1
|
Janićijević Ž, Baraban L. Integration Strategies and Formats in Field-Effect Transistor Chemo- and Biosensors: A Critical Review. ACS Sens 2025; 10:2431-2452. [PMID: 40232361 PMCID: PMC12038838 DOI: 10.1021/acssensors.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
The continuous advances in micro- and nanofabrication technologies have inevitably led to major improvements in field-effect transistor (FET) design and architecture, significantly reducing the component footprint and enabling highly efficient integration into many electronic devices. Combined efforts in the areas of materials science, life sciences, and electronic engineering have unlocked opportunities to create ultrasensitive FET chemo- and biosensor devices that are coupled with more diverse and complex integration requirements in terms of hardware interfacing, reproducible functionality, and handling of analyte samples. Integration of FET chemo- and biosensors remains one of the major bottlenecks in bridging the gap between fundamental research concepts and commercial sensing devices. In this review, we critically discuss different strategies and formats of integration in the context of key requirements, fabrication scalability, and device complexity. The intentions of this review are 1) to provide a practical overview of successful FET sensor integration approaches, 2) to identify crucial challenges and factors limiting the extent of FET sensor integration, and 3) to highlight promising perspectives for future developments of FET sensor integration. We believe that our structured insights will be helpful for scientists and engineers of various profiles focusing on the design and development of FET-based chemo- and biosensor devices.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e. V. (HZDR), 01328 Dresden, Germany
| | - Larysa Baraban
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf
e. V. (HZDR), 01328 Dresden, Germany
- Else
Kröner-Fresenius Center for Digital Health (EKFZ), Technische Universität Dresden (TU Dresden), 01309 Dresden, Germany
| |
Collapse
|
2
|
Tan Y, Yang SH, Lin CP, Vega FJ, Cai J, Lan HY, Tripathi R, Sharma S, Shang Z, Hou TH, Beechem TE, Appenzeller J, Chen Z. Monolayer WSe 2 Field-Effect Transistor Performance Enhancement by Atomic Defect Engineering and Passivation. ACS NANO 2025; 19:8916-8925. [PMID: 40013987 DOI: 10.1021/acsnano.4c16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as leading candidates for next-generation electronic devices beyond silicon, owing to their atomically thin structure and superior electrostatic control. However, their integration into industrial applications remains limited due to high densities of lattice defects and challenges in achieving stable and effective doping. In this work, we present a passivation and doping technique that significantly recovers and enhances the electrical properties of monolayer tungsten diselenide (WSe2). Our defect-facilitated (NH4)2S surface passivation approach has achieved robust enhancements in both the on-state and off-state performance of monolayer WSe2 p-type field-effect transistors (p-FETs), enhancing channel mobility 3-fold, reaching a subthreshold slope (SSmin) value of 70 mV/dec, on-currents of 110 μA/μm, and Imax/Imin > 109, while maintaining stability across a range of conditions. Furthermore, we establish a strong correlation between device off-state performance and the full width at half-maximum (fwhm) of the Raman characterization peak. The defect engineering approach, combined with (NH4)2S treatment at room temperature, offers a viable pathway for passivation and substitutional doping, advancing the potential for improved charge transport in future 2D TMD-based electronic devices.
Collapse
Affiliation(s)
- Yuanqiu Tan
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shao-Heng Yang
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chih-Pin Lin
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fernando J Vega
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jun Cai
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hao-Yu Lan
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahul Tripathi
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sahej Sharma
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhongxia Shang
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tuo-Hung Hou
- Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300025, Taiwan
| | - Thomas E Beechem
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joerg Appenzeller
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhihong Chen
- Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Liu R, Grothusen J, Falk S. Perioperative Opioid Usage Monitoring and Waste. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2024; 11:597-600. [PMID: 38846450 PMCID: PMC11155387 DOI: 10.31480/2330-4871/185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
This editorial discusses the status and issues related to perioperative opioid usage monitoring and waste. Opioid detection of wasted material is briefly discussed also. Flowlytics® from Invistics is a digital system to monitor opioid usage and waste in medical facilities. Opioid waste in medical facilities has a two-person witness procedure. Easy to use detection of wasted materials needs to be developed in the future. It is unclear whether the strategies used in medical facilities should be recommended for opioid disposal in the public to reduce opioid diversion. Relevant studies are needed.
Collapse
Affiliation(s)
- Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, USA
| | - John Grothusen
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, USA
| | - Scot Falk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, USA
| |
Collapse
|
4
|
Qing R, Xue M, Zhao J, Wu L, Breitwieser A, Smorodina E, Schubert T, Azzellino G, Jin D, Kong J, Palacios T, Sleytr UB, Zhang S. Scalable biomimetic sensing system with membrane receptor dual-monolayer probe and graphene transistor arrays. SCIENCE ADVANCES 2023; 9:eadf1402. [PMID: 37478177 PMCID: PMC10361598 DOI: 10.1126/sciadv.adf1402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Affinity-based biosensing can enable point-of-care diagnostics and continuous health monitoring, which commonly follows bottom-up approaches and is inherently constrained by bioprobes' intrinsic properties, batch-to-batch consistency, and stability in biofluids. We present a biomimetic top-down platform to circumvent such difficulties by combining a "dual-monolayer" biorecognition construct with graphene-based field-effect-transistor arrays. The construct adopts redesigned water-soluble membrane receptors as specific sensing units, positioned by two-dimensional crystalline S-layer proteins as dense antifouling linkers guiding their orientations. Hundreds of transistors provide statistical significance from transduced signals. System feasibility was demonstrated with rSbpA-ZZ/CXCR4QTY-Fc combination. Nature-like specific interactions were achieved toward CXCL12 ligand and HIV coat glycoprotein in physiologically relevant concentrations, without notable sensitivity loss in 100% human serum. The construct is regeneratable by acidic buffer, allowing device reuse and functional tuning. The modular and generalizable architecture behaves similarly to natural systems but gives electrical outputs, which enables fabrication of multiplex sensors with tailored receptor panels for designated diagnostic purposes.
Collapse
Affiliation(s)
- Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mantian Xue
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jiayuan Zhao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Andreas Breitwieser
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Giovanni Azzellino
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Jin
- Avalon GloboCare Corp., Freehold, NJ 07728, USA
| | - Jing Kong
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Uwe B. Sleytr
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shuguang Zhang
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
6
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
7
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Furlan de Oliveira R, Montes-García V, Ciesielski A, Samorì P. Harnessing selectivity in chemical sensing via supramolecular interactions: from functionalization of nanomaterials to device applications. MATERIALS HORIZONS 2021; 8:2685-2708. [PMID: 34605845 DOI: 10.1039/d1mh01117k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical sensing is a strategic field of science and technology ultimately aiming at improving the quality of our lives and the sustainability of our Planet. Sensors bear a direct societal impact on well-being, which includes the quality and composition of the air we breathe, the water we drink, and the food we eat. Pristine low-dimensional materials are widely exploited as highly sensitive elements in chemical sensors, although they suffer from lack of intrinsic selectivity towards specific analytes. Here, we showcase the most recent strategies on the use of (supra)molecular interactions to harness the selectivity of suitably functionalized 0D, 1D, and 2D low-dimensional materials for chemical sensing. We discuss how the design and selection of receptors via machine learning and artificial intelligence hold a disruptive potential in chemical sensing, where selectivity is achieved by the design and high-throughput screening of large libraries of molecules exhibiting a set of affinity parameters that dictates the analyte specificity. We also discuss the importance of achieving selectivity along with other relevant characteristics in chemical sensing, such as high sensitivity, response speed, and reversibility, as milestones for true practical applications. Finally, for each distinct class of low-dimensional material, we present the most suitable functionalization strategies for their incorporation into efficient transducers for chemical sensing.
Collapse
Affiliation(s)
| | - Verónica Montes-García
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Artur Ciesielski
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Paolo Samorì
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
9
|
Xi J, Yang N, Perez-Aguilar JM, Selling B, Grothusen JR, Lamichhane R, Saven JG, Liu R. Novel variants of engineered water soluble mu opioid receptors with extensive mutations and removal of cysteines. Proteins 2021; 89:1386-1393. [PMID: 34152652 DOI: 10.1002/prot.26160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
We have shown that water-soluble variants of the human mu opioid receptor (wsMOR) containing a reduced number of hydrophobic residues at the lipid-facing residues of the transmembrane (TM) helices can be expressed in E. coli. In this study, we tested the consequences of increasing the number of mutations on the surface of the transmembrane domain on the receptor's aqueous solubility and ligand binding properties, along with mutation of 11 cysteine residues regardless of their solvent exposure value and location in the protein. We computationally engineered 10 different variants of MOR, and tested four of them for expression in E. coli. We found that all four variants were successfully expressed and could be purified in high quantities. The variants have alpha helical structural content similar to that of the native MOR, and they also display binding affinities for the MOR antagonist (naltrexone) similar to the wsMOR variants we engineered previously that contained many fewer mutations. Furthermore, for these full-length variants, the helical content remains unchanged over a wide range of pH values (pH 6 ~ 9). This study demonstrates the flexibility and robustness of the water-soluble MOR variants with respect to additional designed mutations in the TM domain and changes in pH, whereupon the protein's structural integrity and its ligand binding affinity are maintained. These variants of the full-length MOR with less hydrophobic surface residues and less cysteines can be obtained in large amounts from expression in E. coli and can serve as novel tools to investigate structure-function relationships of the receptor.
Collapse
Affiliation(s)
- Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nanmu Yang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jose Manuel Perez-Aguilar
- Department of Chemistry, University of Pennsylvania School of Art and Science, Philadelphia, Pennsylvania, USA.,School of Chemical Science, Meritorious Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - Bernard Selling
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John R Grothusen
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania School of Art and Science, Philadelphia, Pennsylvania, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Nandu N, Smith CW, Uyar TB, Chen YS, Kachwala MJ, He M, Yigit MV. Machine-Learning Single-Stranded DNA Nanoparticles for Bacterial Analysis. ACS APPLIED NANO MATERIALS 2020; 3:11709-11714. [PMID: 34095773 PMCID: PMC8174836 DOI: 10.1021/acsanm.0c03001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A two-dimensional nanoparticle-single-stranded DNA (ssDNA) array has been assembled for the detection of bacterial species using machine-learning (ML) algorithms. Out of 60 unknowns prepared from bacterial lysates, 54 unknowns were predicted correctly. Furthermore, the nanosensor array, supported by ML algorithms, was able to distinguish wild-type Escherichia coli from its mutant by a single gene difference. In addition, the nanosensor array was able to distinguish untreated wild-type E. coli from those treated with antimicrobial drugs. This work demonstrates the potential of nanoparticle-ssDNA arrays and ML algorithms for the discrimination and identification of complex biological matrixes.
Collapse
Affiliation(s)
- Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Christopher W Smith
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Taha Bilal Uyar
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yu-Sheng Chen
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mahera J Kachwala
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Muhan He
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|