1
|
Brunel LG, Cai B, Hull SM, Han U, Wungcharoen T, Fernandes-Cunha GM, Seo YA, Johansson PK, Heilshorn SC, Myung D. In situ UNIversal Orthogonal Network (UNION) bioink deposition for direct delivery of corneal stromal stem cells to corneal wounds. Bioact Mater 2025; 48:414-430. [PMID: 40083774 PMCID: PMC11903395 DOI: 10.1016/j.bioactmat.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ-forming, suture-free therapy for delivering CSSCs to corneal wounds.
Collapse
Affiliation(s)
- Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Uiyoung Han
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Thitima Wungcharoen
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Patrik K. Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
2
|
Brunel LG, Cai B, Hull SM, Han U, Wungcharoen T, Fernandes-Cunha GM, Seo YA, Johansson PK, Heilshorn SC, Myung D. In Situ UNIversal Orthogonal Network (UNION) Bioink Deposition for Direct Delivery of Corneal Stromal Stem Cells to Corneal Wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613997. [PMID: 39386574 PMCID: PMC11463654 DOI: 10.1101/2024.09.19.613997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ -forming, suture-free therapy for delivering CSSCs to corneal wounds. TEASER. Corneal stem cells are delivered within chemically crosslinked collagen as a transparent, regenerative biomaterial therapy.
Collapse
|
3
|
Quantification of cell contractile behavior based on non-destructive macroscopic measurement of tension forces on bioprinted hydrogel. J Mech Behav Biomed Mater 2022; 134:105365. [PMID: 35863297 DOI: 10.1016/j.jmbbm.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022]
Abstract
Contraction assay based on surface measurement have been widely used to evaluate cell contractility in 3D models. This method is straightforward and requires no specific equipment, but it does not provide quantitative data about contraction forces generated by cells. We expanded this method with a new biomechanical model, based on the work-energy theorem, to provide non-destructive longitudinal monitoring of contraction forces generated by cells in 3D. We applied this method on hydrogels seeded with either fibroblasts or osteoblasts. Hydrogel mechanical characteristics were modulated to enhance (condition HCAHigh: hydrogel contraction assay high contraction) or limit (condition HCALow: hydrogel contraction assay low contraction) cell contractile behaviors. Macroscopic measures were further correlated with cell contractile behavior and descriptive analysis of their physiology in response to different mechanical environments. Fibroblasts and osteoblasts contracted their matrix up to 47% and 77% respectively. Contraction stress peaked at day 5 with 1.1 10-14 Pa for fibroblasts and 3.5 10-14 Pa for osteoblasts, which correlated with cell attachment and spreading. Negligible contraction was seen in HCALow. Both fibroblasts and osteoblasts expressed α-SMA contractile fibers in HCAHigh and HCALow. Failure to contract HCALow was attributed to increased cross-linking and resistance to proteolytic degradation of the hydrogel.
Collapse
|
4
|
Urzì C, Hertig D, Meyer C, Maddah S, Nuoffer JM, Vermathen P. Determination of Intra- and Extracellular Metabolic Adaptations of 3D Cell Cultures upon Challenges in Real-Time by NMR. Int J Mol Sci 2022; 23:ijms23126555. [PMID: 35743000 PMCID: PMC9223855 DOI: 10.3390/ijms23126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
NMR flow devices provide longitudinal real-time quantitative metabolome characterisation of living cells. However, discrimination of intra- and extracellular contributions to the spectra represents a major challenge in metabolomic NMR studies. The present NMR study demonstrates the possibility to quantitatively measure both metabolic intracellular fingerprints and extracellular footprints on human control fibroblasts by using a commercially available flow tube system with a standard 5 mm NMR probe. We performed a comprehensive 3D cell culture system characterisation. Diffusion NMR was employed for intra- and extracellular metabolites separation. In addition, complementary extracellular footprints were determined. The implemented perfused NMR bioreactor system allowed the determination of 35 metabolites and intra- and extracellular separation of 19 metabolites based on diffusion rate differences. We show the reliability and sensitivity of NMR diffusion measurements to detect metabolite concentration changes in both intra- and extracellular compartments during perfusion with different selective culture media, and upon complex I inhibition with rotenone. We also demonstrate the sensitivity of extracellular footprints to determine metabolic variations at different flow rates. The current method is of potential use for the metabolomic characterisation of defect fibroblasts and for improving physiological comprehension.
Collapse
Affiliation(s)
- Christian Urzì
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Damian Hertig
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Christoph Meyer
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Sally Maddah
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
| | - Jean-Marc Nuoffer
- Department of Clinical Chemistry, University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - Peter Vermathen
- Departments of Biomedical Research and Neuroradiology, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland; (C.U.); (D.H.); (C.M.); (S.M.)
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Yu Z, Liu KK. Soft Polymer-Based Technique for Cellular Force Sensing. Polymers (Basel) 2021; 13:2672. [PMID: 34451211 PMCID: PMC8399510 DOI: 10.3390/polym13162672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Soft polymers have emerged as a vital type of material adopted in biomedical engineering to perform various biomechanical characterisations such as sensing cellular forces. Distinct advantages of these materials used in cellular force sensing include maintaining normal functions of cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality demanded in individual applications. A wide range of techniques has been developed with various designs and fabrication processes for the desired soft polymeric structures, as well as measurement methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft polymer-based techniques for measuring cellular contraction force with emphasis on their quantitativeness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence the force measurement is addressed. More importantly, the future trends and advancements of soft polymer-based techniques, such as new designs and fabrication processes for cellular force sensing, are also addressed in this review.
Collapse
Affiliation(s)
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| |
Collapse
|
6
|
Gharanei S, Fishwick K, Peter Durairaj R, Jin T, Siamantouras E, Liu KK, Straube A, Lucas ES, Weston CJ, Rantakari P, Salmi M, Jalkanen S, Brosens JJ, Tan BK. Vascular Adhesion Protein-1 Determines the Cellular Properties of Endometrial Pericytes. Front Cell Dev Biol 2021; 8:621016. [PMID: 33537312 PMCID: PMC7848099 DOI: 10.3389/fcell.2020.621016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule and a primary amine oxidase involved in immune cell trafficking. Leukocyte extravasation into tissues is mediated by adhesion molecules expressed on endothelial cells and pericytes. Pericytes play a major role in the angiogenesis and vascularization of cycling endometrium. However, the functional properties of pericytes in the human endometrium are not known. Here we show that pericytes surrounding the spiral arterioles in midluteal human endometrium constitutively express VAP-1. We first characterize these pericytes and demonstrate that knockdown of VAP-1 perturbed their biophysical properties and compromised their contractile, migratory, adhesive and clonogenic capacities. Furthermore, we show that loss of VAP-1 disrupts pericyte-uterine natural killer cell interactions in vitro. Taken together, the data not only reveal that endometrial pericytes represent a cell population with distinct biophysical and functional properties but also suggest a pivotal role for VAP-1 in regulating the recruitment of innate immune cells in human endometrium. We posit that VAP-1 could serve as a potential biomarker for pregnancy pathologies caused by a compromised perivascular environment prior to conception.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | | | | | - Tianrong Jin
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Anne Straube
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
| | - Emma S. Lucas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, Coventry, United Kingdom
| | - Christopher J. Weston
- Centre for Liver Research & National Institute for Health Research Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Pia Rantakari
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Salmi
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jan J. Brosens
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, Coventry, United Kingdom
| | - Bee Kang Tan
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- Department of Obstetrics and Gynaecology, University Hospitals of Leicester National Health Service Trust, Leicester, United Kingdom
| |
Collapse
|
7
|
Boismal F, Serror K, Dobos G, Zuelgaray E, Bensussan A, Michel L. [Skin aging: Pathophysiology and innovative therapies]. Med Sci (Paris) 2020; 36:1163-1172. [PMID: 33296633 DOI: 10.1051/medsci/2020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges of the 21st century is the fight against aging, defined as a set of physiological mechanisms altering the physical and intellectual capacities of human beings. Aging of the skin is only one visible part of this process. It is associated with major healing defects linked in part to the alteration of the biomechanical properties of skin cells, mainly dermal fibroblasts. The immune system, another key component in maintaining skin homeostasis and the efficient healing of wounds, also suffers the effects of time: the consequent skin immunosenescence would limit the anti-infectious and vaccine response, while promoting a pro-tumor environment. The main skin damages due to aging, whether intrinsic or extrinsic, will be detailed before listing the effective anti-aging strategies to combat age-related dermal and epidermal stigmas.
Collapse
Affiliation(s)
- Françoise Boismal
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Service de chirurgie plastique et reconstructrice, hôpital Saint-Louis, Paris, France
| | - Gabor Dobos
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| | - Elina Zuelgaray
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| | - Armand Bensussan
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France
| | - Laurence Michel
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| |
Collapse
|
8
|
Jagiełło A, Lim M, Botvinick E. Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioeng 2020; 4:046105. [PMID: 33305163 PMCID: PMC7719046 DOI: 10.1063/5.0021030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The bulk measurement of extracellular matrix (ECM) stiffness is commonly used in mechanobiology. However, past studies by our group show that peri-cellular stiffness is quite heterogeneous and divergent from the bulk. We use optical tweezers active microrheology (AMR) to quantify how two phenotypically distinct migratory cell lines establish dissimilar patterns of peri-cellular stiffness. Dermal fibroblasts (DFs) and triple-negative human breast cancer cells MDA-MB-231 (MDAs) were embedded within type 1 collagen (T1C) hydrogels polymerized at two concentrations: 1.0 mg/ml and 1.5 mg/ml. We found DFs increase the local stiffness of 1.0 mg/ml T1C hydrogels but, surprisingly, do not alter the stiffness of 1.5 mg/ml T1C hydrogels. In contrast, MDAs predominantly do not stiffen T1C hydrogels as compared to cell-free controls. The results suggest that MDAs adapt to the bulk ECM stiffness, while DFs regulate local stiffness to levels they intrinsically prefer. In other experiments, cells were treated with transforming growth factor-β1 (TGF-β1), glucose, or ROCK inhibitor Y27632, which have known effects on DFs and MDAs related to migration, proliferation, and contractility. The results show that TGF-β1 alters stiffness anisotropy, while glucose increases stiffness magnitude around DFs but not MDAs and Y27632 treatment inhibits cell-mediated stiffening. Both cell lines exhibit an elongated morphology and local stiffness anisotropy, where the stiffer axis depends on the cell line, T1C concentration, and treatment. In summary, our findings demonstrate that AMR reveals otherwise masked mechanical properties such as spatial gradients and anisotropy, which are known to affect cell behavior at the macro-scale. The same properties manifest with similar magnitude around single cells.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | - Micah Lim
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
9
|
Mihalko E, Huang K, Sproul E, Cheng K, Brown AC. Targeted Treatment of Ischemic and Fibrotic Complications of Myocardial Infarction Using a Dual-Delivery Microgel Therapeutic. ACS NANO 2018; 12:7826-7837. [PMID: 30016078 DOI: 10.1021/acsnano.8b01977] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myocardial infarction (MI), commonly known as a heart attack, affects millions of people worldwide and results in significant death and disabilities. A major cause of MI is fibrin-rich thrombus formation that occludes the coronary arteries, blocking blood flow to the heart and causing fibrin deposition. In treating MI, re-establishing blood flow is critical. However, ischemia reperfusion (I/R) injury itself can also occur and contributes to cardiac fibrosis. Fibrin-specific poly( N-isopropylacrylamide) nanogels (FSNs) comprised of a core-shell colloidal hydrogel architecture are utilized in this study to design a dual-delivery system that simultaneously addresses the need to (1) re-establish blood flow and (2) inhibit cardiac fibrosis following I/R injury. These therapeutic needs are met by controlling the release of a fibrinolytic protein, tissue plasminogen activator (tPA), and a small molecule cell contractility inhibitor (Y-27632). In vitro, tPA and Y-27632-loaded FSNs rapidly degrade fibrin and decrease cardiac cell stress fiber formation and connective tissue growth factor expression, which are both upregulated in cardiac fibrosis. In vivo, FSNs localize to fibrin in injured heart tissue and, when loaded with tPA and Y-27632, showed significant improvement in left ventricular ejection fraction 2 and 4 weeks post-I/R as well as significantly decreased infarct size, α-smooth muscle actin expression, and connective tissue growth factor expression 4 weeks post-I/R. Together, these data demonstrate the feasibility of this targeted therapeutic strategy to improve cardiac function following MI.
Collapse
|
10
|
Ingram PN, Hind LE, Jiminez-Torres JA, Huttenlocher A, Beebe DJ. An Accessible Organotypic Microvessel Model Using iPSC-Derived Endothelium. Adv Healthc Mater 2018; 7. [PMID: 29364596 DOI: 10.1002/adhm.201700497] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Indexed: 12/30/2022]
Abstract
While organotypic approaches promise increased relevance through the inclusion of increased complexity (e.g., 3D extracellular microenvironment, structure/function relationships, presence of multiple cell types), cell source is often overlooked. Induced pluripotent stem cell (iPSC)-derived cells are potentially more physiologically relevant than cell lines, while also being less variable than primary cells, and recent advances have made them commercially available at costs similar to cell lines. Here, the use of induced pluripotent stem cell-derived endothelium for the generation of a functional microvessel model is demonstrated. High precision structural and microenvironmental control afforded by the design approach synergizes with the advantages of iPSC to produce microvessels for modeling endothelial biology in vitro. iPSC microvessels show endothelial characteristics, exhibit barrier function, secrete angiogenic and inflammatory mediators, and respond to changes in the extracellular microenvironment by altering vessel phenotype. Importantly, when deployed in the investigation of neutrophils during innate immune recruitment, the presence of the iPSC endothelial vessel facilitates neutrophil extravasation and migration toward a chemotactic source. Relevant cell sources, such as iPSC, combine with organotypic models to open the way for improved and increasingly accessible in vitro tissue, disease, and patient-specific models.
Collapse
Affiliation(s)
- Patrick N. Ingram
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
| | - Laurel E. Hind
- Departments of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Microbial Sciences Building Room 4205, 1550 Linden Dr Madison WI 53705 USA
| | - Jose A. Jiminez-Torres
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Microbial Sciences Building Room 4205, 1550 Linden Dr Madison WI 53705 USA
| | - David J. Beebe
- Department of Biomedical Engineering; Wisconsin Institutes for Medical Research; University of Wisconsin-Madison; WIMR I Room 6028, 1111 Highland Ave Madison WI 53705 USA
- University of Wisconsin Carbone Cancer Center; University of Wisconsin-Madison; WIMR I Room 6009, 1111 Highland Ave Madison WI 53705 USA
| |
Collapse
|