature and to reproduce the functions of the biological systems. Thus, a careful investigation of the rheological characteristics allows a fine-tuning of the material properties that are manufactured for targeted applications. The fluid-like or solid-like behavior of materials in conditions similar to those encountered in additive manufacturing can be monitored through the viscoelastic parameters determined in different shear conditions. The network strength, shear-thinning, yield point, and thixotropy govern bioprintability. An assessment of these rheological features provides significant insights for the design and characterization of printable gels. This review focuses on the rheological properties of printable bioinspired gels as a survey of cutting-edge research toward developing printed materials for additive manufacturing.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
49
|
Nazari F, Shoele K, Mohammadigoushki H. Helical Locomotion in Yield Stress Fluids. PHYSICAL REVIEW LETTERS 2023; 130:114002. [PMID: 37001094 DOI: 10.1103/physrevlett.130.114002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
We report three stages for locomotion of a helical swimmer in yield stress fluids. In the first stage, the swimmer must overcome the material's yield strain to generate rotational motion. However, exceeding the first threshold is not sufficient for locomotion. Only when the viscous forces are sufficiently strong to plastically deform the material to a finite distance away from the swimmer will net locomotion occur. Once locomotion is underway in the third stage, the yield stress retards swimming at small pitch angles. Conversely, at large pitch angles, yield stress dominates the flow by enhancing swimming speed. Flow visualizations reveal a highly localized flow near the swimmer in yield stress fluids.
Collapse
Affiliation(s)
- Farshad Nazari
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Kourosh Shoele
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Hadi Mohammadigoushki
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| |
Collapse
|
50
|
Bayir E. Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231157096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Polyelectrolyte complexes (PECs) consist of a spontaneous assembly of oppositely charged polysaccharides. PECs can be used to obtain a hydrogel tissue scaffold in tissue culture. In this study, it is aimed to use PEC as a blood-brain barrier (BBB) model scaffold. By mixing polycationic chitosan and polyanionic alginate solutions at a certain ratio it was obtained a 3D hydrogel scaffold and mimicked in vivo environment of the tissue. The PEC hydrogel scaffold’s chemical, physical, and mechanical characterizations were performed with FTIR, DSC, DMA, and Micro-CT analyses. In order to develop an in vitro BBB model, the human neuroblastoma cell line (SH-SY5Y) and mouse astrocyte cell line (C8-D1A) were mixed into a hydrogel, which is the abluminal side of the BBB. Human microvascular endothelial cells (HBEC-5i) were seeded on the hydrogel, and it was aimed to mimic the luminal side of the BBB. The characterization of the BBB model was determined by measuring the TEER, observation of the cell morphology with SEM, performing the permeability of Lucifer Yellow, and observation of tight junction proteins with immunofluorescence staining. As a result, HBEC-5i cells expressed tight junction proteins (ZO-1 and Claudin-5), showed TEER of 340 ± 22 Ω.cm2, and the Lucifer Yellow permeability of 7.4 × 10−7 ± 2.7 × 10−7 cm/s, which was suitable for use as an in vitro BBB model. Using a hydrogel PEC composed of chitosan and alginate as an extracellular matrix increased the direct interaction of endothelial cells, astrocytes, and neurons with each other and thus obtained a much less permeable model compared to other standard transwell models. Graphical abstract [Formula: see text]
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| |
Collapse
|