1
|
Bilginer-Kartal R, Çoban B, Yildirim-Semerci Ö, Arslan-Yildiz A. Recent Advances in Hydrogel-Based 3D Disease Modeling and Drug Screening Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095242 DOI: 10.1007/5584_2025_851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Three-dimensional (3D) disease modeling and drug screening systems have become important in tissue engineering, drug screening, and development. The newly developed systems support cell and extracellular matrix (ECM) interactions, which are necessary for the formation of the tissue or an accurate model of a disease. Hydrogels are favorable biomaterials due to their properties: biocompatibility, high swelling capacity, tunable viscosity, mechanical properties, and their ability to biomimic the structure and function of ECM. They have been used to model various diseases such as tumors, cancer diseases, neurodegenerative diseases, cardiac diseases, and cardiovascular diseases. Additive manufacturing approaches, such as 3D printing/bioprinting, stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), enable the design of scaffolds with high precision; thus, increasing the accuracy of the disease models. In addition, the aforementioned methodologies improve the design of the hydrogel-based scaffolds, which resemble the complicated structure and intricate microenvironment of tissues or tumors, further advancing the development of therapeutic agents and strategies. Thus, 3D hydrogel-based disease models fabricated through additive manufacturing approaches provide an enhanced 3D microenvironment that empowers personalized medicine toward targeted therapeutics, in accordance with 3D drug screening platforms.
Collapse
Affiliation(s)
| | - Başak Çoban
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), Izmir, Turkey
| | | | - Ahu Arslan-Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), Izmir, Turkey.
| |
Collapse
|
2
|
Jeong W, Han J, Choi J, Kang HW. Embedded Bioprinting of Breast Cancer-Adipose Composite Tissue Model for Patient-Specific Paracrine Interaction Analysis. Adv Healthc Mater 2025; 14:e2401887. [PMID: 39648550 DOI: 10.1002/adhm.202401887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
The interaction between breast cancer and stromal tissues varies significantly from patient to patient, greatly impacting cancer prognosis. However, conventional models struggle to accurately replicate these patient-specific interactions. Herein, a novel breast cancer-adipose composite tissue model capable of precisely adjusting the inter-tissue interaction is developed. The composite tissue model is produced through precise embedded bioprinting of breast-cancer spheroids and live-adipose-tissue ink. This model possessed not only precisely patterned cancer spheroids but also well-preserved intrinsic extracellular matrices (ECMs) and heterogeneous cell populations of adipose tissue (AT). Evaluation results successfully demonstrated that the bioprinted composite model can precisely regulate adipokine secretion, drug resistance, and cancer-cell invasion characteristics by adjusting the distance between the cancer spheroids and adipose tissue. The utility of the model is validated using adipokine-targeted therapies (C-compound/SC600125 (SC), AG 490 (AG), and Metformin (MET)). Interestingly, the inhibition of cancer cell proliferation and invasion by these adipokine-targeted drugs nearly doubled as the tissue distance decreased. This suggests that the efficacy of the drugs can be precisely evaluated using the new model. These findings underscore the potential of the developed composite model to replicate patient-specific crosstalk, thereby offering a promising platform for the sophisticated evaluation of various breast-cancer therapies.
Collapse
Affiliation(s)
- Wonwoo Jeong
- School of biomedical engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27101, USA
| | - Jonghyeuk Han
- School of biomedical engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeonghan Choi
- School of biomedical engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Hyun-Wook Kang
- School of biomedical engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
3
|
Lee HY, Lee JW. Spheroid-Exosome-Based Bioprinting Technology in Regenerative Medicine. J Funct Biomater 2024; 15:345. [PMID: 39590549 PMCID: PMC11595066 DOI: 10.3390/jfb15110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion. In this review, we discussed a convergence approach between two promising technologies for bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods used for exosome production, we focused on spheroids, which are suitable for mass production by bioprinting. We then summarized the research results on cases of bioprinting applications using the spheroids and exosomes produced. If a large number of spheroids can be supplied through bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for application in tissue regeneration, disease diagnosis, and treatment.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Dong Y, Zhou X, Ding Y, Luo Y, Zhao H. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting. Biochem Biophys Res Commun 2024; 730:150339. [PMID: 39032359 DOI: 10.1016/j.bbrc.2024.150339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.
Collapse
Affiliation(s)
- Yingying Dong
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xue Zhou
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Yunyi Ding
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School, Hangzhou, 310009, China.
| | - Yichen Luo
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Hong Zhao
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310060, China.
| |
Collapse
|
5
|
Molinares M, Wolpert N, Gollahon L, Xu C. Effect of micropillar density on morphology and migration of low and high metastatic potential breast cancer cells. Colloids Surf B Biointerfaces 2024; 245:114214. [PMID: 39260275 DOI: 10.1016/j.colsurfb.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Study of cell migration in cancer is crucial to the comprehension of the processes and factors that govern tumor spread. Cancer cells migrate invading tissues, causing alterations in cell adhesion, cytoskeleton, and signaling pathways. Little is known about the physical attributes of cancer cells that change when interacting with microenvironments. In this work, the local topography of the ECM has been mimicked through micropillar array substrates. MDA-MB-231 and MCF-7 breast cancer cells, exhibiting high and low metastatic potential, respectively, were analyzed. Differences in morphology and migration of the cells were investigated by examining the cell spreading area, circularity, aspect ratio, migration speed, and migration path. This work encountered that none of the studied cell lines have preferential orientation migrating on uniform patterns. In contrast, cell migration on graded patterns shows preferential orientation along the longitudinal direction from sparser to denser zones which is significantly influenced by substrate stiffness and indicates that both cell lines can sense the spacing gradient and respond to this topographical cue. The migration speed of the breast cancer cell lines significantly decreases from the sparse to medium to dense zones, registering higher values for the MDA-MB-231.
Collapse
Affiliation(s)
- Marielena Molinares
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Changxue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
Chen H, Zhang B, Huang J. Recent advances and applications of artificial intelligence in 3D bioprinting. BIOPHYSICS REVIEWS 2024; 5:031301. [PMID: 39036708 PMCID: PMC11260195 DOI: 10.1063/5.0190208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
3D bioprinting techniques enable the precise deposition of living cells, biomaterials, and biomolecules, emerging as a promising approach for engineering functional tissues and organs. Meanwhile, recent advances in 3D bioprinting enable researchers to build in vitro models with finely controlled and complex micro-architecture for drug screening and disease modeling. Recently, artificial intelligence (AI) has been applied to different stages of 3D bioprinting, including medical image reconstruction, bioink selection, and printing process, with both classical AI and machine learning approaches. The ability of AI to handle complex datasets, make complex computations, learn from past experiences, and optimize processes dynamically makes it an invaluable tool in advancing 3D bioprinting. The review highlights the current integration of AI in 3D bioprinting and discusses future approaches to harness the synergistic capabilities of 3D bioprinting and AI for developing personalized tissues and organs.
Collapse
Affiliation(s)
| | - Bin Zhang
- Department of Mechanical and Aerospace Engineering, Brunel University London, London, United Kingdom
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
7
|
Golo M, Newman PLH, Kempe D, Biro M. Mechanoimmunology in the solid tumor microenvironment. Biochem Soc Trans 2024; 52:1489-1502. [PMID: 38856041 DOI: 10.1042/bst20231427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.
Collapse
Affiliation(s)
- Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter L H Newman
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Wei X, Wu Y, Chen K, Wang L, Xu M. Embedded bioprinted multicellular spheroids modeling pancreatic cancer bioarchitecture towards advanced drug therapy. J Mater Chem B 2024; 12:1788-1797. [PMID: 38268422 DOI: 10.1039/d3tb02913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The desmoplastic bioarchitecture and microenvironment caused by fibroblasts have been confirmed to be closely related to the drug response behavior of pancreatic ductal adenocarcinoma (PDAC). Despite the extensive progress in developing PDAC models as in vitro drug screening platforms, developing efficient and controllable approaches for the construction of physiologically relevant models remains challenging. In the current study, multicellular spheroid models that emulate pancreatic cancer bioarchitecture and the desmoplastic microenvironment are bioengineered. An extrusion-based embedded dot bioprinting strategy was established to fabricate PDAC spheroids in a one-step process. Cell-laden hydrogel beads were directly deposited into a methacrylated gelatin (GelMA) suspension bath to generate spherical multicellular aggregates (SMAs), which further progressed into dense spheroids through in situ self assembly. By modulating the printing parameters, SMAs, even from multiple cell components, could be manipulated with tunable size and flexible location, achieving tunable spheroid patterns within the hydrogel bath with reproducible morphological features. To demonstrate the feasibility of this printing strategy, we fabricated desmoplastic PDAC spheroids by printing SMAs consisting of tumor cells and fibroblasts within the GelMA matrix bath. The produced hybrid spheroids were further exposed to different concentrations of the drug gemcitabine to verify their potential for use in cell therapy. Beyond providing a robust and facile bioprinting system that enables desmoplastic PDAC bioarchitecture bioengineering, this work introduces an approach for the scalable, flexible and rapid fabrication of cell spheroids or multi-cell-type spheroid patterns as platforms for advanced drug therapy or disease mechanism exploration.
Collapse
Affiliation(s)
- Xiaoyun Wei
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yiwen Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Keke Chen
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ling Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
9
|
Chai XX, Liu J, Yu TY, Zhang G, Sun WJ, Zhou Y, Ren L, Cao HL, Yin DC, Zhang CY. Recent progress of mechanosensitive mechanism on breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:1-16. [PMID: 37793504 DOI: 10.1016/j.pbiomolbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.
Collapse
Affiliation(s)
- Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yan Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, Zhejiang, PR China
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, School of Pharmacy, Xi'an Medical University, Xi'an, 710021, Shaanxi, PR China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
10
|
Pierantoni L, Reis RL, Silva-Correia J, Oliveira JM, Heavey S. Spatial -omics technologies: the new enterprise in 3D breast cancer models. Trends Biotechnol 2023; 41:1488-1500. [PMID: 37544843 DOI: 10.1016/j.tibtech.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
The fields of tissue bioengineering, -omics, and spatial biology are advancing rapidly, each offering the opportunity for a paradigm shift in breast cancer research. However, to date, collaboration between these fields has not reached its full potential. In this review, we describe the most recently generated 3D breast cancer models regarding the biomaterials and technological platforms employed. Additionally, their biological evaluation is reported, highlighting their advantages and limitations. Specifically, we focus on the most up-to-date -omics and spatial biology techniques, which can generate a deeper understanding of the biological relevance of bioengineered 3D breast cancer in vitro models, thus paving the way towards truly clinically relevant microphysiological systems, improved drug development success rates, and personalised medicine approaches.
Collapse
Affiliation(s)
- Lara Pierantoni
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
11
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
12
|
Wu J, Liang B, Lu S, Xie J, Song Y, Wang L, Gao L, Huang Z. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater 2023; 19:012002. [PMID: 37918002 DOI: 10.1088/1748-605x/ad08e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
3D printing technology is an increasing approach consisting of material manufacturing through the selective incremental delamination of materials to form a 3D structure to produce products. This technology has different advantages, including low cost, short time, diversification, and high precision. Widely adopted additive manufacturing technologies enable the creation of diagnostic tools and expand treatment options. Coupled with its rapid deployment, 3D printing is endowed with high customizability that enables users to build prototypes in shorts amounts of time which translates into faster adoption in the medical field. This review mainly summarizes the application of 3D printing technology in the diagnosis and treatment of cancer, including the challenges and the prospects combined with other technologies applied to the medical field.
Collapse
Affiliation(s)
- Jinmei Wu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Bing Liang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Shuoqiao Lu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Jinlan Xie
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Yan Song
- China Automotive Engineering Research Institute Co., Ltd (CAERI), Chongqing 401122, People's Republic of China
| | - Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
13
|
Gnatowski P, Piłat E, Kucińska-Lipka J, Saeb MR, Hamblin MR, Mozafari M. Recent advances in 3D bioprinted tumor models for personalized medicine. Transl Oncol 2023; 37:101750. [PMID: 37572498 PMCID: PMC10440569 DOI: 10.1016/j.tranon.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Cancerous tumors are among the most fatal diseases worldwide, claiming nearly 10 million lives in 2020. Due to their complex and dynamic nature, modeling tumors accurately is a challenging task. Current models suffer from inadequate translation between in vitro and in vivo results, primarily due to the isotropic nature of tumors and their microenvironment's relationship. To address these limitations, hydrogel-based 3D bioprinting is emerging as a promising approach to mimic cancer development and behavior. It provides precise control over individual elements' size and distribution within the cancer microenvironment and enables the use of patient-derived tumor cells, rather than commercial lines. Consequently, hydrogel bioprinting is expected to become a state-of-the-art technique for cancer research. This manuscript presents an overview of cancer statistics, current modeling methods, and their limitations. Additionally, we highlight the significance of bioprinting, its applications in cancer modeling, and the importance of hydrogel selection. We further explore the current state of creating models for the five deadliest cancers using 3D bioprinting. Finally, we discuss current trends and future perspectives on the clinical use of cancer modeling using hydrogel bioprinting.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
14
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
15
|
Zhang YS, Alvarez MM, Trujillo-de Santiago G. Placing biofabrication into the context of human disease modeling. Biofabrication 2023; 15. [PMID: 37191315 DOI: 10.1088/1758-5090/acd27b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The field of biofabrication has seen tremendous advances in the past decade. More recently, the emerging role of biofabrication in allowing faithful generation of models of human tissues in their healthy and diseased states has been demonstrated and has rapidly expanded. These biomimetic models are potentially widely applicable in a range of research and translational areas including but not limited to fundamental biology studies as well as screening of chemical compounds, such as therapeutic agents. The United States Food and Drug Administration Modernization Act 2.0, which now no longer requires animal tests before approving human drug trials, will likely further boost the field in the years to come. This Special Issue, with a collection of 11 excellent research articles, thus focuses on showcasing the latest developments of biofabrication towards human disease modeling, spanning from 3D (bo)printing to organ-on-a-chip as well as their integration.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL 64849, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL 64849, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, México
| |
Collapse
|
16
|
Neufeld L, Yeini E, Pozzi S, Satchi-Fainaro R. 3D bioprinted cancer models: from basic biology to drug development. Nat Rev Cancer 2022; 22:679-692. [PMID: 36280768 DOI: 10.1038/s41568-022-00514-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
Effort invested in the development of new drugs often fails to be translated into meaningful clinical benefits for patients with cancer. The development of more effective anticancer therapeutics and accurate prediction of their clinical merit remain urgent unmet medical needs. As solid cancers have complex and heterogeneous structures composed of different cell types and extracellular matrices, three-dimensional (3D) cancer models hold great potential for advancing our understanding of cancer biology, which has been historically investigated in tumour cell cultures on rigid plastic plates. Advanced 3D bioprinted cancer models have the potential to revolutionize the way we discover therapeutic targets, develop new drugs and personalize anticancer therapies in an accurate, reproducible, clinically translatable and robust manner. These ex vivo cancer models are already replacing existing in vitro systems and could, in the future, diminish or even replace the use of animal models. Therefore, profound understanding of the differences in tumorigenesis between 2D, 3D and animal models of cancer is essential. This Review presents the state of the art of 3D bioprinted cancer modelling, focusing on the biological processes that underlie the molecular mechanisms involved in cancer progression and treatment response as well as on proteomic and genomic signatures.
Collapse
Affiliation(s)
- Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Dankó T, Petővári G, Raffay R, Sztankovics D, Moldvai D, Vetlényi E, Krencz I, Rókusz A, Sipos K, Visnovitz T, Pápay J, Sebestyén A. Characterisation of 3D Bioprinted Human Breast Cancer Model for In Vitro Drug and Metabolic Targeting. Int J Mol Sci 2022; 23:ijms23137444. [PMID: 35806452 PMCID: PMC9267600 DOI: 10.3390/ijms23137444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.
Collapse
Affiliation(s)
- Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Regina Raffay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Krisztina Sipos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
- Correspondence: or
| |
Collapse
|